Mesh.cc 31.7 KB
Newer Older
Thomas Witkowski's avatar
Thomas Witkowski committed
1
2
3
4
5
6
#include <algorithm>
#include <set>
#include <map>

#include "time.h"

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#include "AdaptStationary.h"
#include "AdaptInstationary.h"
#include "FiniteElemSpace.h"
#include "ElementData.h"
#include "MacroElement.h"
#include "MacroReader.h"
#include "Mesh.h"
#include "Traverse.h"
#include "Parameters.h"
#include "FixVec.h"
#include "DOFVector.h"
#include "CoarseningManager.h"
#include "DOFIterator.h"
#include "VertexVector.h"
#include "MacroWriter.h"
#include "PeriodicMap.h"
#include "Projection.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
24
#include "ElInfoStack.h"
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

namespace AMDiS {

#define TIME_USED(f,s) ((double)((s)-(f))/(double)CLOCKS_PER_SEC)

  //**************************************************************************
  //  flags, which information should be present in the elInfo structure     
  //**************************************************************************

  const Flag Mesh::FILL_NOTHING    = 0X00L;
  const Flag Mesh::FILL_COORDS     = 0X01L;
  const Flag Mesh::FILL_BOUND      = 0X02L;
  const Flag Mesh::FILL_NEIGH      = 0X04L;
  const Flag Mesh::FILL_OPP_COORDS = 0X08L;
  const Flag Mesh::FILL_ORIENTATION= 0X10L;
  const Flag Mesh::FILL_DET        = 0X20L;
  const Flag Mesh::FILL_GRD_LAMBDA = 0X40L;
  const Flag Mesh::FILL_ADD_ALL    = 0X80L;


45
46
47
  const Flag Mesh::FILL_ANY_1D = (0X01L|0X02L|0X04L|0X08L|0x20L|0X40L|0X80L);
  const Flag Mesh::FILL_ANY_2D = (0X01L|0X02L|0X04L|0X08L|0x20L|0X40L|0X80L);
  const Flag Mesh::FILL_ANY_3D = (0X01L|0X02L|0X04L|0X08L|0X10L|0x20L|0X40L|0X80L);
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

  //**************************************************************************
  //  flags for Mesh traversal                                                
  //**************************************************************************

  const Flag Mesh::CALL_EVERY_EL_PREORDER  = 0X0100L;
  const Flag Mesh::CALL_EVERY_EL_INORDER   = 0X0200L;
  const Flag Mesh::CALL_EVERY_EL_POSTORDER = 0X0400L;
  const Flag Mesh::CALL_LEAF_EL            = 0X0800L;
  const Flag Mesh::CALL_LEAF_EL_LEVEL      = 0X1000L;
  const Flag Mesh::CALL_EL_LEVEL           = 0X2000L;
  const Flag Mesh::CALL_MG_LEVEL           = 0X4000L ; // used in mg methods 


  // const Flag Mesh::USE_PARAMETRIC          = 0X8000L ; // used in mg methods 

  DOFAdmin* Mesh::compressAdmin = NULL;
  Mesh* Mesh::traversePtr = NULL;
  int Mesh::iadmin = 0;
Thomas Witkowski's avatar
Thomas Witkowski committed
67
  std::vector<DegreeOfFreedom> Mesh::dof_used;
68
  const int Mesh::MAX_DOF = 100;
Thomas Witkowski's avatar
Thomas Witkowski committed
69
  std::map<DegreeOfFreedom, DegreeOfFreedom*> Mesh::serializedDOFs;
70
71
72

  struct delmem { 
    DegreeOfFreedom* ptr;
73
    int len;
74
75
76
  };


Thomas Witkowski's avatar
Thomas Witkowski committed
77
  Mesh::Mesh(const std::string& aName, int dimension) 
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    : name(aName), 
      dim(dimension), 
      nVertices(0),
      nEdges(0),
      nLeaves(0), 
      nElements(0),
      parametric(NULL), 
      preserveCoarseDOFs(false),
      nDOFEl(0),
      nDOF(dimension, DEFAULT_VALUE, 0),
      nNodeEl(0),
      node(dimension, DEFAULT_VALUE, 0),
      elementPrototype(NULL),
      elementDataPrototype(NULL),
      elementIndex(-1),
      initialized(false),
94
      macroFileInfo(NULL),
95
96
97
      final_lambda(dimension, DEFAULT_VALUE, 0.0)
  {

98
    FUNCNAME("Mesh::Mesh()");
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

    // set default element prototype
    switch(dim) {
    case 1:
      elementPrototype = NEW Line(this);
      break;
    case 2:
      elementPrototype = NEW Triangle(this);
      break;
    case 3:
      elementPrototype = NEW Tetrahedron(this);
      break;
    default:
      ERROR_EXIT("invalid dimension\n");
    }

    elementPrototype->setIndex(-1);

117
118
    elementIndex = 0;
  }
119
120

  Mesh::~Mesh()
121
  {
122
    Element::deletedDOFs.clear();
123
124
125
126
127
128
129
130

    for (std::deque<MacroElement*>::const_iterator it = macroElements.begin();
	 it != macroElements.end();
	 ++it) {
      (*it)->getElement()->deleteElementDOFs();
      DELETE *it;
    }    

131
    Element::deletedDOFs.clear();
132

133
    if (macroFileInfo != NULL) {
134
135
      DELETE macroFileInfo;
    }
136
137
138
139
140
141
142
143
144
145
    if (elementPrototype) {
      DELETE elementPrototype;
    }
    if (elementDataPrototype) {
      DELETE elementDataPrototype;
    }
    
    for (int i = 0; i < static_cast<int>(admin.size()); i++) {
      DELETE admin[i];
    }
146
  }
147
148

  Mesh& Mesh::operator=(const Mesh& m)
149
  {
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    FUNCNAME("Mesh::operator=()");

    if (this == &m)
      return *this;

    TEST_EXIT(dim == m.dim)("operator= works only on meshes with equal dim!\n");

    name = m.name;
    nVertices = m.nVertices;
    nEdges = m.nEdges;
    nLeaves = m.nLeaves;
    nElements = m.nElements;
    nFaces = m.nFaces;
    maxEdgeNeigh = m.maxEdgeNeigh;
    diam = m.diam;
    parametric = NULL;

    preserveCoarseDOFs = m.preserveCoarseDOFs;
    nDOFEl = m.nDOFEl;
    nDOF = m.nDOF;
    nNodeEl = m.nNodeEl;
    node = m.node;
    newDOF = m.newDOF;
    elementIndex = m.elementIndex;
    initialized = m.initialized;
    final_lambda = m.final_lambda;
    
    /* ====================== Create new DOFAdmins ================== */
    admin.resize(m.admin.size());
    for (int i = 0; i < static_cast<int>(admin.size()); i++) {
      admin[i] = NEW DOFAdmin(this);
181
      *(admin[i]) = *(m.admin[i]);
182
183
      admin[i]->setMesh(this);
    }
184

185

186
    /* ====================== Copy macro elements =================== */
187
  
188
189
190
191
192
193
194
195
196
    // mapIndex[i] is the index of the MacroElement element in the vector
    // macroElements, for which holds: element->getIndex() = i    
    std::map<int, int> mapIndex;

    // We use this map for coping the DOFs of the Elements within the
    // MacroElements objects.
    Mesh::serializedDOFs.clear();

    int insertCounter = 0;
197

198
199
    macroElements.clear();

200
201
202
203
204
    // Go through all MacroElements of mesh m, and create for every a new
    // MacroElement in this mesh.
    for (std::deque<MacroElement*>::const_iterator it = m.macroElements.begin();
	 it != m.macroElements.end();
	 ++it, insertCounter++) {
205

206
207
      // Create new MacroElement.
      MacroElement *el = NEW MacroElement(dim);
208

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
      // Use copy operator to copy all the data to the new MacroElement.
      *el = **it;

      // Make a copy of the Element data, together with all DOFs
      el->setElement((*it)->getElement()->cloneWithDOFs());

      // Insert the new MacroElement in the vector of all MacroElements.
      macroElements.push_back(el);

      // Update the index map.
      mapIndex.insert(std::pair<int, int>(el->getIndex(), insertCounter));
    }

    // Now we have to go through all the new MacroElements, and update the neighbour
    // connections.
    insertCounter = 0;
    for (std::deque<MacroElement*>::const_iterator it = m.macroElements.begin();
	 it != m.macroElements.end();
	 ++it, insertCounter++) {
      // Go through all neighbours.
      for (int i = 0; i < dim; i++) {
	// 1. Get index of the old MacroElement for its i-th neighbour.
	// 2. Because the index in the new MacroElement is the same, search
	//    for the vector index the corresponding element is stored in.
	// 3. Get this element from macroElements, and set it as the i-th
	//    neighbour for the current element.
	macroElements[insertCounter]->
	  setNeighbour(i, macroElements[mapIndex[(*it)->getNeighbour(i)->getIndex()]]);
      }
    }

    // Cleanup
    Mesh::serializedDOFs.clear();

    /* ================== Things will be done when required ============ */
      
    TEST_EXIT(elementDataPrototype == NULL)("TODO\n");
    TEST_EXIT(m.parametric == NULL)("TODO\n");
    TEST_EXIT(periodicAssociations.size() == 0)("TODO\n");

    return *this;
  }

252
253
254
255
256
257
258
259
260
261
262
263
  void Mesh::updateNumberOfLeaves()
  {
    nLeaves = 0;

    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(this, -1, Mesh::CALL_LEAF_EL);
    while (elInfo) {
      nLeaves++;
      elInfo = stack.traverseNext(elInfo);
    }
  }

264
265
266
267
268
269
  void Mesh::addMacroElement(MacroElement* me) 
  {
    macroElements.push_back(me); 
    me->setIndex(macroElements.size());
  }

270
  void Mesh::removeMacroElements(std::vector<MacroElement*>& macros) 
271
272
273
274
275
  {
    FUNCNAME("Mesh::removeMacroElement()");

    TEST_EXIT(dim == 2)("Not yet implemented!\n");

276
277
278
279
280
281
282
283
284
285
286
    // Map that stores for each dof pointer (which may have a list of dofs)
    // all macro element indices that own the dof.
    std::map<const DegreeOfFreedom*, std::set<MacroElement*> > dofsOwner;
    
    // Determine all dof owner macro elements.
    for (std::deque<MacroElement*>::iterator macroIt = macroElements.begin();
	 macroIt != macroElements.end();
	 ++macroIt) {
      Element *el = (*macroIt)->getElement();
      for (int i = 0; i < 3; i++)
	dofsOwner[el->getDOF(i)].insert(*macroIt);      
287
    }
288

289
    
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
    // Remove all the given macro elements.
    for (std::vector<MacroElement*>::iterator macroIt = macros.begin();
	 macroIt != macros.end();
	 ++macroIt) {
      bool found = false;

      // Remove the macro element from mesh's list of all macro elements.
      for (std::deque<MacroElement*>::iterator it = macroElements.begin();
	   it != macroElements.end();
	   ++it) {
	if (*it == *macroIt) {
	  macroElements.erase(it, it + 1);
	  found = true;
	  break;
	}
      }
      
      TEST_EXIT(found)("Cannot find MacroElement that should be removed!\n");
      
      // Go through all neighbours of the macro element and remove this macro element
      // to be neighbour of some other macro element.
      for (int i = 0; i <= dim; i++) {
	if ((*macroIt)->getNeighbour(i)) {
	  for (int j = 0; j <= dim; j++) {
	    if ((*macroIt)->getNeighbour(i)->getNeighbour(j) == *macroIt) {
	      (*macroIt)->getNeighbour(i)->setNeighbour(j, NULL);
	    }
317
	  }
318
319
320
321
	} else {
	  // There is no neighbour at this edge, so we have to decrease the number
	  // of edges in the mesh.
	  nEdges--;
322
	}
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
      }

      nLeaves--;
      nElements--;

      // Remove this macro element from the dof owner list.
      for (std::map<const DegreeOfFreedom*, std::set<MacroElement*> >::iterator dofsIt = dofsOwner.begin();
	   dofsIt != dofsOwner.end();
	   ++dofsIt) {
	std::set<MacroElement*>::iterator mIt = dofsIt->second.find(*macroIt);
	if (mIt != dofsIt->second.end())
	  dofsIt->second.erase(mIt);
      }

      // And remove the macro element from memory
      delete *macroIt;
    }

    int nRemainDofs = 0;
    // Check now all the dofs, that have no owner anymore and therefore have to
    // be removed.
    for (std::map<const DegreeOfFreedom*, std::set<MacroElement*> >::iterator dofsIt = dofsOwner.begin();
	 dofsIt != dofsOwner.end();
	 ++dofsIt) {    
      if (dofsIt->second.size() == 0) {
	dofsOwner.erase(dofsIt++);
349
      } else {
350
	nRemainDofs++;
351
352
353
      }
    }

354
    nVertices = nRemainDofs;
355
  }
356

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
  void Mesh::createContinuousDofOrdering(FiniteElemSpace *feSpace, unsigned int addC) 
  {
    FUNCNAME("Mesh::createContinuousDofOrdering()");

    const BasisFunction* basisFcts = feSpace->getBasisFcts();

    TEST_EXIT(dim == 2)("Not yet implemented!\n");
    TEST_EXIT(basisFcts->getNumber() == 3)("Not yet implemented!\n");

    std::set<DegreeOfFreedom*> dofs;
    
    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(this, -1, Mesh::CALL_LEAF_EL);
    while (elInfo) {
      for (int i = 0; i < 3; i++) {
	dofs.insert(const_cast<DegreeOfFreedom*>(elInfo->getElement()->getDOF(i)));
      }
      elInfo = stack.traverseNext(elInfo);
    }
  }

378
  int Mesh::traverse(int level, Flag flag, int (*el_fct)(ElInfo*))
379
380
  {
    FUNCNAME("Mesh::traverse()");
Thomas Witkowski's avatar
Thomas Witkowski committed
381

Thomas Witkowski's avatar
Thomas Witkowski committed
382
    std::deque<MacroElement*>::iterator mel;
Thomas Witkowski's avatar
Thomas Witkowski committed
383
384
    ElInfoStack elInfoStack(this);
    ElInfo* elinfo = elInfoStack.getNextElement();
385
386
387
388
389
390
391
392
393
394
395
396
397
    Traverse tinfo(this, flag, level, el_fct);
    int sum = 0;
  
    elinfo->setFillFlag(flag);
  
    if (flag.isSet(Mesh::CALL_LEAF_EL_LEVEL) || 
	flag.isSet(Mesh::CALL_EL_LEVEL)      || 
	flag.isSet(Mesh::CALL_MG_LEVEL)) {
      TEST(level >= 0)("invalid level: %d\n", level);
    }
  
    for (mel = macroElements.begin(); mel != macroElements.end(); mel++) {
      elinfo->fillMacroInfo(*mel);
Thomas Witkowski's avatar
Thomas Witkowski committed
398
      sum += tinfo.recursive(&elInfoStack);
399
400
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
401
    elInfoStack.getBackElement();
402
403
404
405
406
407
408
409
410
411
    
    return (flag.isSet(Mesh::FILL_ADD_ALL)) ? sum : 0;
  }

  void Mesh::addDOFAdmin(DOFAdmin *localAdmin)
  {    
    FUNCNAME("Mesh::addDOFAdmin()");

    localAdmin->setMesh(this);

412
413
    std::vector<DOFAdmin*>::iterator dai = std::find(admin.begin(),admin.end(),localAdmin);

414
415
416
417
418
419
420
    if (dai!= admin.end()) {
      ERROR("admin %s is already associated to mesh %s\n",
	    localAdmin->getName().c_str(), this->getName().c_str());
    }

    // ===== adding dofs to already existing elements ============================ 
    
421
422
423
    // If adding DOFAdmins to already initilized meshes is required, see older
    // AMDiS version (revision < 244) at the same code position.
    TEST_EXIT(!initialized)("Adding DOFAdmins to initilized meshes does not work!\n");
424
425
426
427
428
429
430


    admin.push_back(localAdmin);

    nDOFEl = 0;

    localAdmin->setNumberOfPreDOFs(VERTEX,nDOF[VERTEX]);
431
    nDOF[VERTEX] += localAdmin->getNumberOfDOFs(VERTEX);
432
433
    nDOFEl += getGeo(VERTEX) * nDOF[VERTEX];

434
    if (dim > 1) {
435
      localAdmin->setNumberOfPreDOFs(EDGE,nDOF[EDGE]);
436
      nDOF[EDGE] += localAdmin->getNumberOfDOFs(EDGE);
437
438
439
440
441
442
443
      nDOFEl += getGeo(EDGE) * nDOF[EDGE];
    }

    localAdmin->setNumberOfPreDOFs(CENTER,nDOF[CENTER]);
    nDOF[CENTER]  += localAdmin->getNumberOfDOFs(CENTER);
    nDOFEl += nDOF[CENTER];

444
    TEST_EXIT_DBG(nDOF[VERTEX] > 0)("no vertex dofs\n");
445

446
447
    node[VERTEX] = 0;
    nNodeEl = getGeo(VERTEX);
448

449
450
    if (dim > 1) {
      node[EDGE] = nNodeEl;
451
452
      if (nDOF[EDGE] > 0) 
	nNodeEl += getGeo(EDGE);
453
454
    }

455
    if (dim == 3) {
456
      localAdmin->setNumberOfPreDOFs(FACE,nDOF[FACE]);
457
458
459
460
461
      nDOF[FACE] += localAdmin->getNumberOfDOFs(FACE);
      nDOFEl += getGeo(FACE) * nDOF[FACE];
      node[FACE] = nNodeEl;
      if (nDOF[FACE] > 0) 
	nNodeEl += getGeo(FACE);
462
463
    }

464
    node[CENTER] = nNodeEl;
465
    if (nDOF[CENTER] > 0) {
466
      nNodeEl += 1;
467
    }
468
469
470
471
472
473
474
475
476
  }


  /****************************************************************************/
  /*  dofCompress: remove holes in dof vectors                                */
  /****************************************************************************/

  void Mesh::dofCompress()
  {
477
478
479
    FUNCNAME("Mesh::dofCompress()");
    int size;
    Flag fill_flag;
480

481
    for (iadmin = 0; iadmin < static_cast<int>(admin.size()); iadmin++) {
482
483
484
      compressAdmin = admin[iadmin];

      TEST_EXIT_DBG(compressAdmin)("no admin[%d] in mesh\n", iadmin);
485
486
487
      
      if ((size = compressAdmin->getSize()) < 1) 
	continue;
Thomas Witkowski's avatar
Thomas Witkowski committed
488

489
490
      if (compressAdmin->getUsedDOFs() < 1)    
	continue;
Thomas Witkowski's avatar
Thomas Witkowski committed
491

492
493
      if (compressAdmin->getHoleCount() < 1)    
	continue;
Thomas Witkowski's avatar
Thomas Witkowski committed
494
  
495
496
497
498
499
500
501
502
      newDOF.resize(size);
      
      compressAdmin->compress(newDOF);
      
      if (preserveCoarseDOFs) {
	fill_flag = Mesh::CALL_EVERY_EL_PREORDER | Mesh::FILL_NOTHING;
      } else {
	fill_flag = Mesh::CALL_LEAF_EL | Mesh::FILL_NOTHING;
503
      }
504
505
506
507
508
509
      
      traverse( -1, fill_flag, newDOFFct1);
      traverse( -1, fill_flag, newDOFFct2);
      
      newDOF.resize(0);
    }   
510
511
512
513
514
  }


  DegreeOfFreedom *Mesh::getDOF(GeoIndex position)
  {
515
    FUNCNAME("Mesh::getDOF()");
516

517
    TEST_EXIT_DBG(position >= CENTER && position <= FACE)
518
      ("unknown position %d\n", position);
519

520
521
    int ndof = getNumberOfDOFs(position);
    if (ndof <= 0) 
522
      return NULL;
523

524
    DegreeOfFreedom *dof = GET_MEMORY(DegreeOfFreedom, ndof);
525

526
527
    for (int i = 0; i < getNumberOfDOFAdmin(); i++) {
      const DOFAdmin *localAdmin = &getDOFAdmin(i);
528
      TEST_EXIT_DBG(localAdmin)("no admin[%d]\n", i);
529
530
531
532
      
      int n  = localAdmin->getNumberOfDOFs(position);
      int n0 = localAdmin->getNumberOfPreDOFs(position);
      
533
      TEST_EXIT_DBG(n + n0 <= ndof)("n=%d, n0=%d too large: ndof=%d\n", n, n0, ndof);
534
535
536
      
      for (int j = 0; j < n; j++) {
	dof[n0 + j] = const_cast<DOFAdmin*>(localAdmin)->getDOFIndex();
537
      }
538
    }
539
  
540
    return dof;
541
542
543
544
545
  }


  DegreeOfFreedom **Mesh::createDOFPtrs()
  {
546
    FUNCNAME("Mesh::createDOFPtrs()");
547
548

    if (nNodeEl <= 0)
549
      return NULL;
550

551
552
    DegreeOfFreedom **ptrs = GET_MEMORY(DegreeOfFreedom*, nNodeEl);
    for (int i = 0; i < nNodeEl; i++)
553
554
      ptrs[i] = NULL;

555
    return ptrs;
556
557
558
559
  }

  void Mesh::freeDOFPtrs(DegreeOfFreedom **ptrs)
  {
560
    FUNCNAME("Mesh::freeDOFPtrs()");
561

562
    TEST_EXIT_DBG(ptrs)("ptrs=NULL\n");
563
564
565
566
567
568
569
570

    if (nNodeEl <= 0)
      return;
  
    FREE_MEMORY(ptrs, DegreeOfFreedom*, nNodeEl);
  }


Thomas Witkowski's avatar
Thomas Witkowski committed
571
  const DOFAdmin *Mesh::createDOFAdmin(const std::string& lname,DimVec<int> lnDOF)
572
  {
573
    FUNCNAME("Mesh::createDOFAdmin()");
574

575
    DOFAdmin *localAdmin = NEW DOFAdmin(this, lname);
576

577
    for (int i = 0; i < dim+1; i++)
578
579
580
581
      localAdmin->setNumberOfDOFs(i,lnDOF[i]);

    addDOFAdmin(localAdmin);

582
    return localAdmin;
583
584
585
586
587
588
589
  }


  const DOFAdmin* Mesh::getVertexAdmin() const
  {
    const DOFAdmin *localAdmin = NULL;

590
591
592
593
594
595
    for (int i = 0; i < static_cast<int>(admin.size()); i++) {
      if (admin[i]->getNumberOfDOFs(VERTEX)) {
	if (!localAdmin)  
	  localAdmin = admin[i];
	else if (admin[i]->getSize() < localAdmin->getSize())
	  localAdmin = admin[i];
596
      }
597
598
    }

599
    return localAdmin;
600
601
602
603
  }

  void Mesh::freeDOF(DegreeOfFreedom* dof, GeoIndex position)
  {
604
    FUNCNAME("Mesh::freeDOF()");
605

606
    TEST_EXIT_DBG(position >= CENTER && position <= FACE)
607
      ("unknown position %d\n", position);
608

609
610
611
612
    int ndof = nDOF[position];
    if (ndof) {
      if (!dof) {
	MSG("dof = NULL, but ndof=%d\n", ndof);
613
614
	return;
      }
615
616
617
618
619
620
    } else  {
      if (dof) {
	MSG("dof != NULL, but ndof=0\n");
      }
      return;
    }
621

622
    TEST_EXIT_DBG(ndof <= MAX_DOF)
623
      ("ndof too big: ndof=%d, MAX_DOF=%d\n", ndof, MAX_DOF);
624

625
626
627
628
629
630
631
632
633
634
    for (int i = 0; i < static_cast<int>(admin.size()); i++) {
      DOFAdmin *localAdmin = admin[i];
      int n = localAdmin->getNumberOfDOFs(position);
      int n0 = localAdmin->getNumberOfPreDOFs(position);
      
      TEST_EXIT_DBG(n + n0 <= ndof)("n=%d, n0=%d too large: ndof=%d\n", n, n0, ndof);
      
      for (int j = 0; j < n; j++)
	localAdmin->freeDOFIndex(dof[n0 + j]);
    }
635
636
637
638
639
640
641
642
643
644
645
646
647
648

    FREE_MEMORY(dof, DegreeOfFreedom, ndof);
  }

  void Mesh::freeElement(Element* el)
  {
    freeDOFPtrs(const_cast<DegreeOfFreedom**>(el->getDOF()));
    DELETE el;
  }


  Element* Mesh::createNewElement(Element *parent)
  {
    FUNCNAME("Mesh::createNewElement()");
649
650

    TEST_EXIT_DBG(elementPrototype)("no element prototype\n");
651
652
653

    Element *el = parent ? parent->clone() : elementPrototype->clone();
  
654
    if (!parent && elementDataPrototype) {
655
656
657
658
659
660
661
662
      el->setElementData(elementDataPrototype->clone()); 
    } else {
      el->setElementData(NULL); // must be done in ElementData::refineElementData()
    }

    return el;
  }

663

664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
  ElInfo* Mesh::createNewElInfo()
  {
    switch(dim) {
    case 1:
      return NEW ElInfo1d(this);
      break;
    case 2:
      return NEW ElInfo2d(this);
      break;
    case 3:
      return NEW ElInfo3d(this);
      break;
    default:
      ERROR_EXIT("invalid dim\n");
      return NULL;
    };
  }

  bool Mesh::findElInfoAtPoint(const WorldVector<double>& xy,
			       ElInfo *el_info,
684
685
			       DimVec<double>& bary,
			       const MacroElement *start_mel,
686
			       const WorldVector<double> *xy0,
687
			       double *sp)
688
689
690
691
692
693
694
695
696
697
  {
    static const MacroElement *mel = NULL;
    DimVec<double> lambda(dim, NO_INIT);
    ElInfo *mel_info = NULL;

    mel_info = createNewElInfo();

    if (start_mel != NULL)
      mel = start_mel;
    else
698
      if ((mel == NULL) || (mel->getElement()->getMesh() != this))
699
700
701
	mel = *(macroElements.begin());

    mel_info->setFillFlag(Mesh::FILL_COORDS);
702
    g_xy = &xy;
703
    g_xy0 = xy0;
704
    g_sp = sp;
705
706
707

    mel_info->fillMacroInfo(mel);

708
    int k;
709
710
711
712
713
714
715
716
717
718
    while ((k = mel_info->worldToCoord(xy, &lambda)) >= 0) {
      if (mel->getNeighbour(k)) {
	mel = mel->getNeighbour(k);
	mel_info->fillMacroInfo(mel);
	continue;
      }
      break;
    }

    /* now, descend in tree to find leaf element at point */
719
720
721
722
    bool inside = findElementAtPointRecursive(mel_info, lambda, k, el_info);
    for (int i = 0; i <= dim; i++) {
      bary[i] = final_lambda[i];
    }
723
724
725
  
    DELETE mel_info;

726
    return inside;
727
728
729
  }

  bool Mesh::findElementAtPoint(const WorldVector<double>&  xy,
730
731
				Element **elp, 
				DimVec<double>& bary,
732
				const MacroElement *start_mel,
733
734
				const WorldVector<double> *xy0,
				double *sp)
735
  {
736
737
    ElInfo *el_info = createNewElInfo();
    int val = findElInfoAtPoint(xy, el_info, bary, start_mel, xy0, sp);
738
739
740
741
742

    *elp = el_info->getElement();

    DELETE el_info;

743
    return val;
744
745
746
747
  }



748
  bool Mesh::findElementAtPointRecursive(ElInfo *el_info,
749
					 const DimVec<double>& lambda,
750
					 int outside,
751
752
					 ElInfo* final_el_info)
  {
753
    FUNCNAME("Mesh::findElementAtPointRecursive()");
754
755
    Element *el = el_info->getElement();
    DimVec<double> c_lambda(dim, NO_INIT);
756
757
    int inside;
    int ichild, c_outside;
758
759
760
761

    if (el->isLeaf()) {
      *final_el_info = *el_info;
      if (outside < 0) {
762
763
764
765
	for (int i = 0; i <= dim; i++) {
	  final_lambda[i] = lambda[i];
	}

766
	return true;
767
768
769
770
771
772
773
774
775
776
777
778
      }  else {  /* outside */
	if (g_xy0) { /* find boundary point of [xy0, xy] */
	  el_info->worldToCoord(*(g_xy0), &c_lambda);
	  double s = lambda[outside] / (lambda[outside] - c_lambda[outside]);
	  for (int i = 0; i <= dim; i++) {
	    final_lambda[i] = s * c_lambda[i] + (1.0-s) * lambda[i];
	  }
	  if (g_sp) {
	    *(g_sp) = s;
	  }
	  if (dim == 3) 
	    MSG("outside finest level on el %d: s=%.3e\n", el->getIndex(), s);
779

780
	  return false;  /* ??? */
781
	} else {
782
	  return false;
783
	}
784
      }
785
786
    }

787
    ElInfo *c_el_info = createNewElInfo();
788

789
    if (dim == 1) {
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
      if (lambda[0] >= lambda[1]) {
	c_el_info->fillElInfo(0, el_info);
	if (outside >= 0) {
	  outside = el_info->worldToCoord(*(g_xy), &c_lambda);
	  if (outside >= 0) ERROR("point outside domain\n");
	} else {
	  c_lambda[0] = lambda[0] - lambda[1];
	  c_lambda[1] = 2.0 * lambda[1];
	}
      } else {
	c_el_info->fillElInfo(1, el_info);
	if (outside >= 0)  {
	  outside = el_info->worldToCoord(*(g_xy), &c_lambda);
	  if (outside >= 0) ERROR("point outside domain\n");
	} else {
	  c_lambda[1] = lambda[1] - lambda[0];
	  c_lambda[0] = 2.0 * lambda[0];
	}
      }
    } /* DIM == 1 */

811
    if (dim == 2) {
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
      if (lambda[0] >= lambda[1]) {
	c_el_info->fillElInfo(0, el_info);
	if (el->isNewCoordSet()) {
	  outside = c_el_info->worldToCoord(*(g_xy), &c_lambda);
	  if (outside >= 0) {
	    ERROR("outside curved boundary child 0\n");
	  }
	} else {
	  c_lambda[0] = lambda[2];
	  c_lambda[1] = lambda[0] - lambda[1];
	  c_lambda[2] = 2.0 * lambda[1];
	}
      } else {
	c_el_info->fillElInfo(1, el_info);
	if (el->isNewCoordSet()) {
	  outside = c_el_info->worldToCoord(*(g_xy), &c_lambda);
	  if (outside >= 0) {
	    ERROR("outside curved boundary child 1\n");
	  }
	} else {
	  c_lambda[0] = lambda[1] - lambda[0];
	  c_lambda[1] = lambda[2];
	  c_lambda[2] = 2.0 * lambda[0];
	}
      }
    } /* DIM == 2 */

839
    if (dim == 3) {
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
      if (el->isNewCoordSet()) {
	if (lambda[0] >= lambda[1])
	  ichild = 0;
	else
	  ichild = 1;
	c_el_info->fillElInfo(ichild, el_info);
	c_outside = c_el_info->worldToCoord(*(g_xy), &c_lambda);

	if (c_outside>=0) {  /* test is other child is better... */
	  DimVec<double> c_lambda2(dim, NO_INIT);
	  int c_outside2;
	  ElInfo *c_el_info2 = createNewElInfo();

	  c_el_info2->fillElInfo(1-ichild, el_info);
	  c_outside2 = c_el_info2->worldToCoord(*(g_xy), &c_lambda2);

	  MSG("new_coord CHILD %d: outside=%d, lambda=(%.2f %.2f %.2f %.2f)\n",
	      ichild, c_outside, c_lambda[0],c_lambda[1],c_lambda[2],c_lambda[3]);
	  MSG("new_coord CHILD %d: outside=%d, lambda=(%.2f %.2f %.2f %.2f)\n",
	      1-ichild, c_outside2, c_lambda2[0],c_lambda2[1],c_lambda2[2],
	      c_lambda2[3]);

	  if ((c_outside2 < 0) || (c_lambda2[c_outside2] > c_lambda[c_outside])) {
863
864
865
	    for (int i = 0; i <= dim; i++) {
	      c_lambda[i] = c_lambda2[i];
	    }
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
	    c_outside = c_outside2;
	    *c_el_info = *c_el_info2;
	    ichild = 1 - ichild;
	  }
	  DELETE c_el_info2;
	}
	outside = c_outside;
      } else {  /* no new_coord */
	if (lambda[0] >= lambda[1]) {
	  c_el_info->fillElInfo(0, el_info);
	  c_lambda[0] = lambda[0] - lambda[1];
	  c_lambda[1] = lambda[Tetrahedron::childVertex[(dynamic_cast<ElInfo3d*>(el_info))->
							getType()][0][1]];
	  c_lambda[2] = lambda[Tetrahedron::childVertex[(dynamic_cast<ElInfo3d*>(el_info))->
							getType()][0][2]];
	  c_lambda[3] = 2.0 * lambda[1];
	} else {
	  c_el_info->fillElInfo(1, el_info);
	  c_lambda[0] = lambda[1] - lambda[0];
	  c_lambda[1] = lambda[Tetrahedron::childVertex[(dynamic_cast<ElInfo3d*>(el_info))->
							getType()][1][1]];
	  c_lambda[2] = lambda[Tetrahedron::childVertex[(dynamic_cast<ElInfo3d*>(el_info))->
							getType()][1][2]];
	  c_lambda[3] = 2.0 * lambda[0];
	}
      }
    }  /* DIM == 3 */

    inside = findElementAtPointRecursive(c_el_info, c_lambda, outside, 
					 final_el_info);
    DELETE c_el_info;

898
    return inside; 
899
900
901
  }


Thomas Witkowski's avatar
Thomas Witkowski committed
902
903
904
905
  void Mesh::setDiameter(const WorldVector<double>& w) 
  { 
    diam = w; 
  }
906

Thomas Witkowski's avatar
Thomas Witkowski committed
907
908
909
910
  void Mesh::setDiameter(int i, double w) 
  { 
    diam[i] = w; 
  }
911
912
913
914
915
916
917
918
919
920
921
922


  int Mesh::newDOFFct1(ElInfo* ei) {
    ei->getElement()->newDOFFct1(compressAdmin);
    return 0;
  }

  int Mesh::newDOFFct2(ElInfo* ei) {
    ei->getElement()->newDOFFct2(compressAdmin);
    return 0;
  }

Thomas Witkowski's avatar
Thomas Witkowski committed
923
  void Mesh::serialize(std::ostream &out)
924
925
926
927
  {
    serializedDOFs.clear();

    // write name
Thomas Witkowski's avatar
Thomas Witkowski committed
928
    out << name << "\n";
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991

    // write dim
    out.write(reinterpret_cast<const char*>(&dim), sizeof(int));

    // write nVertices
    out.write(reinterpret_cast<const char*>(&nVertices), sizeof(int));

    // write nEdges
    out.write(reinterpret_cast<const char*>(&nEdges), sizeof(int));

    // write nLeaves
    out.write(reinterpret_cast<const char*>(&nLeaves), sizeof(int));

    // write nElements
    out.write(reinterpret_cast<const char*>(&nElements), sizeof(int));

    // write nFaces
    out.write(reinterpret_cast<const char*>(&nFaces), sizeof(int));

    // write maxEdgeNeigh
    out.write(reinterpret_cast<const char*>(&maxEdgeNeigh), sizeof(int));

    // write diam
    diam.serialize(out);

    // write preserveCoarseDOFs
    out.write(reinterpret_cast<const char*>(&preserveCoarseDOFs), sizeof(bool));

    // write nDOFEl
    out.write(reinterpret_cast<const char*>(&nDOFEl), sizeof(int));

    // write nDOF
    nDOF.serialize(out);

    // write nNodeEl
    out.write(reinterpret_cast<const char*>(&nNodeEl), sizeof(int));

    // write node
    node.serialize(out);

    // write admins
    int i, size = static_cast<int>(admin.size());
    out.write(reinterpret_cast<const char*>(&size), sizeof(int));
    for (i = 0; i < size; i++) {
      admin[i]->serialize(out);
    }

    // write macroElements
    size = static_cast<int>(macroElements.size());
    out.write(reinterpret_cast<const char*>(&size), sizeof(int));
    for (i = 0; i < size; i++) {
      macroElements[i]->serialize(out);
    }

    // write elementIndex
    out.write(reinterpret_cast<const char*>(&elementIndex), sizeof(int));

    // write initialized
    out.write(reinterpret_cast<const char*>(&initialized), sizeof(bool));

    serializedDOFs.clear();
  }

Thomas Witkowski's avatar
Thomas Witkowski committed
992
  void Mesh::deserialize(std::istream &in)
993
994
995
996
997
998
999
1000
1001
1002
  {
    serializedDOFs.clear();

    // read name
    in >> name;
    in.get();

    // read dim
    int oldVal = dim;
    in.read(reinterpret_cast<char*>(&dim), sizeof(int));
1003
    TEST_EXIT_DBG((oldVal == 0) || (dim == oldVal))("invalid dimension\n");
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031

    // read nVertices
    in.read(reinterpret_cast<char*>(&nVertices), sizeof(int));

    // read nEdges
    in.read(reinterpret_cast<char*>(&nEdges), sizeof(int));

    // read nLeaves
    in.read(reinterpret_cast<char*>(&nLeaves), sizeof(int));

    // read nElements
    in.read(reinterpret_cast<char*>(&nElements), sizeof(int));

    // read nFaces
    in.read(reinterpret_cast<char*>(&nFaces), sizeof(int));

    // read maxEdgeNeigh
    in.read(reinterpret_cast<char*>(&maxEdgeNeigh), sizeof(int));

    // diam
    diam.deserialize(in);

    // read preserveCoarseDOFs
    in.read(reinterpret_cast<char*>(&preserveCoarseDOFs), sizeof(bool));

    // read nDOFEl
    oldVal = nDOFEl;
    in.read(reinterpret_cast<char*>(&nDOFEl), sizeof(int));
1032
    TEST_EXIT_DBG((oldVal == 0) || (nDOFEl == oldVal))("invalid nDOFEl\n");
1033
1034
1035
1036
1037
1038
1039

    // read nDOF
    nDOF.deserialize(in);

    // read nNodeEl
    oldVal = nNodeEl;
    in.read(reinterpret_cast<char*>(&nNodeEl), sizeof(int));
1040
    TEST_EXIT_DBG((oldVal == 0) || (nNodeEl == oldVal))("invalid nNodeEl\n");
1041
1042
1043
1044
1045

    // read node
    node.deserialize(in);

    // read admins
1046
    int size;
1047
1048
    in.read(reinterpret_cast<char*>(&size), sizeof(int));
    admin.resize(size, NULL);
1049
    for (int i = 0; i < size; i++) {
1050
1051
1052
1053
1054
1055
1056
1057
1058
      if (!admin[i]) {
	admin[i] = NEW DOFAdmin(this);
      }
      admin[i]->deserialize(in);
    }

    // read macroElements
    in.read(reinterpret_cast<char*>(&size), sizeof(int));

Thomas Witkowski's avatar
Thomas Witkowski committed
1059
    std::vector< std::vector<int> > neighbourIndices(size);
1060

1061
    for (int i = 0; i < static_cast<int>(macroElements.size()); i++) {
1062
1063
1064
1065
1066
      if (macroElements[i]) {
	DELETE macroElements[i];
      }
    }
    macroElements.resize(size);
1067
    for (int i = 0; i < size; i++) {
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
      macroElements[i] = NEW MacroElement(dim);
      macroElements[i]->writeNeighboursTo(&(neighbourIndices[i]));
      macroElements[i]->deserialize(in);
    }

    // read elementIndex
    in.read(reinterpret_cast<char*>(&elementIndex), sizeof(int));

    // read initialized
    in.read(reinterpret_cast<char*>(&initialized), sizeof(bool));

    // set neighbour pointer in macro elements
1080
1081
1082
    int neighs = getGeo(NEIGH);
    for (int i = 0; i < static_cast<int>(macroElements.size()); i++) {
      for (int j = 0; j < neighs; j++) {
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
	int index = neighbourIndices[i][j];
	if(index != -1) {
	  macroElements[i]->setNeighbour(j, macroElements[index]);
	} else {
	  macroElements[i]->setNeighbour(j, NULL);
	}
      }
    }

    // set mesh pointer in elements
    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(this, -1, CALL_EVERY_EL_PREORDER);
1095
    while (elInfo) {
1096
1097
1098
1099
1100
1101
1102
1103
1104
      elInfo->getElement()->setMesh(this);
      elInfo = stack.traverseNext(elInfo);
    }

    serializedDOFs.clear();
  }

  void Mesh::initialize() 
  {
Thomas Witkowski's avatar
Thomas Witkowski committed
1105
1106
1107
    std::string macroFilename("");
    std::string valueFilename("");
    std::string periodicFile("");
1108
1109
1110
1111
1112
1113
1114
1115
1116
    int check = 1;

    GET_PARAMETER(0, name + "->macro file name",  &macroFilename);
    GET_PARAMETER(0, name + "->value file name",  &valueFilename);
    GET_PARAMETER(0, name + "->periodic file", &periodicFile);
    GET_PARAMETER(0, name + "->check", "%d", &check);
    GET_PARAMETER(0, name + "->preserve coarse dofs", "%d", &preserveCoarseDOFs);

    if (macroFilename.length()) {
1117
1118
1119
      macroFileInfo = MacroReader::readMacro(macroFilename.c_str(), this,
					     periodicFile == "" ? NULL : periodicFile.c_str(),
					     check);
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131

      // If there is no value file which should be written, we can delete
      // the information of the macro file.
      if (!valueFilename.length()) {
	clearMacroFileInfo();
      }
    }

    initialized = true;
  }

  bool Mesh::associated(DegreeOfFreedom dof1, DegreeOfFreedom dof2) {
Thomas Witkowski's avatar
Thomas Witkowski committed
1132
1133
    std::map<BoundaryType, VertexVector*>::iterator it;
    std::map<BoundaryType, VertexVector*>::iterator end = periodicAssociations.end();
1134
1135
1136
1137
1138
1139
1140
1141
    for (it = periodicAssociations.begin(); it != end; ++it) {
      if ((*(it->second))[dof1] == dof2)
	return true;
    }
    return false;
  }

  bool Mesh::indirectlyAssociated(DegreeOfFreedom dof1, DegreeOfFreedom dof2) {
Thomas Witkowski's avatar
Thomas Witkowski committed
1142
1143
1144
    std::vector<DegreeOfFreedom> associatedToDOF1;
    std::map<BoundaryType, VertexVector*>::iterator it;
    std::map<BoundaryType, VertexVector*>::iterator end = periodicAssociations.end();
1145
1146
1147
    DegreeOfFreedom dof, assDOF;

    associatedToDOF1.push_back(dof1);
Thomas Witkowski's avatar
Thomas Witkowski committed
1148
1149
1150
    for (it = periodicAssociations.begin(); it != end; ++it) {
      int size = static_cast<int>(associatedToDOF1.size());
      for (int i = 0; i < size; i++) {
1151
1152
	dof = associatedToDOF1[i];
	assDOF = (*(it->second))[dof];
Thomas Witkowski's avatar
Thomas Witkowski committed
1153
	if (assDOF == dof2) {
1154
1155
	  return true;
	} else {
Thomas Witkowski's avatar
Thomas Witkowski committed
1156
1157
	  if (assDOF != dof) 
	    associatedToDOF1.push_back(assDOF);
1158
1159
1160
1161
1162
1163
1164
1165
	}
      }
    }
    return false;
  }

  void Mesh::clearMacroFileInfo()
  {
1166
    macroFileInfo->clear(nEdges, nVertices);
1167
    DELETE macroFileInfo;
1168
    macroFileInfo = NULL;
1169
  }
1170
1171
1172

  int Mesh::calcMemoryUsage()
  {
1173
    int result = sizeof(Mesh);
1174

1175
1176
1177
1178
1179
1180
    result += nDOFEl;
    for (int i = 0; i < static_cast<int>(admin.size()); i++) {
      result += admin[i]->calcMemoryUsage();
      result += admin[i]->getUsedSize() * sizeof(DegreeOfFreedom);
    }
    
1181
1182
1183
1184
1185
1186
    for (int i = 0; i < static_cast<int>(macroElements.size()); i++) {
      result += macroElements[i]->calcMemoryUsage();
    }
    
    return result;
  }
1187
}