ResidualEstimator.cc 14.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#include "ResidualEstimator.h"
#include "Operator.h"
#include "DOFMatrix.h"
#include "DOFVector.h"
#include "Assembler.h"
#include "Traverse.h"
#include "Parameters.h"

namespace AMDiS {

  ResidualEstimator::ResidualEstimator(::std::string name, int r) 
    : Estimator(name, r),
      C0(1.0), 
      C1(1.0), 
      C2(1.0), 
      C3(1.0)
  {
    GET_PARAMETER(0, name + "->C0", "%f", &C0);
    GET_PARAMETER(0, name + "->C1", "%f", &C1);
    GET_PARAMETER(0, name + "->C2", "%f", &C2);
    GET_PARAMETER(0, name + "->C3", "%f", &C3);

    C0 = C0 > 1.e-25 ? sqr(C0) : 0.0;
    C1 = C1 > 1.e-25 ? sqr(C1) : 0.0;
    C2 = C2 > 1.e-25 ? sqr(C2) : 0.0;
    C3 = C3 > 1.e-25 ? sqr(C3) : 0.0;
  }

  void ResidualEstimator::init(double ts)
  {
    FUNCNAME("ResidualEstimator::init()");

    timestep = ts;

    mesh = uh[row == -1 ? 0 : row]->getFESpace()->getMesh();

    numSystems = static_cast<int>(uh.size());
    TEST_EXIT_DBG(numSystems > 0)("no system set\n");

    dim = mesh->getDim();
    basFcts = GET_MEMORY(const BasisFunction*, numSystems);
    quadFast = GET_MEMORY(FastQuadrature*, numSystems);

    degree = 0;
    for (int system = 0; system < numSystems; system++) {
      basFcts[system] = uh[system]->getFESpace()->getBasisFcts();
      degree = ::std::max(degree, basFcts[system]->getDegree());
    }

    degree *= 2;

    quad = Quadrature::provideQuadrature(dim, degree);
    numPoints = quad->getNumPoints();

    Flag flag = INIT_PHI | INIT_GRD_PHI;
    if (degree > 2) {
      flag |= INIT_D2_PHI;
    }

    for (int system = 0; system < numSystems; system++) {
      quadFast[system] = FastQuadrature::provideFastQuadrature(basFcts[system], 
							       *quad, 
							       flag);
    }
  
    uhEl = GET_MEMORY(double*, numSystems);
67
    uhNeigh = GET_MEMORY(double*, numSystems);
68
69
70
71
    uhOldEl = timestep ? GET_MEMORY(double*, numSystems) : NULL;

    for (int system = 0; system < numSystems; system++) {
      uhEl[system] = GET_MEMORY(double, basFcts[system]->getNumber()); 
72
      uhNeigh[system] = GET_MEMORY(double, basFcts[system]->getNumber());
73
74
75
76
77
78
79
80
81
      if (timestep)
	uhOldEl[system] = GET_MEMORY(double, basFcts[system]->getNumber());
    }

    uhQP = timestep ? GET_MEMORY(double, numPoints) : NULL;
    uhOldQP = timestep ? GET_MEMORY(double, numPoints) : NULL;

    riq = GET_MEMORY(double, numPoints);

82
83
84
    grdUh_qp = NULL;
    D2uhqp = NULL;

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    TraverseStack stack;
    ElInfo *elInfo = NULL;

    // clear error indicators and mark elements for jumpRes
    elInfo = stack.traverseFirst(mesh, -1, Mesh::CALL_LEAF_EL);
    while (elInfo) {
      elInfo->getElement()->setEstimation(0.0, row);
      elInfo->getElement()->setMark(1);
      elInfo = stack.traverseNext(elInfo);
    }

    est_sum = 0.0;
    est_max = 0.0;
    est_t_sum = 0.0;
    est_t_max = 0.0;

    traverseFlag = 
      Mesh::FILL_NEIGH      |
      Mesh::FILL_COORDS     |
      Mesh::FILL_OPP_COORDS |
      Mesh::FILL_BOUND      |
      Mesh::FILL_GRD_LAMBDA |
      Mesh::FILL_DET        |
      Mesh::CALL_LEAF_EL;
109
110
111
112
113
114
115
116
117
118
119
120
121

    neighInfo = mesh->createNewElInfo();

    // prepare date for computing jump residual
    if (C1 && (dim > 1)) {
      surfaceQuad_ = Quadrature::provideQuadrature(dim - 1, degree);
      nPointsSurface_ = surfaceQuad_->getNumPoints();
      grdUhEl_.resize(nPointsSurface_);
      grdUhNeigh_.resize(nPointsSurface_);
      jump_.resize(nPointsSurface_);
      localJump_.resize(nPointsSurface_);
      neighbours_ = Global::getGeo(NEIGH, dim);
    }
122
123
124
125
126
127
128
129
130
131
132
  }

  void ResidualEstimator::exit(bool output)
  {
    FUNCNAME("ResidualEstimator::exit()");

    est_sum = sqrt(est_sum);
    est_t_sum = sqrt(est_t_sum);

    for (int system = 0; system < numSystems; system++) {
      FREE_MEMORY(uhEl[system], double, basFcts[system]->getNumber());
133
      FREE_MEMORY(uhNeigh[system], double, basFcts[system]->getNumber());
134
135
136
137
138
      if (timestep)
	FREE_MEMORY(uhOldEl[system], double, basFcts[system]->getNumber());    
    }

    FREE_MEMORY(uhEl, double*, numSystems);
139
    FREE_MEMORY(uhNeigh, double*, numSystems);
140
141

    if (timestep) {
142
      FREE_MEMORY(uhOldEl, double*, numSystems);
143
144
      FREE_MEMORY(uhQP, double, numPoints);
      FREE_MEMORY(uhOldQP, double, numPoints);
145
146
147
148
    } else {
      if (uhQP != NULL) {
	FREE_MEMORY(uhQP, double, numPoints);
      }
149
150
151
152
153
154
155
156
157
158
159
160
    }

    if (output) {
      MSG("estimate   = %.8e\n", est_sum);
      if (C3) {
	MSG("time estimate   = %.8e\n", est_t_sum);
      }
    }

    FREE_MEMORY(riq, double, numPoints);
    FREE_MEMORY(basFcts, const BasisFunction*, numSystems);
    FREE_MEMORY(quadFast, FastQuadrature*, numSystems);
161
162
163
164
165
166
167

    if (grdUh_qp != NULL) {
      FREE_MEMORY(grdUh_qp, WorldVector<double>, numPoints);
    }
    if (D2uhqp != NULL) {
      FREE_MEMORY(D2uhqp, WorldMatrix<double>, numPoints);
    }
168
169

    DELETE neighInfo;
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
  }

  void ResidualEstimator::estimateElement(ElInfo *elInfo)
  {
    FUNCNAME("ResidualEstimator::estimateElement()");

    double est_el = 0.0;
    double val = 0.0;
    Element *el, *neigh;
    int iq;

    TEST_EXIT_DBG(numSystems > 0)("no system set\n");

    ::std::vector<Operator*>::iterator it;

    el = elInfo->getElement();

    double det = elInfo->getDet();
    const DimVec<WorldVector<double> > &Lambda = elInfo->getGrdLambda();

    est_el = el->getEstimation(row);

    double h2 = h2_from_det(det, dim);

    for (iq = 0; iq < numPoints; iq++) {
      riq[iq] = 0.0;
    }

    for (int system = 0; system < numSystems; system++) {

      if (matrix[system] == NULL) 
	continue;

      // init assemblers
      ::std::vector<Operator*>::iterator it;

      for (it = const_cast<DOFMatrix*>(matrix[system])->getOperatorsBegin();
	   it != const_cast<DOFMatrix*>(matrix[system])->getOperatorsEnd(); 
	   ++it) {
	(*it)->getAssembler(omp_get_thread_num())->initElement(elInfo, quad);
      }

      for (it = const_cast<DOFVector<double>*>(fh[system])->getOperatorsBegin();
	   it != const_cast<DOFVector<double>*>(fh[system])->getOperatorsEnd(); 
	   ++it) {
	(*it)->getAssembler(omp_get_thread_num())->initElement(elInfo, quad);
      }

      if (timestep) {
	TEST_EXIT_DBG(uhOld[system])("no uhOld\n");
	uhOld[system]->getLocalVector(el, uhOldEl[system]);
  
	// ===== time and element residuals       
	if (C0 || C3) {   
	  uh[system]->getVecAtQPs(elInfo, NULL, quadFast[system], uhQP);
	  uhOld[system]->getVecAtQPs(elInfo, NULL, quadFast[system], uhOldQP);
	  
	  if (C3 && uhOldQP && system == ::std::max(row, 0)) {
	    for (val = iq = 0; iq < numPoints; iq++) {
	      double tiq = (uhQP[iq] - uhOldQP[iq]);
	      val += quad->getWeight(iq) * tiq * tiq;
	    }
	    double v = C3 * det * val;
	    est_t_sum += v;
	    est_t_max = max(est_t_max, v);
	  }
	}
      }
      
      
      if (C0) {  
	for (it = const_cast<DOFMatrix*>(matrix[system])->getOperatorsBegin(); 
	     it != const_cast<DOFMatrix*>(matrix[system])->getOperatorsEnd(); 
	     ++it) {
244
	  if ((uhQP == NULL) && (*it)->zeroOrderTerms()) {
245
246
247
	    uhQP = GET_MEMORY(double, numPoints);
	    uh[system]->getVecAtQPs(elInfo, NULL, quadFast[system], uhQP);
	  }
248
	  if ((grdUh_qp == NULL) && ((*it)->firstOrderTermsGrdPsi() || (*it)->firstOrderTermsGrdPhi())) {
249
250
251
	    grdUh_qp = new WorldVector<double>[numPoints];
	    uh[system]->getGrdAtQPs(elInfo, NULL, quadFast[system], grdUh_qp);
	  }
252
253
254
	  if ((D2uhqp == NULL) && (degree > 2) && (*it)->secondOrderTerms()) { 
	    D2uhqp = new WorldMatrix<double>[numPoints];
	    uh[system]->getD2AtQPs(elInfo, NULL, quadFast[system], D2uhqp);	    
255
256
257
258
259
260
261
262
263
264
265
266
267
268
	  }
	}
	
	r(elInfo,
	  numPoints, 
	  uhQP,
	  grdUh_qp,
	  D2uhqp,
	  uhOldQP,
	  NULL,  // grdUhOldQP 
	  NULL,  // D2UhOldQP
	  matrix[system], 
	  fh[system],
	  quad,
269
	  riq);
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
      }     
    }

    // add integral over r square
    for (val = iq = 0; iq < numPoints; iq++) {
      val += quad->getWeight(iq) * riq[iq] * riq[iq];
    }
    
    if (timestep != 0.0 || norm == NO_NORM || norm == L2_NORM)
      val = C0 * h2 * h2 * det * val;
    else
      val = C0 * h2 * det * val;

    est_el += val;

    // ===== jump residuals 
    if (C1 && (dim > 1)) {
287
      int dow = Global::getGeo(WORLD);
288

289
      for (int face = 0; face < neighbours_; face++) {  
290
291
292
293
294
295
296
297
298
299
300
301
302
	neigh = const_cast<Element*>(elInfo->getNeighbour(face));
	if (neigh && neigh->getMark()) {      
	  WorldVector<int> faceIndEl, faceIndNeigh;
	  int oppV = elInfo->getOppVertex(face);
	  DimVec<WorldVector<double> > LambdaNeigh(dim, NO_INIT);
	  double detNeigh;
	  DimVec<double> lambda(dim, NO_INIT);
	      
	  el->sortFaceIndices(face, &faceIndEl);
	  neigh->sortFaceIndices(oppV, &faceIndNeigh);
	    
	  neighInfo->setElement(const_cast<Element*>(neigh));
	  neighInfo->setFillFlag(Mesh::FILL_COORDS);
303
	      	
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
	  int j, i1, i2;

	  for (int i = 0; i < dow; i++)
	    neighInfo->getCoord(oppV)[i] = elInfo->getOppCoord(face)[i];
		
	  // periodic leaf data ?
	  ElementData *ldp = el->getElementData()->getElementData(PERIODIC);

	  bool periodicCoords = false;

	  if (ldp) {
	    ::std::list<LeafDataPeriodic::PeriodicInfo>::iterator it;

	    for (it = dynamic_cast<LeafDataPeriodic*>(ldp)->getInfoList().begin();
		 it != dynamic_cast<LeafDataPeriodic*>(ldp)->getInfoList().end();
		 ++it) {
	      if (it->elementSide == face) {
		for (int i = 0; i < dim; i++) {
		  i1 = faceIndEl[i];
		  i2 = faceIndNeigh[i];

		  for (j = 0; j < dim; j++) {
		    if (i1 == el->getVertexOfPosition(INDEX_OF_DIM(dim - 1, 
								   dim),
						      face,
						      j)) {
		      break;
		    }
		  }

		  TEST_EXIT_DBG(j != dim)("vertex i1 not on face ???\n");
		      
		  neighInfo->getCoord(i2) = (*(it->periodicCoords))[j];
		}
		periodicCoords = true;
		break;
	      }
	    }
	  }
      
	  if (!periodicCoords) {
	    for (int i = 0; i < dim; i++) {
	      i1 = faceIndEl[i];
	      i2 = faceIndNeigh[i];
	      for (j = 0; j < dow; j++)
		neighInfo->getCoord(i2)[j] = elInfo->getCoord(i1)[j];
	    }
	  }
	      
	  Parametric *parametric = mesh->getParametric();
	  if (parametric) {
	    neighInfo = parametric->addParametricInfo(neighInfo);
	  }
	      
	  detNeigh = abs(neighInfo->calcGrdLambda(LambdaNeigh));
	      
360
361
	  for (iq = 0; iq < nPointsSurface_; iq++) {
	    jump_[iq].set(0.0);
362
363
364
365
366
367
368
	  }
	     

	  for (int system = 0; system < numSystems; system++) {	
	    if (matrix[system] == NULL) 
	      continue;
	      
369
370
	    uh[system]->getLocalVector(el, uhEl[system]);	
	    uh[system]->getLocalVector(neigh, uhNeigh[system]);
371
			
372
	    for (iq = 0; iq < nPointsSurface_; iq++) {
373
374
	      lambda[face] = 0.0;
	      for (int i = 0; i < dim; i++) {
375
		lambda[faceIndEl[i]] = surfaceQuad_->getLambda(iq, i);
376
377
378
379
380
	      }
		  
	      basFcts[system]->evalGrdUh(lambda, 
					 Lambda, 
					 uhEl[system], 
381
					 &grdUhEl_[iq]);
382
383
384
		  
	      lambda[oppV] = 0.0;
	      for (int i = 0; i < dim; i++) {
385
		lambda[faceIndNeigh[i]] = surfaceQuad_->getLambda(iq, i);
386
387
388
389
	      }
		  
	      basFcts[system]->evalGrdUh(lambda, 
					 LambdaNeigh, 
390
391
					 uhNeigh[system], 
					 &grdUhNeigh_[iq]);
392
		  
393
	      grdUhEl_[iq] -= grdUhNeigh_[iq];
394
395
396
397
398
399
400
401
	    }				

	    ::std::vector<double*>::iterator fac;

	    for (it = const_cast<DOFMatrix*>(matrix[system])->getOperatorsBegin(),
		   fac = const_cast<DOFMatrix*>(matrix[system])->getOperatorEstFactorBegin(); 
		 it != const_cast<DOFMatrix*>(matrix[system])->getOperatorsEnd(); 
		 ++it, ++fac) {
402
403
	      for (iq = 0; iq < nPointsSurface_; iq++) {
		localJump_[iq].set(0.0);
404
405
	      }
		  
406
407
408
	      (*it)->weakEvalSecondOrder(nPointsSurface_,
					 grdUhEl_.getValArray(),
					 localJump_.getValArray());
409
410
	      double factor = *fac ? **fac : 1.0;
	      if (factor != 1.0) {
411
412
		for (int i = 0; i < nPointsSurface_; i++) {
		  localJump_[i] *= factor;
413
414
415
		}
	      }
		  
416
417
	      for (int i = 0; i < nPointsSurface_; i++) {
		jump_[i] += localJump_[i];
418
419
420
421
	      }
	    }				     
	  }
	      
422
423
424
	  val = 0.0;
	  for (iq = 0; iq < nPointsSurface_; iq++) {
	    val += surfaceQuad_->getWeight(iq) * (jump_[iq] * jump_[iq]);
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
	  }
	      
	  double d = 0.5 * (det + detNeigh);

	  if (norm == NO_NORM || norm == L2_NORM)
	    val *= C1 * h2_from_det(d, dim) * d;
	  else
	    val *= C1 * d;
	      
	  if (parametric) {
	    neighInfo = parametric->removeParametricInfo(neighInfo);
	  }

	  neigh->setEstimation(neigh->getEstimation(row) + val, row);

	  est_el += val;

	} 
      } 
       
      val = fh[::std::max(row, 0)]->
	getBoundaryManager()->
	boundResidual(elInfo, matrix[::std::max(row, 0)], uh[::std::max(row, 0)]);
      if (norm == NO_NORM || norm == L2_NORM)
	val *= C1 * h2;
      else
	val *= C1;
	
      est_el += val;
    } 
  

    el->setEstimation(est_el, row);

    est_sum += est_el;
    est_max = max(est_max, est_el);

    elInfo->getElement()->setMark(0);   
  }

  void r(const ElInfo              *elInfo,
	 int                        numPoints,
	 const double              *uhIq,
	 const WorldVector<double> *grdUhIq,
	 const WorldMatrix<double> *D2UhIq,
	 const double              *uhOldIq,
	 const WorldVector<double> *grdUhOldIq,
	 const WorldMatrix<double> *D2UhOldIq,
	 DOFMatrix *A, 
	 DOFVector<double> *fh,
	 Quadrature *quad,
	 double *result)
  {
    ::std::vector<Operator*>::iterator it;
    ::std::vector<double*>::iterator fac;
    double factor;

    // lhs
    for (it = const_cast<DOFMatrix*>(A)->getOperatorsBegin(),
	   fac = const_cast<DOFMatrix*>(A)->getOperatorEstFactorBegin(); 
	 it != const_cast<DOFMatrix*>(A)->getOperatorsEnd(); 
	 ++it, ++fac) {
      
      factor = *fac ? **fac : 1.0;
      if (factor) {
	if (D2UhIq) {
	  (*it)->evalSecondOrder(numPoints, uhIq, grdUhIq, D2UhIq, result, -factor);
	}

	if (grdUhIq) {
	  (*it)->evalFirstOrderGrdPsi(numPoints, uhIq, grdUhIq, D2UhIq, result, factor);
	  (*it)->evalFirstOrderGrdPhi(numPoints, uhIq, grdUhIq, D2UhIq, result, factor);
	}
	
	if (uhIq) {
	  (*it)->evalZeroOrder(numPoints, uhIq, grdUhIq, D2UhIq, result, factor);
	}
      }
    }
    
    // rhs
    for (it = const_cast<DOFVector<double>*>(fh)->getOperatorsBegin(),
	 fac = const_cast<DOFVector<double>*>(fh)->getOperatorEstFactorBegin(); 
	 it != const_cast<DOFVector<double>*>(fh)->getOperatorsEnd(); 
	 ++it, ++fac) {

      factor = *fac ? **fac : 1.0;
      if (factor) {
	if ((*it)->getUhOld()) {
	  if (D2UhOldIq) {
	    (*it)->evalSecondOrder(numPoints, 
				   uhOldIq, grdUhOldIq, D2UhOldIq, 
				   result, factor);
	  }
	  if (grdUhOldIq) {
	    (*it)->evalFirstOrderGrdPsi(numPoints, 
					uhOldIq, grdUhOldIq, D2UhOldIq, 
					result, -factor);
	    (*it)->evalFirstOrderGrdPhi(numPoints, 
					uhOldIq, grdUhOldIq, D2UhOldIq, 
					result, -factor);
	  }
	  if (uhOldIq) {
	    (*it)->evalZeroOrder(numPoints, 
				 uhOldIq, grdUhOldIq, D2UhOldIq, 
				 result, -factor);
	  }
	} else {
	  double *fx = GET_MEMORY(double, numPoints);
	  for (int iq = 0; iq < numPoints; iq++) {
	    fx[iq] = 0.0;
	  }
	  (*it)->getC(elInfo, numPoints, fx);

	  for (int iq = 0; iq < numPoints; iq++) {
	    result[iq] -= factor * fx[iq];
	  }
	  FREE_MEMORY(fx, double, numPoints);
	}
      }
    }    
  }


}