ParallelDomainProblem.cc 25.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
#include "ParallelDomainProblem.h"
#include "ProblemScal.h"
#include "ProblemInstat.h"
#include "ParMetisPartitioner.h"
#include "Mesh.h"
#include "Traverse.h"
#include "ElInfo.h"
#include "Element.h"
#include "MacroElement.h"
#include "PartitionElementData.h"
11 12
#include "DOFMatrix.h"
#include "DOFVector.h"
13 14 15
#include "VtkWriter.h"

#include "petscksp.h"
16 17 18 19

namespace AMDiS {

  ParallelDomainProblemBase::ParallelDomainProblemBase(const std::string& name,
20 21
						       ProblemIterationInterface *iIF,
						       ProblemTimeInterface *tIF,
22 23
						       FiniteElemSpace *fe,
						       RefinementManager *refineManager)
24 25
    : iterationIF(iIF),
      timeIF(tIF),
26 27
      feSpace(fe),
      mesh(fe->getMesh()),
28
      refinementManager(refineManager),
29
      initialPartitionMesh(true),
30
      nRankDOFs(0)
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
  {
    mpiRank = MPI::COMM_WORLD.Get_rank();
    mpiSize = MPI::COMM_WORLD.Get_size();
    mpiComm = MPI::COMM_WORLD;
    partitioner = new ParMetisPartitioner(mesh, &mpiComm);
  }

  void ParallelDomainProblemBase::initParallelization(AdaptInfo *adaptInfo)
  {
    if (mpiSize <= 1)
      return;

    // create an initial partitioning of the mesh
    partitioner->createPartitionData();
    // set the element weights, which are 1 at the very first begin
    setElemWeights(adaptInfo);
    // and now partition the mesh
    partitionMesh(adaptInfo);   


51
    // === Create new global and local DOF numbering. ===
52

53 54 55 56 57 58
    // Set of all DOFs of the rank.
    std::vector<const DegreeOfFreedom*> rankDOFs;
    // Set of all interior boundary DOFs in ranks partition which are owned by 
    // another rank.
    std::map<const DegreeOfFreedom*, int> boundaryDOFs;
    // Number of DOFs in ranks partition that are owned by the rank.
59
    int nRankDOFs = 0;
60 61
    // Number of DOFs in ranks partition that are at an interior boundary and are
    // owned by other ranks.
62
    int nOverallDOFs = 0;
63 64

    createLocalGlobalNumbering(rankDOFs, boundaryDOFs, nRankDOFs, nOverallDOFs);
65

Thomas Witkowski's avatar
Thomas Witkowski committed
66 67 68

    // === Create interior boundary information ===

69
    createInteriorBoundaryInfo(rankDOFs, boundaryDOFs);
Thomas Witkowski's avatar
Thomas Witkowski committed
70

Thomas Witkowski's avatar
Thomas Witkowski committed
71

72 73
    // === Remove all macro elements that are not part of the rank partition. ===

74
    removeMacroElements();
75
      
76 77 78 79 80

    /// === Reset all DOFAdmins of the mesh. ===

    int nAdmins = mesh->getNumberOfDOFAdmin();
    for (int i = 0; i < nAdmins; i++) {
81 82 83 84
      DOFAdmin& admin = const_cast<DOFAdmin&>(mesh->getDOFAdmin(i));

      for (int j = 0; j < admin.getSize(); j++)
	admin.setDOFFree(j, true);
85
      for (int j = 0; j < static_cast<int>(mapLocalGlobalDOFs.size()); j++)
86 87 88 89 90
 	admin.setDOFFree(j, false);

      admin.setUsedSize(mapLocalGlobalDOFs.size() - 1);
      admin.setUsedCount(mapLocalGlobalDOFs.size());
      admin.setFirstHole(mapLocalGlobalDOFs.size());
Thomas Witkowski's avatar
Thomas Witkowski committed
91 92 93
    }


94 95 96 97 98 99 100 101
    /// === Global refinements. ===

    refinementManager->globalRefine(mesh, 1);

    updateLocalGlobalNumbering(nRankDOFs, nOverallDOFs);

    exit(0);

102
    /// === Create petsc matrix. ===
103

104 105
    int ierr;
    ierr = MatCreate(PETSC_COMM_WORLD, &petscMatrix);
106
    ierr = MatSetSizes(petscMatrix, nRankDOFs, nRankDOFs, nOverallDOFs, nOverallDOFs);
107 108 109
    ierr = MatSetType(petscMatrix, MATAIJ);

    ierr = VecCreate(PETSC_COMM_WORLD, &petscRhsVec);
110
    ierr = VecSetSizes(petscRhsVec, nRankDOFs, nOverallDOFs);
111
    ierr = VecSetType(petscRhsVec, VECMPI);
112 113

    ierr = VecCreate(PETSC_COMM_WORLD, &petscSolVec);
114
    ierr = VecSetSizes(petscSolVec, nRankDOFs, nOverallDOFs);
115
    ierr = VecSetType(petscSolVec, VECMPI);
116 117 118
  }

  void ParallelDomainProblemBase::exitParallelization(AdaptInfo *adaptInfo)
119
  {}
120

121

122 123 124
  void ParallelDomainProblemBase::fillPetscMatrix(DOFMatrix *mat, 
						  DOFVector<double> *vec)
  {
125 126 127 128 129 130 131 132 133 134 135 136 137 138
    using mtl::tag::major; using mtl::tag::nz; using mtl::begin; using mtl::end;
    namespace traits= mtl::traits;
    typedef DOFMatrix::base_matrix_type Matrix;

    traits::row<Matrix>::type row(mat->getBaseMatrix());
    traits::col<Matrix>::type col(mat->getBaseMatrix());
    traits::const_value<Matrix>::type value(mat->getBaseMatrix());

    typedef traits::range_generator<major, Matrix>::type cursor_type;
    typedef traits::range_generator<nz, cursor_type>::type icursor_type;

    for (cursor_type cursor = begin<major>(mat->getBaseMatrix()), cend = end<major>(mat->getBaseMatrix()); cursor != cend; ++cursor)
      for (icursor_type icursor = begin<nz>(cursor), icend = end<nz>(cursor); icursor != icend; ++icursor)
	if (value(*icursor) != 0.0) {
139 140
	  int r = mapLocalGlobalDOFs[row(*icursor)];
	  int c = mapLocalGlobalDOFs[col(*icursor)];
141
	  double v = value(*icursor);
142

143
	  MatSetValues(petscMatrix, 1, &r, 1, &c, &v, ADD_VALUES);
144
	}
145

146 147 148 149 150 151

    MatAssemblyBegin(petscMatrix, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(petscMatrix, MAT_FINAL_ASSEMBLY);

    DOFVector<double>::Iterator dofIt(vec, USED_DOFS);
    for (dofIt.reset(); !dofIt.end(); ++dofIt) {
152
      int index = mapLocalGlobalDOFs[dofIt.getDOFIndex()];
153 154 155
      double value = *dofIt;

      VecSetValues(petscRhsVec, 1, &index, &value, ADD_VALUES);
156 157 158
    }
  }

159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  void ParallelDomainProblemBase::solvePetscMatrix(DOFVector<double> *vec)
  {
    KSP ksp;
    PC pc;

    KSPCreate(PETSC_COMM_WORLD, &ksp);
    KSPSetOperators(ksp, petscMatrix, petscMatrix, DIFFERENT_NONZERO_PATTERN);
    KSPGetPC(ksp, &pc);
    PCSetType(pc, PCJACOBI);
    KSPSetTolerances(ksp, 1.e-7, PETSC_DEFAULT, PETSC_DEFAULT, PETSC_DEFAULT);
    KSPSetType(ksp, KSPBCGS);
    KSPMonitorSet(ksp, KSPMonitorDefault, PETSC_NULL, 0);
    KSPSolve(ksp, petscRhsVec, petscSolVec);

    PetscScalar *vecPointer;
    VecGetArray(petscSolVec, &vecPointer);

    DOFVector<double>::Iterator dofIt(vec, USED_DOFS);
    int counter = 0;
    for (dofIt.reset(); !dofIt.end(); ++dofIt)
180
      *dofIt = vecPointer[counter++];
181 182 183

    VecRestoreArray(petscSolVec, &vecPointer);

184 185 186 187 188 189 190 191 192
    std::vector<double*> sendBuffers(sendDofs.size());
    std::vector<double*> recvBuffers(recvDofs.size());
    
    int i = 0;
    for (std::map<int, std::vector<DegreeOfFreedom> >::iterator sendIt = sendDofs.begin();
	 sendIt != sendDofs.end();
	 ++sendIt, i++) {
      sendBuffers[i] = new double[sendIt->second.size()];

193
      for (int j = 0; j < static_cast<int>(sendIt->second.size()); j++)
194 195 196 197 198 199 200 201 202
	sendBuffers[i][j] = (*vec)[(sendIt->second)[j]];

      mpiComm.Isend(sendBuffers[i], sendIt->second.size(), MPI_DOUBLE, sendIt->first, 0);
    }

    i = 0;
    for (std::map<int, std::vector<DegreeOfFreedom> >::iterator recvIt = recvDofs.begin();
	 recvIt != recvDofs.end();
	 ++recvIt, i++) {
203
      recvBuffers[i] = new double[recvIt->second.size()];      
204 205 206 207 208 209 210 211 212 213 214

      mpiComm.Irecv(recvBuffers[i], recvIt->second.size(), MPI_DOUBLE, recvIt->first, 0);
    }

    
    mpiComm.Barrier();
    
    i = 0;
    for (std::map<int, std::vector<DegreeOfFreedom> >::iterator recvIt = recvDofs.begin();
	 recvIt != recvDofs.end();
	 ++recvIt, i++) {
215
      for (int j = 0; j < static_cast<int>(recvIt->second.size()); j++)
216 217 218 219 220
	(*vec)[(recvIt->second)[j]] = recvBuffers[i][j];

      delete [] recvBuffers[i];
    }
    
221
    for (int i = 0; i < static_cast<int>(sendBuffers.size()); i++)
222
      delete [] sendBuffers[i];    
223 224
  }

225

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
  double ParallelDomainProblemBase::setElemWeights(AdaptInfo *adaptInfo) 
  {
    double localWeightSum = 0.0;
    int elNum = -1;

    elemWeights.clear();

    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(mesh, -1,
					 Mesh::CALL_EVERY_EL_PREORDER);
    while (elInfo) {
      Element *element = elInfo->getElement();

      // get partition data
      PartitionElementData *partitionData = dynamic_cast<PartitionElementData*>
	(element->getElementData(PARTITION_ED));

      if (partitionData && partitionData->getPartitionStatus() == IN) {
	if (partitionData->getLevel() == 0) {
	  elNum = element->getIndex();
	}
	TEST_EXIT(elNum != -1)("invalid element number\n");
	if (element->isLeaf()) {
	  elemWeights[elNum] += 1.0;
	  localWeightSum += 1.0;
	}
      }

      elInfo = stack.traverseNext(elInfo);
    }

    return localWeightSum;
  }

260

261 262 263 264 265 266 267 268 269 270 271 272 273 274
  void ParallelDomainProblemBase::partitionMesh(AdaptInfo *adaptInfo)
  {
    if (initialPartitionMesh) {
      initialPartitionMesh = false;
      partitioner->fillCoarsePartitionVec(&oldPartitionVec);
      partitioner->partition(&elemWeights, INITIAL);
    } else {
      oldPartitionVec = partitionVec;
      partitioner->partition(&elemWeights, ADAPTIVE_REPART, 100.0 /*0.000001*/);
    }    

    partitioner->fillCoarsePartitionVec(&partitionVec);
  }

275

276 277
  void ParallelDomainProblemBase::createInteriorBoundaryInfo(std::vector<const DegreeOfFreedom*>& rankDOFs,
							     std::map<const DegreeOfFreedom*, int>& boundaryDOFs)
278
  {
Thomas Witkowski's avatar
Thomas Witkowski committed
279 280 281 282
    FUNCNAME("ParallelDomainProblemBase::createInteriorBoundaryInfo()");

    // === First, create all the information about the interior boundaries. ===

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(mesh, -1, Mesh::CALL_LEAF_EL | Mesh::FILL_NEIGH);
    while (elInfo) {
      Element *element = elInfo->getElement();

      PartitionElementData *partitionData = 
	dynamic_cast<PartitionElementData*>(element->getElementData(PARTITION_ED));   
      if (partitionData->getPartitionStatus() == IN) {
	for (int i = 0; i < 3; i++) {
	  if (!elInfo->getNeighbour(i))
	    continue;

	  PartitionElementData *neighbourPartitionData =
	    dynamic_cast<PartitionElementData*>(elInfo->getNeighbour(i)->getElementData(PARTITION_ED));
 	  if (neighbourPartitionData->getPartitionStatus() == OUT) {
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	    // We have found an element that is at an interior boundary. 

	    // === Find out, if the boundary part of the element corresponds to the
	    //     rank or to the rank "on the other side" of the interoir boundary. ===

	    const DegreeOfFreedom* boundDOF1 = NULL;
	    const DegreeOfFreedom* boundDOF2 = NULL;
	    
	    switch (i) {
	    case 0:
	      boundDOF1 = element->getDOF(1);
	      boundDOF2 = element->getDOF(2);
	      break;
	    case 1:
	      boundDOF1 = element->getDOF(0);
	      boundDOF2 = element->getDOF(2);
	      break;
	    case 2:
	      boundDOF1 = element->getDOF(0);
	      boundDOF2 = element->getDOF(1);
	      break;
	    default:
	      ERROR_EXIT("Should never happen!\n");
	    }

	    bool isRankDOF1 = (find(rankDOFs.begin(), rankDOFs.end(), boundDOF1) != rankDOFs.end());
	    bool isRankDOF2 = (find(rankDOFs.begin(), rankDOFs.end(), boundDOF2) != rankDOFs.end());
	    bool ranksBoundary = isRankDOF1 || isRankDOF2;

	    /// === And add the part of the interior boundary. ===

	    AtomicBoundary& bound = 
Thomas Witkowski's avatar
Thomas Witkowski committed
330 331 332 333
	      (ranksBoundary ?
	       myIntBoundary.getNewAtomicBoundary(partitionVec[elInfo->getNeighbour(i)->getIndex()]) :
	       otherIntBoundary.getNewAtomicBoundary(partitionVec[elInfo->getNeighbour(i)->getIndex()]));

334 335 336 337 338 339
	    bound.rankObject.el = element;
	    bound.rankObject.subObjAtBoundary = EDGE;
	    bound.rankObject.ithObjAtBoundary = i;
	    bound.neighbourObject.el = elInfo->getNeighbour(i);
	    bound.neighbourObject.subObjAtBoundary = EDGE;
	    bound.neighbourObject.ithObjAtBoundary = -1;
Thomas Witkowski's avatar
Thomas Witkowski committed
340
	    std::cout << "ADD IN " << mpiRank << ": " << element->getIndex() << " " << elInfo->getNeighbour(i)->getIndex() << std::endl;
341 342 343 344 345 346
 	  }
	}
      }

      elInfo = stack.traverseNext(elInfo);
    }
Thomas Witkowski's avatar
Thomas Witkowski committed
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409


    // === Once we have this information, we must care about their order. Eventually ===
    // === all the boundaries have to be in the same order on both ranks (because    ===
    // === each boundary is shared by exactly two ranks).                            ===

    std::vector<int*> sendBuffers;
    std::vector<int*> recvBuffers;

    for (std::map<int, std::vector<AtomicBoundary> >::iterator rankIt = myIntBoundary.boundary.begin();
	 rankIt != myIntBoundary.boundary.end();
	 ++rankIt) {
      int* buffer = new int[rankIt->second.size()];
      for (int i = 0; i < static_cast<int>(rankIt->second.size()); i++)
	buffer[i] = (rankIt->second)[i].rankObject.el->getIndex();
      sendBuffers.push_back(buffer);
      
      mpiComm.Isend(buffer, rankIt->second.size(), MPI_INT, rankIt->first, 0);
    }

    for (std::map<int, std::vector<AtomicBoundary> >::iterator rankIt = otherIntBoundary.boundary.begin();
	 rankIt != otherIntBoundary.boundary.end();
	 ++rankIt) {
      int *buffer = new int[rankIt->second.size()];
      recvBuffers.push_back(buffer);
      
      mpiComm.Irecv(buffer, rankIt->second.size(), MPI_INT, rankIt->first, 0);      
    }

    mpiComm.Barrier();

    int i = 0;
    for (std::map<int, std::vector<AtomicBoundary> >::iterator rankIt = otherIntBoundary.boundary.begin();
	 rankIt != otherIntBoundary.boundary.end();
	 ++rankIt) {

      // === We have received from rank "rankIt->first" the ordered list of element ===
      // === indices. We now have to sort the corresponding list in this rank to    ===
      // === get the same order.                                                    ===
      
      for (int j = 0; j < static_cast<int>(rankIt->second.size()); j++) {
	// If the expected object is not at place, search for it.
	if ((rankIt->second)[j].neighbourObject.el->getIndex() != recvBuffers[i][j]) {
	  int k = j + 1;
	  for (; k < static_cast<int>(rankIt->second.size()); k++)
	    if ((rankIt->second)[k].neighbourObject.el->getIndex() == recvBuffers[i][j])
	      break;

	  // The element must always be found, because the list is just in another order.
	  TEST_EXIT(k < rankIt->second.size())("Should never happen!\n");

	  // Swap the current with the found element.
	  AtomicBoundary tmpBound = (rankIt->second)[k];
	  (rankIt->second)[k] = (rankIt->second)[j];
	  (rankIt->second)[j] = tmpBound;	
	}
      }

      delete [] recvBuffers[i++];
    }

    for (int i = 0; i < static_cast<int>(sendBuffers.size()); i++)
      delete [] sendBuffers[i];
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
  }


  void ParallelDomainProblemBase::removeMacroElements()
  {
    std::vector<MacroElement*> macrosToRemove;
    for (std::deque<MacroElement*>::iterator it = mesh->firstMacroElement();
	 it != mesh->endOfMacroElements();
	 ++it) {
      PartitionElementData *partitionData = 
	dynamic_cast<PartitionElementData*>
	((*it)->getElement()->getElementData(PARTITION_ED));
      if (partitionData->getPartitionStatus() != IN)
	macrosToRemove.push_back(*it);
    }

    mesh->removeMacroElements(macrosToRemove);
  }


430 431 432
  void ParallelDomainProblemBase::createLocalGlobalNumbering(std::vector<const DegreeOfFreedom*>& rankDOFs,
							     std::map<const DegreeOfFreedom*, int>& boundaryDOFs,
							     int& nRankDOFs, 
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
							     int& nOverallDOFs)
  {
    /// === Get rank information about DOFs. ===

    // Stores to each DOF pointer the set of ranks the DOF is part of.
    std::map<const DegreeOfFreedom*, std::set<int> > partitionDOFs;

    createDOFMemberInfo(partitionDOFs, rankDOFs, boundaryDOFs);

    nRankDOFs = rankDOFs.size();
    nOverallDOFs = partitionDOFs.size();

    // === Get starting position for global rank dof ordering ====

    int rstart = 0;
    MPI_Scan(&nRankDOFs, &rstart, 1, MPI_INT, MPI_SUM, PETSC_COMM_WORLD);
    rstart -= nRankDOFs;

   
    /// === Create information which dof indices must be send and which must be received. ===

    std::map<int, std::map<DegreeOfFreedom, DegreeOfFreedom> > sendNewDofs;
    std::map<int, std::vector<DegreeOfFreedom> > recvNewDofs;

    for (std::map<const DegreeOfFreedom*, int>::iterator it = boundaryDOFs.begin();
	 it != boundaryDOFs.end();
	 ++it) {

      if (it->second == mpiRank) {
	// If the boundary dof is a rank dof, it must be send to other ranks.

	// old global index
	int oldDofIndex = (it->first)[0];
	// search for new dof index in ranks partition for this boundary dof
	int newDofIndex = 0;
	for (int i = 0; i < static_cast<int>(rankDOFs.size()); i++) {
	  if (rankDOFs[i] == it->first) {
	    newDofIndex = rstart + i;
	    break;
	  }
	}

	// Search for all ranks that have this dof too.
	for (std::set<int>::iterator itRanks = partitionDOFs[it->first].begin();
	     itRanks != partitionDOFs[it->first].end();
	     ++itRanks) {
	  if (*itRanks != mpiRank)
	    sendNewDofs[*itRanks][oldDofIndex] = newDofIndex;
	}
      } else {
	// If the boundary dof is not a rank dof, its new dof index, and later
	// also the dof values, must be received from another rank.
	recvNewDofs[it->second].push_back((it->first)[0]);
      }
    }


    /// === Send and receive the dof indices at boundary. ===

    std::vector<int*> sendBuffers(sendNewDofs.size());
    std::vector<int*> recvBuffers(recvNewDofs.size());
    
    int i = 0;
    for (std::map<int, std::map<DegreeOfFreedom, DegreeOfFreedom> >::iterator sendIt = sendNewDofs.begin();
	 sendIt != sendNewDofs.end();
	 ++sendIt, i++) {
      sendBuffers[i] = new int[sendIt->second.size() * 2];
      int c = 0;
      for (std::map<DegreeOfFreedom, DegreeOfFreedom>::iterator dofIt = sendIt->second.begin();
	   dofIt != sendIt->second.end();
	   ++dofIt, c += 2) {
	sendBuffers[i][c] = dofIt->first;
	sendBuffers[i][c + 1] = dofIt->second;

	sendDofs[sendIt->first].push_back(dofIt->second);
      }

      mpiComm.Isend(sendBuffers[i], sendIt->second.size() * 2, MPI_INT, sendIt->first, 0);
    }

    i = 0;
    for (std::map<int, std::vector<DegreeOfFreedom> >::iterator recvIt = recvNewDofs.begin();
	 recvIt != recvNewDofs.end();
	 ++recvIt, i++) {
      recvBuffers[i] = new int[recvIt->second.size() * 2];

      mpiComm.Irecv(recvBuffers[i], recvIt->second.size() * 2, MPI_INT, recvIt->first, 0);
    }


    mpiComm.Barrier();

    
    /// === Delete send buffers. ===

    i = 0;
    for (std::map<int, std::map<DegreeOfFreedom, DegreeOfFreedom> >::iterator sendIt = sendNewDofs.begin();
	 sendIt != sendNewDofs.end();
	 ++sendIt, i++) 
      delete [] sendBuffers[i];


    /// === Change dof indices for rank partition. ===

    for (int i = 0; i < static_cast<int>(rankDOFs.size()); i++) {
      const_cast<DegreeOfFreedom*>(rankDOFs[i])[0] = i; 
      mapLocalGlobalDOFs[i] = rstart + i;
      mapGlobalLocalDOFs[rstart + i] = i;
      isRankDOF[i] = true;
    }


    /// === Change dof indices at boundary from other ranks. ===

    i = 0;
    for (std::map<int, std::vector<DegreeOfFreedom> >::iterator recvIt = recvNewDofs.begin();
	 recvIt != recvNewDofs.end();
	 ++recvIt, i++) {

      for (int j = 0; j < static_cast<int>(recvIt->second.size()); j++) {

	int oldDof = recvBuffers[i][j * 2];
	int newDof = recvBuffers[i][j * 2 + 1];
	int newLocalDof = mapLocalGlobalDOFs.size();

	recvDofs[recvIt->first].push_back(newDof);

	for (std::map<const DegreeOfFreedom*, int>::iterator dofIt = boundaryDOFs.begin();
	     dofIt != boundaryDOFs.end();
	     ++dofIt) {
	  if ((dofIt->first)[0] == oldDof) {
	    const_cast<DegreeOfFreedom*>(dofIt->first)[0] = newLocalDof;
	    mapLocalGlobalDOFs[newLocalDof] = newDof;
	    mapGlobalLocalDOFs[newDof] = newLocalDof;
	    isRankDOF[newLocalDof] = false;
	    break;
	  }
	}
      }

      delete [] recvBuffers[i];
    }


    /// === Create local information from sendDofs and recvDofs

    for (std::map<int, std::vector<DegreeOfFreedom> >::iterator it = sendDofs.begin();
	 it != sendDofs.end();
	 ++it)
      for (std::vector<DegreeOfFreedom>::iterator dofIt = it->second.begin();
	   dofIt != it->second.end();
	   dofIt++)
	*dofIt = mapGlobalLocalDOFs[*dofIt];

    for (std::map<int, std::vector<DegreeOfFreedom> >::iterator it = recvDofs.begin();
	 it != recvDofs.end();
	 ++it)
      for (std::vector<DegreeOfFreedom>::iterator dofIt = it->second.begin();
	   dofIt != it->second.end();
	   dofIt++)
	*dofIt = mapGlobalLocalDOFs[*dofIt];  
  }


597 598 599
  void ParallelDomainProblemBase::updateLocalGlobalNumbering(int& nRankDOFs, 
							     int& nOverallDOFs)
  {
Thomas Witkowski's avatar
Thomas Witkowski committed
600 601
    FUNCNAME("ParallelDomainProblemBase::updateLocalGlobalNumbering()");

602
    std::set<const DegreeOfFreedom*> rankDOFs;
Thomas Witkowski's avatar
Thomas Witkowski committed
603
    std::map<const DegreeOfFreedom*, int> boundaryDOFs;
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619

    
    /// === Get all DOFs in ranks partition. ===

    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(mesh, -1, Mesh::CALL_LEAF_EL);
    while (elInfo) {
      Element *element = elInfo->getElement();
      
      for (int i = 0; i < 3; i++) 
	rankDOFs.insert(element->getDOF(i));

      elInfo = stack.traverseNext(elInfo);
    }


Thomas Witkowski's avatar
Thomas Witkowski committed
620 621
    // === Traverse on interior boundaries and move all not ranked owned DOFs from ===
    // === rankDOFs to boundaryDOFs                                                ===
622 623

    for (std::map<int, std::vector<AtomicBoundary> >::iterator it = 
Thomas Witkowski's avatar
Thomas Witkowski committed
624 625
	   myIntBoundary.boundary.begin();
	 it != myIntBoundary.boundary.end();
626
	 ++it) {
Thomas Witkowski's avatar
Thomas Witkowski committed
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
      for (std::vector<AtomicBoundary>::iterator boundIt = it->second.begin();
	   boundIt != it->second.end();
	   ++boundIt) {
	const DegreeOfFreedom *dof1 = NULL;
	const DegreeOfFreedom *dof2 = NULL;

	switch (boundIt->rankObject.ithObjAtBoundary) {
	case 0:
	  dof1 = boundIt->rankObject.el->getDOF(1);
	  dof2 = boundIt->rankObject.el->getDOF(2);
	  break;
	case 1:
	  dof1 = boundIt->rankObject.el->getDOF(0);
	  dof2 = boundIt->rankObject.el->getDOF(2);
	  break;
	case 2:
	  dof1 = boundIt->rankObject.el->getDOF(0);
	  dof2 = boundIt->rankObject.el->getDOF(1);
	  break;
	default:
	  ERROR_EXIT("Should never happen!\n");
	}

	std::vector<const DegreeOfFreedom*> boundDOFs;
	addAllDOFs(boundIt->rankObject.el, boundIt->rankObject.ithObjAtBoundary,
		   boundDOFs);
653 654 655 656
      }
    }    
  }

657

Thomas Witkowski's avatar
Thomas Witkowski committed
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
  void ParallelDomainProblemBase::addAllDOFs(Element *el, int ithEdge, 
					     std::vector<const DegreeOfFreedom*>& dofs,
					     bool addVertices)
  {
    FUNCNAME("ParallelDomainProblemBase::addAllDOFs()");

    const DegreeOfFreedom* boundDOF1 = NULL;
    const DegreeOfFreedom* boundDOF2 = NULL;

    if (addVertices) {
      switch (ithEdge) {
      case 0:
	boundDOF1 = el->getDOF(1);
	boundDOF2 = el->getDOF(2);
	break;
      case 1:
	boundDOF1 = el->getDOF(0);
	boundDOF2 = el->getDOF(2);
	break;
      case 2:
	boundDOF1 = el->getDOF(0);
	boundDOF2 = el->getDOF(1);
	break;
      default:
	ERROR_EXIT("Should never happen!\n");
      }

      dofs.push_back(boundDOF1);
    }

    switch (ithEdge) {
    case 0:
      if (el->getSecondChild() && el->getSecondChild()->getFirstChild()) {
	addAllDOFs(el->getSecondChild()->getFirstChild(), 0, dofs, false);
	dofs.push_back(el->getSecondChild()->getFirstChild()->getDOF(2));
	addAllDOFs(el->getSecondChild()->getSecondChild(), 1, dofs, false);
      }
      break;
    case 1:
      if (el->getFirstChild() && el->getFirstChild()->getFirstChild()) {
	addAllDOFs(el->getFirstChild()->getFirstChild(), 0, dofs, false);
	dofs.push_back(el->getFirstChild()->getFirstChild()->getDOF(2));
	addAllDOFs(el->getFirstChild()->getSecondChild(), 1, dofs, false);
      }
      break;
    case 2:      
      if (el->getFirstChild()) {
	addAllDOFs(el->getFirstChild(), 0, dofs, false);
	dofs.push_back(el->getFirstChild()->getDOF(2));
	addAllDOFs(el->getSecondChild(), 1, dofs, false);
      }
      break;      
    default:
      ERROR_EXIT("Should never happen!\n");
    }

    if (addVertices)
      dofs.push_back(boundDOF2);		   
  }


719
  void ParallelDomainProblemBase::createDOFMemberInfo(
720
		       std::map<const DegreeOfFreedom*, std::set<int> >& partitionDOFs,
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
		       std::vector<const DegreeOfFreedom*>& rankDOFs,
		       std::map<const DegreeOfFreedom*, int>& boundaryDOFs)
  {
    /// === Determine to each dof the set of partitions the dof belongs to. ===

    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(mesh, -1, Mesh::CALL_LEAF_EL);
    while (elInfo) {
      Element *element = elInfo->getElement();

      // Determine to each dof the partition(s) it corresponds to.
      for (int i = 0; i < 3; i++) 
	partitionDOFs[element->getDOF(i)].insert(partitionVec[element->getIndex()]);
          
      elInfo = stack.traverseNext(elInfo);
    }

    /// === Determine the set of ranks dofs and the dofs ownership at the boundary. ===

    for (std::map<const DegreeOfFreedom*, std::set<int> >::iterator it = partitionDOFs.begin();
	 it != partitionDOFs.end();
	 ++it) {
      for (std::set<int>::iterator itpart1 = it->second.begin();
	   itpart1 != it->second.end();
	   ++itpart1) {
	if (*itpart1 == mpiRank) {
	  if (it->second.size() == 1) {
	    rankDOFs.push_back(it->first);
	  } else {	    
	    // This dof is at the ranks boundary. It is owned by the rank only if
	    // the rank number is the highest of all ranks containing this dof.

	    bool insert = true;
	    int highestRank = mpiRank;
	    for (std::set<int>::iterator itpart2 = it->second.begin();
		 itpart2 != it->second.end();
		 ++itpart2) {
	      if (*itpart2 > mpiRank)
		insert = false;

	      if (*itpart2 > highestRank)
		highestRank = *itpart2;
	    }

	    if (insert)
	      rankDOFs.push_back(it->first);

	    boundaryDOFs[it->first] = highestRank;
	  }

	  break;
	}
      }
    }
  }


778 779 780
  ParallelDomainProblemScal::ParallelDomainProblemScal(const std::string& name,
						       ProblemScal *problem,
						       ProblemInstatScal *problemInstat)
781 782 783 784 785
    : ParallelDomainProblemBase(name, 
				problem, 
				problemInstat, 
				problem->getFESpace(),
				problem->getRefinementManager()),
786
      probScal(problem)
787 788 789
  {
  }

790 791 792 793 794 795 796
  void ParallelDomainProblemScal::initParallelization(AdaptInfo *adaptInfo)
  {
    ParallelDomainProblemBase::initParallelization(adaptInfo);

    probScal->getSystemMatrix()->setIsRankDOF(isRankDOF);
  }

797 798 799 800 801 802 803 804
  Flag ParallelDomainProblemScal::oneIteration(AdaptInfo *adaptInfo, Flag toDo)
  {
    //    return iterationIF->oneIteration(adaptInfo, toDo);

    Flag flag = dynamic_cast<StandardProblemIteration*>(iterationIF)->buildAndAdapt(adaptInfo, toDo);

    fillPetscMatrix(probScal->getSystemMatrix(), probScal->getRHS());

805 806
    solvePetscMatrix(probScal->getSolution());

807 808 809 810 811 812 813 814 815 816
//     if (toDo.isSet(SOLVE))
//       iterationIF->getProblem()->solve(adaptInfo, false);

//     if (toDo.isSet(SOLVE_RHS))
//       iterationIF->getProblem()->solve(adaptInfo, true);

//     if (toDo.isSet(ESTIMATE)) 
//       iterationIF->getProblem()->estimate(adaptInfo);


817
    return flag;
818
  }
819 820

}