ProblemVec.cc 29.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#include "ProblemVec.h"
#include "RecoveryEstimator.h"
#include "Serializer.h"
#include "AbstractFunction.h"
#include "Operator.h"
#include "SystemVector.h"
#include "DOFMatrix.h"
#include "FiniteElemSpace.h"
#include "Estimator.h"
#include "Marker.h"
#include "AdaptInfo.h"
#include "FileWriter.h"
#include "CoarseningManager.h"
#include "RefinementManager.h"
#include "Mesh.h"
#include "OEMSolver.h"
#include "Preconditioner.h"
#include "MatVecMultiplier.h"
#include "DirichletBC.h"
#include "RobinBC.h"
#include "PeriodicBC.h"
#include "Lagrange.h"

namespace AMDiS {

  ProblemVec *ProblemVec::traversePtr_ = NULL;

  void ProblemVec::initialize(Flag initFlag,
			      ProblemVec *adoptProblem,
			      Flag adoptFlag)
  {
    FUNCNAME("ProblemVec::initialize()");
    
    // === create meshes ===
    if (meshes_.size() != 0) { 
      WARNING("meshes already created\n");
    } else {
      if (initFlag.isSet(CREATE_MESH) || 
	  ((!adoptFlag.isSet(INIT_MESH))&&
	   (initFlag.isSet(INIT_SYSTEM) || initFlag.isSet(INIT_FE_SPACE)))) {
	createMesh();
      } 
      if (adoptProblem && 
	  (adoptFlag.isSet(INIT_MESH) || 
	   adoptFlag.isSet(INIT_SYSTEM) ||
	   adoptFlag.isSet(INIT_FE_SPACE))) {
	meshes_ = adoptProblem->getMeshes();
	componentMeshes_ = adoptProblem->componentMeshes_;
	refinementManager_ = adoptProblem->refinementManager_;
	coarseningManager_ = adoptProblem->coarseningManager_;
      }
    }

    if (meshes_.size() == 0) 
      WARNING("no mesh created\n");

    // === create fespace ===
    if (feSpaces_.size() != 0) {
      WARNING("feSpaces already created\n");
    } else {
      if (initFlag.isSet(INIT_FE_SPACE) || 
	  (initFlag.isSet(INIT_SYSTEM)&&!adoptFlag.isSet(INIT_FE_SPACE))) {
	createFESpace();
      } 
      if (adoptProblem &&
	  (adoptFlag.isSet(INIT_FE_SPACE) || adoptFlag.isSet(INIT_SYSTEM))) {
	feSpaces_ = adoptProblem->getFESpaces();
	componentSpaces_ = adoptProblem->componentSpaces_;
      }
    }

    if (feSpaces_.size() == 0) 
      WARNING("no feSpace created\n");

    // === create system ===
    if (initFlag.isSet(INIT_SYSTEM)) {
      createMatricesAndVectors();
    } 
    if (adoptProblem && adoptFlag.isSet(INIT_SYSTEM)) {
      solution_ = adoptProblem->getSolution();
      rhs_ = adoptProblem->getRHS();
      systemMatrix_ = adoptProblem->getSystemMatrix();
    }

    // === create solver ===
    if (solver_) {
      WARNING("solver already created\n");
    } else {
      if (initFlag.isSet(INIT_SOLVER)) {
	createSolver();
      } 
      if (adoptProblem && adoptFlag.isSet(INIT_SOLVER)) {
	TEST_EXIT(!solver_)("solver already created\n");
	solver_ = adoptProblem->getSolver();
      }
    }

    if (!solver_) 
      WARNING("no solver created\n");

    // === create estimator ===
    if (initFlag.isSet(INIT_ESTIMATOR)) {
      createEstimator();
    } 
    if (adoptProblem && adoptFlag.isSet(INIT_ESTIMATOR)) {
      estimator_ = adoptProblem->getEstimator();
    } 

    // === create marker ===
    if (initFlag.isSet(INIT_MARKER)) {
      createMarker();
    } 
    if (adoptProblem && adoptFlag.isSet(INIT_MARKER)) {
      marker_ = adoptProblem->getMarker();
    } 


    // === create file writer ===
    if (initFlag.isSet(INIT_FILEWRITER)) {
      createFileWriter();
    }

    
    // === read serialization and init mesh ===
    
    // There are two possiblities where the user can define a serialization
    // to be read from disk. Either by providing the parameter -rs when executing
    // the program or in the init file. The -rs parameter is always checked first,
    // because it can be added automatically when  rescheduling the program
    // before timeout of the runqueue.

    int readSerialization = 0;
133
    std::string serializationFilename = "";
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    GET_PARAMETER(0, "argv->rs", &serializationFilename);

    // If the parameter -rs is set, we do nothing here, because the problem will be
    // deserialized in the constructor of a following AdaptInstationary initialization.
    if (!serializationFilename.compare("")) {
      int readSerializationWithAdaptInfo = 0;

      GET_PARAMETER(0, name_ + "->input->read serialization", "%d", 
		    &readSerialization);
      GET_PARAMETER(0, name_ + "->input->serialization with adaptinfo", "%d",
		    &readSerializationWithAdaptInfo);

      // The serialization file is only read, if the adaptInfo part should not be used.
      // If the adaptInfo part should be also read, the serialization file will be read
      // in the constructor of the AdaptInstationary problem, because we do not have here
      // the adaptInfo object.
      if (readSerialization && !readSerializationWithAdaptInfo) {
	GET_PARAMETER(0, name_ + "->input->serialization filename", 
		      &serializationFilename);
	TEST_EXIT(serializationFilename != "")("no serialization file\n");

	MSG("Deserialization from file: %s\n", serializationFilename.c_str());
156
	std::ifstream in(serializationFilename.c_str());
157
158
159
	deserialize(in);
	in.close();
      } else {
160
161
162
163
	int globalRefinements = 0;
	GET_PARAMETER(0, meshes_[0]->getName() + "->global refinements", "%d", 
		      &globalRefinements);

164
165
166
167
168
	// Initialize the meshes if there is no serialization file.
	for (int i = 0; i < static_cast<int>(meshes_.size()); i++) {
	  if (initFlag.isSet(INIT_MESH) && 
	      meshes_[i] && 
	      !(meshes_[i]->isInitialized())) {
169
170
	    meshes_[i]->initialize();	    
	    refinementManager_->globalRefine(meshes_[i], globalRefinements);
171
172
173
174
175
176
177
178
179
180
181
182
	  }
	}	
      }
    }

    doOtherStuff();
  }

  void ProblemVec::createMesh() 
  {
    FUNCNAME("ProblemVec::createMesh()");

183
184
    componentMeshes_.resize(nComponents);
    std::map<int, Mesh*> meshForRefinementSet;
185
186
    char number[3];

187
    std::string meshName("");
188
189
190
191
192
193
    GET_PARAMETER(0, name_ + "->mesh", &meshName);
    TEST_EXIT(meshName != "")("no mesh name spezified\n");
    int dim = 0;
    GET_PARAMETER(0, name_ + "->dim", "%d", &dim);
    TEST_EXIT(dim)("no problem dimension spezified!\n");

194
    for (int i = 0; i < nComponents; i++) {
195
      sprintf(number, "%d", i);
196
197
198
      int refSet = -1;
      GET_PARAMETER(0, name_ + "->refinement set[" + number + "]", "%d", &refSet);
      if (refSet < 0) {
199
200
	refSet = 0;
      }
201
      if (meshForRefinementSet[refSet] == NULL) {
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
	Mesh *newMesh = NEW Mesh(meshName, dim);
	meshForRefinementSet[refSet] = newMesh;
	meshes_.push_back(newMesh);
      }
      componentMeshes_[i] = meshForRefinementSet[refSet];
    }
    switch(dim) {
    case 1:
      coarseningManager_ = NEW CoarseningManager1d();
      refinementManager_ = NEW RefinementManager1d();
      break;
    case 2:
      coarseningManager_ = NEW CoarseningManager2d();
      refinementManager_ = NEW RefinementManager2d();
      break;
    case 3:
      coarseningManager_ = NEW CoarseningManager3d();
      refinementManager_ = NEW RefinementManager3d();
      break;
    default:
      ERROR_EXIT("invalid dim!\n");
    }
  }

  void ProblemVec::createFESpace()
  {
    FUNCNAME("ProblemVec::createFESpace()");

    int degree = 1;
    char number[3];

233
    std::map< std::pair<Mesh*, int>, FiniteElemSpace*> feSpaceMap;
234
    int dim = -1;
235
236
237
    GET_PARAMETER(0, name_ + "->dim", "%d", &dim);
    TEST_EXIT(dim != -1)("no problem dimension spezified!\n");

238
    componentSpaces_.resize(nComponents, NULL);
239

240
    for (int i = 0; i < nComponents; i++) {
241
242
243
244
245
      sprintf(number, "%d", i);
      GET_PARAMETER(0, name_ + "->polynomial degree[" + number + "]","%d", &degree);

      TEST_EXIT(componentSpaces_[i] == NULL)("feSpace already created\n");

246
      if (feSpaceMap[std::pair<Mesh*, int>(componentMeshes_[i], degree)] == NULL) {
247
248
249
250
251
	FiniteElemSpace *newFESpace = 
	  FiniteElemSpace::provideFESpace(NULL,
					  Lagrange::getLagrange(dim, degree),
					  componentMeshes_[i],
					  name_ + "->feSpace");
252
	feSpaceMap[std::pair<Mesh*, int>(componentMeshes_[i], degree)] = newFESpace;
253
254
255
	feSpaces_.push_back(newFESpace);
      }
      componentSpaces_[i] = 
256
	feSpaceMap[std::pair<Mesh*, int>(componentMeshes_[i], degree)];
257
258
259
    }

    // create dof admin for vertex dofs if neccessary
260
    for (int i = 0; i < static_cast<int>(meshes_.size()); i++) {
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
      if (meshes_[i]->getNumberOfDOFs(VERTEX) == 0) {
	DimVec<int> ln_dof(meshes_[i]->getDim(), DEFAULT_VALUE, 0);
	ln_dof[VERTEX]= 1;
	meshes_[i]->createDOFAdmin("vertex dofs", ln_dof);      
      }
    }
  }

  void ProblemVec::createMatricesAndVectors()
  {
    FUNCNAME("ProblemVec::createMatricesAndVectors()");

    int i;

    // === create vectors and system matrix ===

277
    systemMatrix_ = NEW Matrix<DOFMatrix*>(nComponents, nComponents);
278
    systemMatrix_->set(NULL);
279
280
    rhs_ = NEW SystemVector("rhs", componentSpaces_, nComponents);
    solution_ = NEW SystemVector("solution", componentSpaces_, nComponents);
281
282

    char number[10];
283
284
    std::string numberedName;
    for (i = 0; i < nComponents; i++) {
285
286
287
288
      (*systemMatrix_)[i][i] = NEW DOFMatrix(componentSpaces_[i], 
					     componentSpaces_[i], "A_ii");
      (*systemMatrix_)[i][i]->setCoupleMatrix(false);
      sprintf(number, "[%d]", i);
289
      numberedName = "rhs" + std::string(number);
290
      rhs_->setDOFVector(i, NEW DOFVector<double>(componentSpaces_[i], numberedName));
291
      numberedName = name_ + std::string(number);
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
      solution_->setDOFVector(i, NEW DOFVector<double>(componentSpaces_[i], 
						       numberedName));
      solution_->getDOFVector(i)->refineInterpol(true);
      solution_->getDOFVector(i)->setCoarsenOperation(COARSE_INTERPOL);
      solution_->getDOFVector(i)->set(0.0);
    }

    // === create matVec ===
    matVec_ = NEW StandardMatVec<Matrix<DOFMatrix*>, SystemVector>(systemMatrix_);
  }

  void ProblemVec::createSolver()
  {
    FUNCNAME("ProblemVec::createSolver()");

    // === create solver ===
308
    std::string solverType("no");
309
310
311
312
313
314
315
316
317
318
319
320
    GET_PARAMETER(0, name_ + "->solver", &solverType);
    OEMSolverCreator<SystemVector> *solverCreator = 
      dynamic_cast<OEMSolverCreator<SystemVector>*>(
						    CreatorMap<OEMSolver<SystemVector> >
						    ::getCreator(solverType)
						    );
    TEST_EXIT(solverCreator)("no solver type\n");
    solverCreator->setName(name_ + "->solver");
    solver_ = solverCreator->create();
    solver_->initParameters();

    // === create preconditioners ===
321
    std::string preconType("no");
322
323

    PreconditionerScal *scalPrecon;
324
    PreconditionerVec *vecPrecon = NEW PreconditionerVec(nComponents);
325
326
327
328
329
330
331
332
333
334
335

    GET_PARAMETER(0, name_ + "->solver->left precon", &preconType);
    CreatorInterface<PreconditionerScal> *preconCreator =
      CreatorMap<PreconditionerScal>::getCreator(preconType);

    int i, j;

    if (!preconCreator->isNullCreator()) {
      dynamic_cast<PreconditionerScalCreator*>(preconCreator)->
	setName(name_ + "->solver->left precon");

336
      for(i = 0; i < nComponents; i++) {
337
	dynamic_cast<PreconditionerScalCreator*>(preconCreator)->
338
	  setSizeAndRow(nComponents, i);
339
340
    
	scalPrecon = preconCreator->create();
341
	for(j = 0; j < nComponents; j++) {
342
343
344
345
346
347
348
349
	  scalPrecon->setMatrix(&(*systemMatrix_)[i][j], j);
	}
	vecPrecon->setScalarPrecon(i, scalPrecon);
      }
      leftPrecon_ = vecPrecon;
    }


350
    vecPrecon = NEW PreconditionerVec(nComponents);
351
352
353
354
355
356
357
358
359
360

    GET_PARAMETER(0, name_ + "->solver->right precon", &preconType);
    preconCreator = 
      CreatorMap<PreconditionerScal>::getCreator(preconType);

    if(!preconCreator->isNullCreator()) {
      dynamic_cast<PreconditionerScalCreator*>(preconCreator)->
	setName(name_ + "->solver->left precon");


361
      for(i = 0; i < nComponents; i++) {
362
	dynamic_cast<PreconditionerScalCreator*>(preconCreator)->
363
	  setSizeAndRow(nComponents, i);
364
365
    
	scalPrecon = preconCreator->create();
366
	for(j = 0; j < nComponents; j++) {
367
368
369
370
371
372
373
374
375
376
377
	  scalPrecon->setMatrix(&(*systemMatrix_)[i][j], j);
	}
	vecPrecon->setScalarPrecon(i, scalPrecon);
      }
      rightPrecon_ = vecPrecon;
    }


    // === create vector creator ===
    solver_->setVectorCreator(NEW SystemVector::Creator("temp",
							componentSpaces_, 
378
							nComponents));
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
  }

  void ProblemVec::createEstimator()
  {
    FUNCNAME("ProblemVec::createEstimator()");

    int i, j;

    // create and set leaf data prototype
    for(i = 0; i < static_cast<int>(meshes_.size()); i++) {
      meshes_[i]->setElementDataPrototype
	(NEW LeafDataEstimatableVec(NEW LeafDataCoarsenableVec));
    }  

    char number[3];
394
    std::string estName;
395

396
    for(i = 0; i < nComponents; i++) {
397
398
      TEST_EXIT(estimator_[i] == NULL)("estimator already created\n");
      sprintf(number, "%d", i);
399
      estName = name_ + "->estimator[" + std::string(number) + "]";
400
401

      // === create estimator ===
402
      std::string estimatorType("no");
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
      GET_PARAMETER(0, estName, &estimatorType);
      EstimatorCreator *estimatorCreator = 
	dynamic_cast<EstimatorCreator*>(
					CreatorMap<Estimator>::getCreator(estimatorType));
      if(estimatorCreator) {
	estimatorCreator->setName(estName);
	estimatorCreator->setRow(i);
	if(estimatorType == "recovery") {
	  dynamic_cast<RecoveryEstimator::Creator*>(estimatorCreator)->
	    setSolution(solution_->getDOFVector(i));
	}
	estimator_[i] = estimatorCreator->create();
      }


      if(estimator_[i]) {
419
	for(j=0; j < nComponents; j++) {
420
421
422
423
424
425
426
427
428
429
430
431
	  estimator_[i]->addSystem((*systemMatrix_)[i][j], 
				   solution_->getDOFVector(j), 
				   rhs_->getDOFVector(j));
	}
      }
    }
  }

  void ProblemVec::createMarker()
  {
    FUNCNAME("ProblemVec::createMarker()");

432
    std::string numberedName;
433
434
    char number[10];
    int numMarkersCreated = 0;
435

436
    for (int i = 0; i < nComponents; i++) {
437
      sprintf(number, "[%d]", i);
438
      numberedName = name_ + "->marker" + std::string(number);
439
440
441
442
      marker_[i] = Marker::createMarker(numberedName, i);
      if (marker_[i]) {
	numMarkersCreated++;
	if (numMarkersCreated > 1)
443
444
445
446
447
448
449
450
451
452
453
	  marker_[i]->setMaximumMarking(true);
      }
    }
  }

  void ProblemVec::createFileWriter()
  {
    FUNCNAME("ProblemVec::createFileWriter()");
  

    // Create one filewriter for all components of the problem
454
455
    std::string numberedName  = name_ + "->output";
    std::string filename = "";
456
457
458
    GET_PARAMETER(0, numberedName + "->filename", &filename);

    if (filename != "") {
459
      std::vector< DOFVector<double>* > solutionList(nComponents);
460

461
      for (int i = 0; i < nComponents; i++) {
462
463
464
465
466
467
468
469
470
471
472
473
474
475
	TEST_EXIT(componentMeshes_[0] == componentMeshes_[i])
	  ("All Meshes have to be equal to write a vector file.\n");

	solutionList[i] = solution_->getDOFVector(i);
      }

      fileWriters_.push_back(NEW FileWriter(numberedName,
					    componentMeshes_[0],
					    solutionList));
    }


    // Create own filewriters for each components of the problem
    char number[10];
476
    for (int i = 0; i < nComponents; i++) {
477
      sprintf(number, "[%d]", i);
478
      numberedName  = name_ + "->output" + std::string(number);
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
      filename = "";
      GET_PARAMETER(0, numberedName + "->filename", &filename);

      if (filename != "") {
	fileWriters_.push_back(NEW FileWriter(numberedName, 
					      componentMeshes_[i], 
					      solution_->getDOFVector(i)));
      }
    }


    // Check for serializer
    int writeSerialization = 0;
    GET_PARAMETER(0, name_ + "->write serialization", "%d", &writeSerialization);
    if (writeSerialization) {
      MSG("Use are using the obsolete parameter: %s->write serialization\n", name_.c_str());
      MSG("Please use instead the following parameter: %s->output->write serialization\n", name_.c_str());
      ERROR_EXIT("Usage of an obsolete parameter (see message above)!\n");
    }

    GET_PARAMETER(0, name_ + "->output->write serialization", "%d", &writeSerialization);
    if (writeSerialization) {
      fileWriters_.push_back(NEW Serializer<ProblemVec>(this));
    }
  }

  void ProblemVec::doOtherStuff()
  {
  }

  void ProblemVec::solve(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("Problem::solve()");

    if (!solver_) {
      WARNING("no solver\n");
      return;
    }

#ifdef _OPENMP
    double wtime = omp_get_wtime();
#endif

    clock_t first = clock();
    int iter = solver_->solve(matVec_, solution_, rhs_, leftPrecon_, rightPrecon_);   
524
    
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
#ifdef _OPENMP
    INFO(info_, 8)("solution of discrete system needed %.5f seconds system time / %.5f seconds wallclock time\n",
		   TIME_USED(first, clock()),
		   omp_get_wtime() - wtime);
#else
    INFO(info_, 8)("solution of discrete system needed %.5f seconds\n",
		   TIME_USED(first, clock()));
#endif


    adaptInfo->setSolverIterations(iter);
    adaptInfo->setMaxSolverIterations(solver_->getMaxIterations());
    adaptInfo->setSolverTolerance(solver_->getTolerance());
    adaptInfo->setSolverResidual(solver_->getResidual());
  }

  void ProblemVec::estimate(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("ProblemVec::estimate()");

    clock_t first = clock();

547
548
549
550
#ifdef _OPENMP
    double wtime = omp_get_wtime();
#endif

551
    for (int i = 0; i < nComponents; i++) {
552
553
554
555
556
557
558
559
560
561
562
563
564
      Estimator *scalEstimator = estimator_[i];

      if (scalEstimator) {
	scalEstimator->estimate(adaptInfo->getTimestep());
	adaptInfo->setEstSum(scalEstimator->getErrorSum(), i);
	adaptInfo->setEstMax(scalEstimator->getErrorMax(), i);
	adaptInfo->setTimeEstSum(scalEstimator->getTimeEst(), i);
	adaptInfo->setTimeEstMax(scalEstimator->getTimeEstMax(), i);
      } else {
	WARNING("no estimator for component %d\n" , i);
      }
    }

565
566
567
568
569
570
571
572
573
574
#ifdef _OPENMP
    INFO(info_, 8)("estimation of the error needed %.5f seconds system time / %.5f seconds wallclock time\n",
		   TIME_USED(first, clock()),
		   omp_get_wtime() - wtime);
#else
    INFO(info_, 8)("estimation of the error needed %.5f seconds\n",
		   TIME_USED(first, clock()));

#endif

575
576
577
578
579
580
581
582
583
584
585
  }

  Flag ProblemVec::markElements(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("ProblemVec::markElements()");

    // to enforce albert-like behavior: refinement even if space tolerance
    // here is reached already because of time adaption
    allowFirstRefinement();

    Flag markFlag = 0;
586
    for (int i = 0; i < nComponents; i++) {
587
588
589
590
591
592
      if (marker_[i]) {
	markFlag |= marker_[i]->markMesh(adaptInfo, componentMeshes_[i]);
      } else {
	WARNING("no marker for component %d\n", i);
      }
    }
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
    return markFlag;
  }

  Flag ProblemVec::refineMesh(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("ProblemVec::refineMesh()");

    int numMeshes = static_cast<int>(meshes_.size());
    Flag refineFlag = 0;
    for (int i = 0; i < numMeshes; i++) {
      refineFlag |= refinementManager_->refineMesh(meshes_[i]);
    }
    return refineFlag;
  }

  Flag ProblemVec::coarsenMesh(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("ProblemVec::coarsenMesh()");

    int i, numMeshes = static_cast<int>(meshes_.size());
    Flag coarsenFlag = 0;
    for(i = 0; i < numMeshes; i++) {
      if(adaptInfo->isCoarseningAllowed(i)) {
	coarsenFlag |= coarseningManager_->coarsenMesh(meshes_[i]);

	WARNING("coarsening for component %d no allowed\n", i);
      }
    }
    return coarsenFlag;
  }

  Flag ProblemVec::oneIteration(AdaptInfo *adaptInfo, Flag toDo)
  {
    FUNCNAME("ProblemVec::oneIteration()");

    if (allowFirstRef_) {
630
      for (int i = 0; i < nComponents; i++) {
631
632
633
634
	adaptInfo->allowRefinement(true, i);
      }
      allowFirstRef_ = false;
    } else {
635
      for (int i = 0; i < nComponents; i++) {
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
	if (adaptInfo->spaceToleranceReached(i)) {
	  adaptInfo->allowRefinement(false, i);
	} else {
	  adaptInfo->allowRefinement(true, i);	
	}
      }
    }

    return StandardProblemIteration::oneIteration(adaptInfo, toDo);
  }

  void ProblemVec::buildAfterCoarsen(AdaptInfo *adaptInfo, Flag flag) 
  {
    FUNCNAME("ProblemVec::buildAfterCoarsen()");

    clock_t first = clock();

653
654
655
656
#ifdef _OPENMP
    double wtime = omp_get_wtime();
#endif

Thomas Witkowski's avatar
Thomas Witkowski committed
657
    for (int i = 0; i < static_cast<int>(meshes_.size()); i++) {
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
      meshes_[i]->dofCompress();
    }

    Flag assembleFlag = 
      flag | 
      (*systemMatrix_)[0][0]->getAssembleFlag() | 
      rhs_->getDOFVector(0)->getAssembleFlag()   |
      Mesh::CALL_LEAF_EL                        | 
      Mesh::FILL_COORDS                         |
      Mesh::FILL_DET                            |
      Mesh::FILL_GRD_LAMBDA |
      Mesh::FILL_NEIGH;

    if (useGetBound_) {
      assembleFlag |= Mesh::FILL_BOUND;
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
675

676
    for (int i = 0; i < nComponents; i++) {
677
678
679
680
681
      MSG("%d DOFs for %s\n", 
	  componentSpaces_[i]->getAdmin()->getUsedSize(), 
	  componentSpaces_[i]->getName().c_str());

      rhs_->getDOFVector(i)->set(0.0);
682
      for (int j = 0; j < nComponents; j++) {
683
684
685
686
687
688
689
	if ((*systemMatrix_)[i][j]) {
	  // The matrix should not be deleted, if it was assembled before
	  // and it is marked to be assembled only once.
	  if (!(assembleMatrixOnlyOnce_[i][j] && assembledMatrix_[i][j])) {
	    (*systemMatrix_)[i][j]->clear();
	  }
	}
690
691
692
      }
    }

693
694
695
696
    int i;
#ifdef _OPENMP
#pragma omp parallel for 
#endif
697
    for (i = 0; i < nComponents; i++) {
698
699
      const BasisFunction *basisFcts = componentSpaces_[i]->getBasisFcts();

700
      for (int j = 0; j < nComponents; j++) {
701
702
703
704
	// Only if this variable is true, the current matrix will be assembled.	
	bool assembleMatrix = true;
	// The DOFMatrix which should be assembled (or not, if assembleMatrix
	// will be set to false).
705
706
	DOFMatrix *matrix = (*systemMatrix_)[i][j];

707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
	// If the matrix was assembled before and it is marked to be assembled
	// only once, it will not be assembled.
	if (assembleMatrixOnlyOnce_[i][j] && assembledMatrix_[i][j]) {
	  assembleMatrix = false;
	}
	// If there is no DOFMatrix (e.g. if it is completly 0), do not assemble.
	if (!matrix) {
	  assembleMatrix = false;
	}

	// If the matrix should not be assembled, the rhs vector has to be considered.
	// This will be only done, if i == j. So, if both is not true, we can jump
	// to the next matrix.
	if (!assembleMatrix && i != j) {
	  continue;
	}

724
725
726
	if (assembleMatrix && matrix->getBoundaryManager())
	  matrix->getBoundaryManager()->initMatrix(matrix);

Thomas Witkowski's avatar
Thomas Witkowski committed
727
	
728
729
730
	if (componentMeshes_[i] != componentMeshes_[j]) {
	  ERROR_EXIT("not yet\n");
	} else {
731
732
	  BoundaryType *bound = NULL;
	  if (useGetBound_) {
733
	    bound = GET_MEMORY(BoundaryType, basisFcts->getNumber());
734
	  }
Thomas Witkowski's avatar
Thomas Witkowski committed
735
	  
Thomas Witkowski's avatar
Thomas Witkowski committed
736
737
	  TraverseStack stack;
	  ElInfo *elInfo = stack.traverseFirst(componentMeshes_[i], -1, assembleFlag);
738

739
	  while (elInfo) {
740
	    if (useGetBound_) {
741
	      basisFcts->getBound(elInfo, bound);
742
	    }
743

744
	    if (assembleMatrix) {
745
	      matrix->assemble(1.0, elInfo, bound);
746

747
748
	      if (matrix->getBoundaryManager()) {
		matrix->
Thomas Witkowski's avatar
Thomas Witkowski committed
749
		  getBoundaryManager()->
750
		  fillBoundaryConditions(elInfo, matrix);
751
	      }		      
752
	    }
753

754
755
756
	    if (i == j) {
	      rhs_->getDOFVector(i)->assemble(1.0, elInfo, bound);
	    }
Thomas Witkowski's avatar
Thomas Witkowski committed
757
	    
758
759
	    elInfo = stack.traverseNext(elInfo);
	  }
760
  
761
	  if (assembleMatrix && matrix->getBoundaryManager())
Thomas Witkowski's avatar
Thomas Witkowski committed
762
	  	    matrix->getBoundaryManager()->exitMatrix(matrix);	  
763
764

	  if (useGetBound_) {
765
	    FREE_MEMORY(bound, BoundaryType, basisFcts->getNumber());
Thomas Witkowski's avatar
Thomas Witkowski committed
766
	  }	  
767
	}
Thomas Witkowski's avatar
Thomas Witkowski committed
768
	
769
	assembledMatrix_[i][j] = true;
770
771
772
773
      }

      // fill boundary conditions
      if (rhs_->getDOFVector(i)->getBoundaryManager())
774
	rhs_->getDOFVector(i)->getBoundaryManager()->initVector(rhs_->getDOFVector(i));     
775
      
776
      if (solution_->getDOFVector(i)->getBoundaryManager())
777
      	solution_->getDOFVector(i)->getBoundaryManager()->initVector(solution_->getDOFVector(i));
778

Thomas Witkowski's avatar
Thomas Witkowski committed
779
780
      TraverseStack stack;
      ElInfo *elInfo = stack.traverseFirst(componentMeshes_[i], -1, assembleFlag);
781
      while (elInfo) {
782
	if (rhs_->getDOFVector(i)->getBoundaryManager())
783
784
	  rhs_->getDOFVector(i)->getBoundaryManager()->
	    fillBoundaryConditions(elInfo, rhs_->getDOFVector(i));
785
786

	if (solution_->getDOFVector(i)->getBoundaryManager())
787
788
789
790
	  solution_->getDOFVector(i)->getBoundaryManager()->
	    fillBoundaryConditions(elInfo, solution_->getDOFVector(i));
	elInfo = stack.traverseNext(elInfo);
      }
791
      
792
793
794
      if (rhs_->getDOFVector(i)->getBoundaryManager())
	rhs_->getDOFVector(i)->getBoundaryManager()->exitVector(rhs_->getDOFVector(i));
      if (solution_->getDOFVector(i)->getBoundaryManager())
Thomas Witkowski's avatar
Thomas Witkowski committed
795
      solution_->getDOFVector(i)->getBoundaryManager()->exitVector(solution_->getDOFVector(i));    
796
    }
797
798
799
800
801
802

#ifdef _OPENMP
    INFO(info_, 8)("buildAfterCoarsen needed %.5f seconds system time / %.5f seconds wallclock time\n",
		   TIME_USED(first, clock()),
		   omp_get_wtime() - wtime);
#else
803
    INFO(info_, 8)("buildAfterCoarsen needed %.5f seconds\n",
Thomas Witkowski's avatar
Thomas Witkowski committed
804
		   TIME_USED(first, clock()));
805
#endif
806
807
808
809
810
811
  }

  void ProblemVec::writeFiles(AdaptInfo *adaptInfo, bool force) 
  {
    FUNCNAME("ProblemVec::writeFiles()");

812
813
814
815
816
817
818
819
820
821
822
823
824
    clock_t first = clock();

#ifdef _OPENMP
    double wtime = omp_get_wtime();
#endif

    int i;
    int size = static_cast<int>(fileWriters_.size());
#ifdef _OPENMP
#pragma omp parallel for schedule(static, 1)
#endif
    for (i = 0; i < size; i++) {
      fileWriters_[i]->writeFiles(adaptInfo, force);
825
    }
826
827
828
829
830
831
832
833
834
    
#ifdef _OPENMP
    INFO(info_, 8)("writeFiles needed %.5f seconds system time / %.5f seconds wallclock time\n",
		   TIME_USED(first, clock()),
		   omp_get_wtime() - wtime);
#else
    INFO(info_, 8)("writeFiles needed %.5f seconds\n",
		   TIME_USED(first, clock()));
#endif
835
836
  }

Thomas Witkowski's avatar
Thomas Witkowski committed
837
838
839
840
841
842
843
  void ProblemVec::writeDelayedFiles()
  {
    for (int i = 0; i < static_cast<int>(fileWriters_.size()); i++) {
      fileWriters_[i]->writeDelayedFiles();
    }
  }

Thomas Witkowski's avatar
Thomas Witkowski committed
844
845
846
847
848
849
850
851
852
853
  bool ProblemVec::existsDelayedCalculation()
  {
    for (int i = 0; i < static_cast<int>(fileWriters_.size()); i++) {
      if (fileWriters_[i]->isWritingDelayed())
	return true;   
    }

    return false;
  }

854
  void ProblemVec::interpolInitialSolution(std::vector<AbstractFunction<double, WorldVector<double> >*> *fct) 
855
856
857
858
859
860
861
862
863
864
865
866
867
  {
    FUNCNAME("ProblemVec::interpolInitialSolution()");

    solution_->interpol(fct);
  }

  void ProblemVec::addMatrixOperator(Operator *op, 
				     int i, int j,
				     double *factor,
				     double *estFactor)
  {
    FUNCNAME("ProblemVec::addMatrixOperator()");

868
    if (!(*systemMatrix_)[i][j]) {
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
      TEST_EXIT(i != j)("should have been created already\n");
      (*systemMatrix_)[i][j] = NEW DOFMatrix(componentSpaces_[i],
					     componentSpaces_[j],
					     "");
      (*systemMatrix_)[i][j]->setCoupleMatrix(true);

      (*systemMatrix_)[i][j]->getBoundaryManager()->
	setBoundaryConditionMap((*systemMatrix_)[i][i]->getBoundaryManager()->
				getBoundaryConditionMap());
    }    
    (*systemMatrix_)[i][j]->addOperator(op, factor, estFactor);
  }

  void ProblemVec::addVectorOperator(Operator *op, int i,
				     double *factor,
				     double *estFactor)
  {
    FUNCNAME("ProblemVec::addVectorOperator()");

    rhs_->getDOFVector(i)->addOperator(op, factor, estFactor);
  }

  void ProblemVec::addDirichletBC(BoundaryType type, int system,
				  AbstractFunction<double, WorldVector<double> >* b)
  {
    FUNCNAME("ProblemVec::addDirichletBC()");

    DirichletBC *dirichlet = new DirichletBC(type, 
					     b, 
					     componentSpaces_[system]);
899
    for (int i = 0; i < nComponents; i++) {
900
901
902
903
      if (systemMatrix_ && (*systemMatrix_)[system][i]) {
	(*systemMatrix_)[system][i]->getBoundaryManager()->addBoundaryCondition(dirichlet);
      }
    }
904

905
906
    if (rhs_)
      rhs_->getDOFVector(system)->getBoundaryManager()->addBoundaryCondition(dirichlet);
907

908
909
910
911
912
913
914
915
916
917
918
919
920
    if (solution_)
      solution_->getDOFVector(system)->getBoundaryManager()->addBoundaryCondition(dirichlet);
  }

  void ProblemVec::addNeumannBC(BoundaryType type, int row, int col, 
				AbstractFunction<double, WorldVector<double> > *n)
  {
    FUNCNAME("ProblemVec::addNeumannBC()");

    NeumannBC *neumann = 
      new NeumannBC(type, n, 
		    componentSpaces_[row], 
		    componentSpaces_[col]);
921
    if (rhs_)
922
923
924
925
926
927
928
929
930
931
932
933
934
      rhs_->getDOFVector(row)->getBoundaryManager()->addBoundaryCondition(neumann);
  }

  void ProblemVec::addRobinBC(BoundaryType type, int row, int col, 
			      AbstractFunction<double, WorldVector<double> > *n,
			      AbstractFunction<double, WorldVector<double> > *r)
  {
    FUNCNAME("ProblemVec::addRobinBC()");

    RobinBC *robin = 
      new RobinBC(type, n, r, 
		  componentSpaces_[row], 
		  componentSpaces_[col]);
935
    if (rhs_)
936
      rhs_->getDOFVector(row)->getBoundaryManager()->addBoundaryCondition(robin);
937
938

    if (systemMatrix_ && (*systemMatrix_)[row][col]) {
939
940
941
942
943
944
945
946
947
948
949
950
      (*systemMatrix_)[row][col]->getBoundaryManager()->addBoundaryCondition(robin);
    }
  }

  void ProblemVec::addPeriodicBC(BoundaryType type, int row, int col) 
  {
    FUNCNAME("ProblemVec::addPeriodicBC()");

    FiniteElemSpace *feSpace = componentSpaces_[row];

    PeriodicBC *periodic = new PeriodicBC(type, feSpace);

951
    if (systemMatrix_ && (*systemMatrix_)[row][col]) 
952
      (*systemMatrix_)[row][col]->getBoundaryManager()->addBoundaryCondition(periodic);
953
954

    if (rhs_) 
955
956
957
958
      rhs_->getDOFVector(row)->getBoundaryManager()->
	addBoundaryCondition(periodic);
  }

959
  void ProblemVec::writeResidualMesh(AdaptInfo *adaptInfo, const std::string name)
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
  {
    FUNCNAME("ProblemVec::writeResidualMesh()");

    Mesh *mesh = this->getMesh(0);
    FiniteElemSpace *fe = this->getFESpace(0);
    
    std::map<int, double> vec;
    
    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(mesh,
					 -1, 
					 Mesh::CALL_LEAF_EL | 
					 Mesh::FILL_COORDS);
    
    while (elInfo) {		  
      Element *el = elInfo->getElement();
      double lError = el->getEstimation(0);
      
      vec[elInfo->getElement()->getIndex()] = lError;
      elInfo = stack.traverseNext(elInfo);
    }
    
    ElementFileWriter fw(name, mesh, fe, vec);
    fw.writeFiles(adaptInfo, true);    
  }

986
  void ProblemVec::serialize(std::ostream &out) 
987
988
989
990
991
992
993
994
995
996
997
998
  {
    FUNCNAME("ProblemVec::serialize()");

    SerializerUtil::serializeBool(out, &allowFirstRef_);
    
    for (int i = 0; i < static_cast<int>(meshes_.size()); i++) {
      meshes_[i]->serialize(out);
    }

    solution_->serialize(out);
  }

999
  void ProblemVec::deserialize(std::istream &in) 
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
  {
    FUNCNAME("ProblemVec::deserialize()");

    SerializerUtil::deserializeBool(in, &allowFirstRef_);

    for (int i = 0; i < static_cast<int>(meshes_.size()); i++) {
      meshes_[i]->deserialize(in);
    }

    solution_->deserialize(in);
  }
}