Element.h 17.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
// ============================================================================
// ==                                                                        ==
// == AMDiS - Adaptive multidimensional simulations                          ==
// ==                                                                        ==
// ============================================================================
// ==                                                                        ==
// ==  crystal growth group                                                  ==
// ==                                                                        ==
// ==  Stiftung caesar                                                       ==
// ==  Ludwig-Erhard-Allee 2                                                 ==
// ==  53175 Bonn                                                            ==
// ==  germany                                                               ==
// ==                                                                        ==
// ============================================================================
// ==                                                                        ==
// ==  http://www.caesar.de/cg/AMDiS                                         ==
// ==                                                                        ==
// ============================================================================

/** \file Element.h */

#ifndef AMDIS_ELEMENT_H
#define AMDIS_ELEMENT_H

// ============================================================================
// ===== includes =============================================================
// ============================================================================

#include "Global.h"
#include "RefinementManager.h"
#include "Serializable.h"
#include "ElementData.h"
#include "LeafData.h"

namespace AMDiS {

  // ============================================================================
  // ===== forward declarations =================================================
  // ============================================================================

  class Mesh;
  class DOFAdmin;
  template<typename T> class WorldVector;
  class CoarseningManager;

  template<typename T, GeoIndex d> class FixVec;

#define AMDIS_UNDEFINED  5

  // ============================================================================
  // ===== class Element ========================================================
  // ============================================================================

  /** \ingroup Triangulation 
   * \brief
   * Base class for Line, Triangle, Tetrahedron
   *
   * Elements in AMDiS are always simplices (a simplex is a Line in 1d, a 
   * Triangle in 2d and a Tetrahedron in 3d). 
   * We restrict ourselves here to simplicial meshes, for several reasons:
   * -# A simplex is one of the most simple geometric types and complex domains 
   *    may be approximated by a set of simplices quite easily.
   * -# Simplicial meshes allow local refinement without the need of 
   *    nonconforming meshes (hanging nodes), parametric elements, or mixture of
   *    element types (which is the case for quadrilateral meshes).
   * -# Polynomials of any degree are easily represented on a simplex using 
   *    local (barycentric) coordinates.
   *
   * A Line element and its refinement:
   *
   * <img src="line.png">
   *
   * A Triangle element and its refinement:
   *
   * <img src="triangle.png">
   *
   * A Tetrahedron element and its refinements:
   *
   * <img src="tetrahedron.png">
   */
  class Element : public Serializable
  {
  private:
    /** \brief
     * private standard constructor because an Element must know his Mesh
     */
87
    Element() {}
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  public:
    /** \brief
     * constructs an Element which belongs to Mesh
     */
    Element(Mesh *);

    /** \brief
     * copy constructor
     */
    Element(const Element& old);

    /** \brief
     * destructor
     */ 
    virtual ~Element();

104 105
    void deleteElementDOFs();

106 107 108 109 110 111
    /** \brief
     * Clone this Element and return a reference to it. Because also the DOFs
     * are cloned, \ref Mesh::serializedDOfs must be used.
     */
    Element* cloneWithDOFs();

112 113 114 115 116 117 118 119 120
    // ===== getting methods ======================================================

    /** \name getting methods
     * \{
     */

    /** \brief
     * Returns \ref child[0]
     */
121
    inline Element* getFirstChild() const {
122
      return child[0];
123
    }
124 125 126 127

    /** \brief
     * Returns \ref child[1]
     */
128
    inline Element* getSecondChild() const {
129
      return child[1];
130
    }
131 132 133 134

    /** \brief
     * Returns \ref child[i], i=0,1
     */
135
    inline Element* getChild(int i) const {
136
      TEST_EXIT_DBG(i==0 || i==1)("i must be 0 or 1\n");
137
      return child[i];
138
    }
139 140 141 142 143

    /** \brief
     * Returns true if Element is a leaf element (\ref child[0] == NULL), returns
     * false otherwise.
     */
144
    inline const bool isLeaf() const { 
145
      return (child[0] == NULL); 
146
    }
147 148 149 150

    /** \brief
     * Returns \ref dof[i][j] which is the j-th DOF of the i-th node of Element.
     */
151 152
    const DegreeOfFreedom getDOF(int i, int j) const { 
      return dof[i][j];
153
    }
154 155 156 157

    /** \brief
     * Returns \ref dof[i] which is a pointer to the DOFs of the i-th node.
     */
158 159
    const DegreeOfFreedom* getDOF(int i) const {
      return dof[i];
160
    }
161 162 163 164 165 166

    /** \brief
     * Returns a pointer to the DOFs of this Element
     */
    const DegreeOfFreedom** getDOF() const {
      return const_cast<const DegreeOfFreedom**>(dof);
167
    }
168 169 170 171

    /** \brief
     * Returns \ref mesh of Element
     */
172 173
    inline Mesh* getMesh() const { 
      return mesh; 
174
    }
175 176 177 178 179 180 181

    /** \brief
     * Returns \ref elementData's error estimation, if Element is a leaf element
     * and has leaf data. 
     */
    inline double getEstimation(int row) const
    {
182
      if (isLeaf()) {
183
	TEST_EXIT_DBG(elementData)("leaf element without leaf data\n");
184
	ElementData *ld = elementData->getElementData(ESTIMATABLE);
185
	TEST_EXIT_DBG(ld)("leaf data not estimatable!\n");
186

187 188 189 190
	return dynamic_cast<LeafDataEstimatableInterface*>(ld)->getErrorEstimate(row);
      }	
      
      return 0.0;
191
    }
192 193 194 195 196 197

    /** \brief
     * Returns Element's coarsening error estimation, if Element is a leaf 
     * element and if it has leaf data and if this leaf data are coarsenable.
     */
    inline double getCoarseningEstimation(int row) {
198
      if (isLeaf()) {
199
	TEST_EXIT_DBG(elementData)("leaf element without leaf data\n");
200
	ElementData *ld = elementData->getElementData(COARSENABLE);
201
	TEST_EXIT_DBG(ld)("element data not coarsenable!\n");
202

203
	return dynamic_cast<LeafDataCoarsenableInterface*>(ld)->getCoarseningErrorEstimate(row);
204
      }
205 206
      
      return 0.0;
207
    }
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

    /** \brief
     * Returns region of element if defined, -1 else.
     */
    int getRegion() const;

    /** \brief
     * Returns local vertex number of the j-th vertex of the i-th edge
     */
    virtual int getVertexOfEdge(int i, int j) const = 0; 

    /** \brief
     * Returns local vertex number of the vertexIndex-th vertex of the
     * positionIndex-th part of type position (vertex, edge, face)
     */
    virtual int getVertexOfPosition(GeoIndex position,
224 225
				    int positionIndex,
				    int vertexIndex) const = 0;
226

227 228 229
    /** \brief
     *
     */
230 231
    virtual int getPositionOfVertex(int side, int vertex) const = 0;

232 233 234
    /** \brief
     *
     */
235 236 237 238 239 240 241 242 243 244 245 246
    virtual int getEdgeOfFace(int face, int edge) const = 0;

    /** \brief
     * Returns the number of parts of type i in this element
     */
    virtual int getGeo(GeoIndex i) const = 0;

    /** \brief
     * Returns Element's \ref mark
     */
    inline const signed char getMark() const { 
      return mark;
247
    }
248 249 250 251 252 253 254 255 256 257 258

    /** \brief
     * Returns \ref newCoord[i]
     */
    double getNewCoord(int j) const;

    /** \brief
     * Returns Element's \ref index
     */
    inline int getIndex() const { 
      return index; 
259
    }
260 261 262 263 264 265

    /** \brief
     * Returns \ref newCoord
     */
    inline WorldVector<double>* getNewCoord() const { 
      return newCoord; 
266
    }
267 268 269 270 271 272 273 274 275 276 277 278

    /** \} */

    // ===== setting methods ======================================================

    /** \name setting methods
     * \{
     */

    /** \brief
     * Sets \ref child[0]
     */
279 280
    virtual void setFirstChild(Element *aChild) {
      child[0] = aChild;
281
    }
282 283 284 285

    /** \brief
     * Sets \ref child[1]
     */
286 287
    virtual void setSecondChild(Element *aChild) {
      child[1] = aChild;
288
    }
289 290 291 292

    /** \brief
     * Sets \ref elementData of Element
     */
293 294
    void setElementData(ElementData* ed) {
      elementData = ed;
295
    }
296 297 298 299 300

    /** \brief
     * Sets \ref newCoord of Element. Needed by refinement, if Element has a
     * boundary edge on a curved boundary.
     */
301 302
    inline void setNewCoord(WorldVector<double>* coord) {
      newCoord = coord;
303
    }
304 305 306 307

    /** \brief
     * Sets \ref mesh.
     */
308 309
    inline void setMesh(Mesh *m) {
      mesh = m;
310
    }
311 312 313 314

    /** \brief
     * Sets the pointer to the DOFs of the i-th node of Element
     */
315 316 317
    DegreeOfFreedom* setDOF(int pos, DegreeOfFreedom* p) {
      dof[pos] = p;
      return dof[pos];
318
    }
319 320 321 322 323 324 325

    /** \brief
     * Checks whether Element is a leaf element and whether it has leaf data.
     * If the checks don't fail, leaf data's error estimation is set to est.
     */
    inline void setEstimation(double est, int row)
    {
326
      if (isLeaf()) {
327
	TEST_EXIT_DBG(elementData)("leaf element without leaf data\n");
328
	ElementData *ld = elementData->getElementData(ESTIMATABLE);
329
	TEST_EXIT_DBG(ld)("leaf data not estimatable\n");
330 331 332

	dynamic_cast<LeafDataEstimatableInterface*>(ld)->
	  setErrorEstimate(row, est);
333
      } else {
334 335
	ERROR_EXIT("setEstimation only for leaf elements!\n");
      }
336
    }
337 338 339 340 341 342 343

    /** \brief
     * Sets Element's coarsening error estimation, if Element is a leaf element
     * and if it has leaf data and if this leaf data are coarsenable.
     */
    inline void setCoarseningEstimation(double est, int row)
    {
344
      if (isLeaf()) {
345
	TEST_EXIT_DBG(elementData)("leaf element without leaf data\n");
346
	ElementData *ld = elementData->getElementData(COARSENABLE);
347
	TEST_EXIT_DBG(ld)("leaf data not coarsenable\n");
348 349 350

	dynamic_cast<LeafDataCoarsenableInterface*>(ld)->
	  setCoarseningErrorEstimate(row, est);
351
      } else {
352 353
	ERROR_EXIT("setEstimation only for leaf elements!\n");
      }
354
    }
355 356 357 358

    /** \brief
     * Sets Elements \ref mark = mark + 1;
     */
359 360 361
    inline void incrementMark() {
      mark++;
    }
362 363 364 365

    /** \brief
     * Sets Elements \ref mark = mark - 1;
     */
366 367 368
    inline void decrementMark() {
      if (0 < mark) 
	mark--;
369
    }
370 371 372 373

    /** \brief
     * Sets Element's \ref mark
     */
374 375
    inline void setMark(signed char m) {
      mark = m;
376
    }
377 378 379 380 381 382 383 384 385 386 387 388 389 390

    /** \} */

    // ===== pure virtual methods =================================================

    /** \name pure virtual methods 
     * \{ 
     */

    /** \brief
     * orient the vertices of edges/faces.
     * Used by Estimator for the jumps => same quadrature nodes from both sides!
     */
    virtual const FixVec<int,WORLD>& 
391
      sortFaceIndices(int face, FixVec<int,WORLD> *vec) const = 0;
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

    /** \brief
     * Returns a copy of itself. Needed by Mesh to create Elements by a
     * prototype. 
     */ 
    virtual Element *clone() = 0;

    /** \brief
     * Returns which side of child[childnr] corresponds to side sidenr of 
     * this Element. If the child has no corresponding
     * side, the return value is negative. *isBisected is true after the
     * function call, if the side of the child is only a part of element's 
     * side, false otherwise. 
     */
    virtual int getSideOfChild(int childnr, int sidenr, int elType = 0) const = 0;

    /** \brief
     * Returns which vertex of elements parent corresponds to the vertexnr of
     * the element, if the element is the childnr-th child of the parent.
     * If the vertex is the ner vertex at the refinement edge, -1 is returned.
     */
    virtual int getVertexOfParent(int childnr, int vertexnr, int elType = 0) const = 0;

    /** \brief
     * Returns whether Element is a Line
     */
    virtual bool isLine() const = 0;

    /** \brief
     * Returns whether Element is a Triangle
     */
    virtual bool isTriangle() const = 0;

    /** \brief
     * Returns whether Element is a Tetrahedron
     */
    virtual bool isTetrahedron() const = 0;

    /** \brief
     * Returns whether Element has sideElem as one of its sides.
     */
    virtual bool hasSide(Element *sideElem) const = 0;

    /** \} */

    // ===== other public methods =================================================

    /** \brief
     * assignment operator
     */
442
    Element& operator=(const Element& el);
443 444 445 446 447 448 449 450 451 452

    /** \brief
     * Checks whether the face with vertices dof[0],..,dof[DIM-1] is
     * part of mel's boundary. returns the opposite vertex if true, -1 else
     */
    int oppVertex(FixVec<DegreeOfFreedom*, DIMEN> pdof) const;

    /** \brief
     * Refines Element's leaf data
     */
453 454 455 456
    inline void refineElementData(Element* child1, Element* child2, int elType = 0) {
      if (elementData) {
	bool remove = elementData->refineElementData(this, child1, child2, elType);
	if (remove) {
457 458 459 460 461
	  ElementData *tmp = elementData->getDecorated();
	  DELETE elementData;
	  elementData = tmp;
	}
      }
462
    }
463 464 465 466 467 468 469

    /** \brief
     * Coarsens Element's leaf data
     */
    inline void coarsenElementData(Element* child1, Element* child2, int elType=0) {
      ElementData *childData;
      childData = child1->getElementData();
470
      if (childData) {
471 472 473 474 475
	childData->coarsenElementData(this, child1, child2, elType);
	DELETE childData;
	child1->setElementData(NULL);
      }
      childData = child2->getElementData();
476
      if (childData) {
477 478 479 480
	childData->coarsenElementData(this, child2, child1, elType);
	DELETE childData;
	child2->setElementData(NULL);
      }
481
    }
482 483 484 485 486 487

    /** \brief
     * Returns pointer to \ref elementData
     */
    inline ElementData* getElementData() const {
      return elementData;
488
    }
489

490 491 492
    /** \brief
     *
     */
493
    inline ElementData* getElementData(int typeID) const {
494
      if (elementData) {
495 496 497
	return elementData->getElementData(typeID);
      }
      return NULL;
498
    }
499 500 501 502 503 504

    /** \brief
     * kills \ref elementData
     */
    bool deleteElementData(int typeID) {
      FUNCNAME("Element::deleteElementData()");
505 506
      if (elementData) {
	if (elementData->isOfType(typeID)) {
507 508 509 510 511 512 513 514 515
	  ElementData *tmp = elementData;
	  elementData = elementData->getDecorated();
	  DELETE tmp;
	  return true;
	} else {
	  return elementData->deleteDecorated(typeID);
	}
      }
      return false;
516
    }
517 518 519 520 521 522 523 524

    /** \brief
     * Returns whether element is refined at side side
     * el1, el2 are the corresponding children. 
     * (not neccessarly the direct children!)
     * elementTyp is the type of this element (comes from ElInfo)
     */
    bool isRefinedAtSide(int side, Element *el1, Element *el2, 
525
			 unsigned char elementTyp = 255);
526 527 528 529

    /** \brief
     * Returns whether Element's \ref newCoord is set
     */
530 531
    inline bool isNewCoordSet() const { 
      return (newCoord != NULL);
532
    }
533 534 535 536 537 538 539 540

    /** \brief
     * Frees memory for \ref newCoord
     */
    void eraseNewCoord();

    // ===== Serializable implementation =====
  
541
    void serialize(std::ostream &out);
542

543
    void deserialize(std::istream &in);
544

545 546
    int calcMemoryUsage();

547 548 549 550 551 552 553 554 555 556
    // ===== protected methods ====================================================
  protected:
    /** \brief
     * Sets Element's \ref dof pointer. Used by friend class Mesh.
     */
    void setDOFPtrs();
  
    /** \brief
     * Sets Element's \ref index. Used by friend class Mesh.
     */
557 558
    inline void setIndex(int i) {
      index = i;
559
    }
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

    /** \brief
     * Used by friend class Mesh while dofCompress
     */
    void newDOFFct1(const DOFAdmin*);

    /** \brief
     * Used by friend class Mesh while dofCompress
     */
    void newDOFFct2(const DOFAdmin*);

  protected:
    /** \brief
     * Pointers to the two children of interior elements of the tree. Pointers
     * to NULL for leaf elements.
     */
576
    Element *child[2];
577 578 579 580 581

    /** \brief
     * Vector of pointers to DOFs. These pointers must be available for elements
     * vertices (for the geometric description of the mesh). There my be pointers
     * for the edges, for faces and for the center of an element. They are 
582 583 584
     * ordered the following way: The first N_VERTICES entries correspond to the
     * DOFs at the vertices of the element. The next ones are those at the edges,
     * if present, then those at the faces, if present, and then those at the 
585 586
     * barycenter, if present.
     */
587
    DegreeOfFreedom **dof;
588 589 590 591 592 593

    /** \brief
     * Unique global index of the element. these indices are not strictly ordered
     * and may be larger than the number of elements in the binary tree (the list
     * of indices may have holes after coarsening).
     */
594
    int index;
595 596 597 598 599 600

    /** \brief
     * Marker for refinement and coarsening. if mark is positive for a leaf
     * element, this element is refined mark times. if mark is negative for
     * a leaf element, this element is coarsened -mark times.
     */
601
    signed char mark;
602 603 604 605 606
 
    /** \brief
     * If the element has a boundary edge on a curved boundary, this is a pointer
     * to the coordinates of the new vertex that is created due to the refinement
     * of the element, otherwise it is a NULL pointer. Thus coordinate 
607 608
     * information can be also produced by the traversal routines in the case of 
     * curved boundary.
609 610 611 612 613 614
     */
    WorldVector<double> *newCoord;

    /** \brief
     * Pointer to the Mesh this element belongs to
     */
615
    Mesh* mesh;
616 617 618 619

    /** \brief
     * Pointer to Element's leaf data
     */
620
    ElementData* elementData;
621 622 623 624 625 626 627 628 629 630



    friend class Mesh;
  };

}

#endif  // AMDIS_ELEMENT_H