ElementObjectData.h 17.3 KB
Newer Older
Thomas Witkowski's avatar
Thomas Witkowski committed
1
2
3
4
// ============================================================================
// ==                                                                        ==
// == AMDiS - Adaptive multidimensional simulations                          ==
// ==                                                                        ==
5
// ==  http://www.amdis-fem.org                                              ==
Thomas Witkowski's avatar
Thomas Witkowski committed
6
7
// ==                                                                        ==
// ============================================================================
8
9
10
11
12
13
14
15
16
17
18
19
//
// Software License for AMDiS
//
// Copyright (c) 2010 Dresden University of Technology 
// All rights reserved.
// Authors: Simon Vey, Thomas Witkowski et al.
//
// This file is part of AMDiS
//
// See also license.opensource.txt in the distribution.


Thomas Witkowski's avatar
Thomas Witkowski committed
20
21
22
23
24
25
26
27
28
29
30
31
32

/** \file ElementObjectData.h */

#ifndef AMDIS_ELEMENTOBJECTDATA_H
#define AMDIS_ELEMENTOBJECTDATA_H

#include <map>
#include <vector>
#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_comparison.hpp>

#include "Global.h"
#include "Boundary.h"
33
#include "Serializer.h"
34
#include "FiniteElemSpace.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
35
36
37

namespace AMDiS {

38
39
  using namespace std;

40
  /// Just to templatize the typedef.
41
  template<typename T>
42
  struct PerBoundMap {
43
44
45
46
    typedef map<pair<T, T>, BoundaryType> type;
    typedef typename type::iterator iterator;
  };

47
48

  /// Defines one element object. This may be either a vertex, edge or face.
Thomas Witkowski's avatar
Thomas Witkowski committed
49
  struct ElementObjectData {
50
    ElementObjectData(int a = -1, int b = 0)
Thomas Witkowski's avatar
Thomas Witkowski committed
51
      : elIndex(a),
52
	ithObject(b)
Thomas Witkowski's avatar
Thomas Witkowski committed
53
    {}
54
55

    /// Index of the element this object is part of.
Thomas Witkowski's avatar
Thomas Witkowski committed
56
57
    int elIndex;
    
58
    /// Index of the object within the element.
Thomas Witkowski's avatar
Thomas Witkowski committed
59
60
    int ithObject;
    
61
    /// Write this element object to disk.
62
    void serialize(ostream &out) const
63
64
65
66
67
    {
      SerUtil::serialize(out, elIndex);
      SerUtil::serialize(out, ithObject);
    }

68
    /// Read this element object from disk.
69
    void deserialize(istream &in)
70
71
72
73
74
    {
      SerUtil::deserialize(in, elIndex);
      SerUtil::deserialize(in, ithObject);
    }

75
    /// Compare this element object with another one.
76
77
    bool operator==(ElementObjectData& cmp) const
    {
78
      return (elIndex == cmp.elIndex && ithObject == cmp.ithObject);
79
80
    }

81
    /// Define a strict order on element objects.
82
83
    bool operator<(const ElementObjectData& rhs) const
    {
84
85
      return (elIndex < rhs.elIndex || 
	      (elIndex == rhs.elIndex && ithObject < rhs.ithObject));
86
    }
Thomas Witkowski's avatar
Thomas Witkowski committed
87
88
89
90
  };



91
92
93
94
95
96
97
98
99
100
  /** \brief
   * This class is a database of element objects. An element object is either a
   * vertex, edge or the face of a specific element. This database is used to store
   * all objects of all elements of a mesh. The information is stored in a way that
   * makes it possible to identify all elements, which have a given vertex, edge or
   * face in common. If is is known which element is owned by which rank in parallel
   * computations, it is thus possible to get all interior boundaries on object 
   * level. This is required, because two elements may share a common vertex without
   * beging neighbours in the definition of AMDiS.
   */
Thomas Witkowski's avatar
Thomas Witkowski committed
101
102
  class ElementObjects {
  public:
Thomas Witkowski's avatar
Thomas Witkowski committed
103
    ElementObjects()
104
      : mesh(NULL),
105
	iterGeoPos(CENTER)
Thomas Witkowski's avatar
Thomas Witkowski committed
106
107
    {}

108

109
110
    /// Set the mesh that should be used for the database.
    void setMesh(Mesh *m)
Thomas Witkowski's avatar
Thomas Witkowski committed
111
    {
112
      mesh = m;
113
114
115
    }


116
117
118
119
120
121
122
123
124
125
126
127
128
    /** \brief
     * Adds an element to the object database. If the element is part of a periodic
     * boundary, all information about subobjects of the element on this boundary
     * are collected.
     *
     * \param[in]  elInfo    ElInfo object of the element. 
     */
    void addElement(ElInfo *elInfo);


    /** \brief
     * Creates final data of the periodic boundaries. Must be called after all
     * elements of the mesh are added to the object database. Then this functions
129
130
131
132
133
     * search for indirectly connected vertices in periodic boundaries. This is
     * only the case, if there are more than one boundary conditions. Then, e.g., 
     * in 2D, all edges of a square are iterectly connected. In 3D, if the macro 
     * mesh is a box, all eight vertex nodes and always four of the 12 edges are 
     * indirectly connected.
134
     */
135
    void createPeriodicData(const FiniteElemSpace *feSpace);
136
137
138
139
140
141
142
143
144
145


    /** \brief
     * Create for a filled object database the membership information for all element
     * objects. An object is owned by a rank, if the rank has the heighest rank
     * number of all ranks where the object is part of.
     *
     * \param[in]  macroElementRankMap   Maps to each macro element of the mesh the
     *                                   rank that owns this macro element.
     */
146
    void createRankData(map<int, int>& macroElementRankMap);
Thomas Witkowski's avatar
Thomas Witkowski committed
147

148
149
150
151
152
153
154
155
156
157
158
159
160
    /** \brief
     * Creates on all boundaries the reverse mode flag.
     *
     * \param[in] feSpace         An arbitrary FE space defined on the mesh. 
     *                            Is used to get the orientation of the DOFs on 
     *                            elements.
     * \param[in] elIndexMap      Maps an element index to the pointer to the 
     *                            element.
     * \param[in] elIndexTypeMap  Maps an element index to its type id (only
     *                            relevant in 3D).
     */
    void createReverseModeData(const FiniteElemSpace* feSpace,
			       map<int, Element*> &elIndexMap,
161
162
			       map<int, int> &elIndexTypeMap);

163

164
165
166
167
168
169
170
171
    /** \brief
     * Iterates over all elements for one geometrical index, i.e., over all vertices,
     * edges or faces in the mesh. The function returns true, if the result is valid.
     * Otherwise the iterator is at the end position.
     *
     * \param[in]  pos   Must be either VERTEX, EDGE or FACE and defines the elements
     *                   that should be traversed.
     */
Thomas Witkowski's avatar
Thomas Witkowski committed
172
173
    bool iterate(GeoIndex pos)
    {
174
175
176
      // CENTER marks the variable "iterGeoPos" to be in an undefined state. I.e.,
      // there is no iteration that is actually running.

Thomas Witkowski's avatar
Thomas Witkowski committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
      if (iterGeoPos == CENTER) {
	iterGeoPos = pos;
	switch (iterGeoPos) {
	case VERTEX:
	  vertexIter = vertexInRank.begin();
	  break;
	case EDGE:
	  edgeIter = edgeInRank.begin();
	  break;
	case FACE:
	  faceIter = faceInRank.begin();
	  break;
	default:
	  ERROR_EXIT("Not GeoIndex %d!\n", iterGeoPos);
	}
      } else {
	switch (iterGeoPos) {
	case VERTEX:
	  ++vertexIter;
	  break;
	case EDGE:
	  ++edgeIter;
	  break;
	case FACE:
	  ++faceIter;
	  break;
	default:
	  ERROR_EXIT("Not GeoIndex %d!\n", iterGeoPos);
	}
      }

      switch (iterGeoPos) {
      case VERTEX:
	if (vertexIter == vertexInRank.end()) {
	  iterGeoPos = CENTER;
	  return false;
	}
	break;
      case EDGE:
	if (edgeIter == edgeInRank.end()) {
	  iterGeoPos = CENTER;
	  return false;
	}
	break;
      case FACE:
	if (faceIter == faceInRank.end()) {
	  iterGeoPos = CENTER;
	  return false;
	}
	break;
      default:
	ERROR_EXIT("Should not happen!\n");	
      }

      return true;
    }


235
    /// Returns the data of the current iterator position.
236
    map<int, ElementObjectData>& getIterateData()
Thomas Witkowski's avatar
Thomas Witkowski committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    {
      switch (iterGeoPos) {
      case VERTEX:
	return vertexIter->second;
	break;
      case EDGE:
	return edgeIter->second;
	break;
      case FACE:
	return faceIter->second;
	break;
      default:
	ERROR_EXIT("Should not happen!\n");

	// Will never be reached, just to avoid compiler warnings.
	return faceIter->second;
      }
    }


257
    /// Returns the rank owner of the current iterator position.
Thomas Witkowski's avatar
Thomas Witkowski committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    int getIterateOwner()
    {
      switch (iterGeoPos) {
      case VERTEX:
	return vertexOwner[vertexIter->first];
	break;
      case EDGE:
	return edgeOwner[edgeIter->first];
	break;
      case FACE:
	return faceOwner[faceIter->first];
	break;
      default:
	ERROR_EXIT("Should not happen!\n");

	// Will never be reached, just to avoid compiler warnings.
	return -1;
      }
    }

278

279
    /// Returns the rank owner of a vertex DOF.
Thomas Witkowski's avatar
Thomas Witkowski committed
280
281
282
283
284
    int getOwner(DegreeOfFreedom vertex)
    {
      return vertexOwner[vertex];
    }

285
    /// Returns the rank owner of an edge.
Thomas Witkowski's avatar
Thomas Witkowski committed
286
287
288
289
290
    int getOwner(DofEdge edge)
    {
      return edgeOwner[edge];
    }

291
    /// Returns the rank owner of an face.
Thomas Witkowski's avatar
Thomas Witkowski committed
292
293
294
295
296
    int getOwner(DofFace face)
    {
      return faceOwner[face];
    }

297

298
    /// Checks if a given vertex DOF is in a given rank.
299
300
301
302
303
    int isInRank(DegreeOfFreedom vertex, int rank)
    {
      return (vertexInRank[vertex].count(rank));
    }

304
    /// Checks if a given edge is in a given rank.
305
306
307
308
309
    int isInRank(DofEdge edge, int rank)
    {
      return (edgeInRank[edge].count(rank));
    }

310
    /// Checks if a given face is in a given rank.
311
312
313
314
315
316
    int isInRank(DofFace face, int rank)
    {
      return (faceInRank[face].count(rank));
    }


317
    /// Returns a vector with all macro elements that have a given vertex DOF in common.
318
    vector<ElementObjectData>& getElements(DegreeOfFreedom vertex)
Thomas Witkowski's avatar
Thomas Witkowski committed
319
320
321
322
    {
      return vertexElements[vertex];
    }

323
    /// Returns a vector with all macro elements that have a given edge in common.
324
    vector<ElementObjectData>& getElements(DofEdge edge)
Thomas Witkowski's avatar
Thomas Witkowski committed
325
326
327
328
    {
      return edgeElements[edge];
    }

329
    /// Returns a vector with all macro elements that have a given face in common.
330
    vector<ElementObjectData>& getElements(DofFace face)
Thomas Witkowski's avatar
Thomas Witkowski committed
331
332
333
334
    {
      return faceElements[face];
    }

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

    /// Returns a vector with all macro elements that have a given vertex DOF in common.
    vector<ElementObjectData>& getElementsVertex(int elIndex, int ithVertex)
    {
      ElementObjectData elObj(elIndex, ithVertex);
      DegreeOfFreedom vertex = vertexLocalMap[elObj];
      return vertexElements[vertex];
    }
    
    /// Returns a vector with all macro elements that have a given edge in common.
    vector<ElementObjectData>& getElementsEdge(int elIndex, int ithEdge)
    {
      ElementObjectData elObj(elIndex, ithEdge);
      DofEdge edge = edgeLocalMap[elObj];
      return edgeElements[edge];
    }

    /// Returns a vector with all macro elements that have a given face in common.
    vector<ElementObjectData>& getElementsFace(int elIndex, int ithFace)
    {
      ElementObjectData elObj(elIndex, ithFace);
      DofFace face = faceLocalMap[elObj];
      return faceElements[face];
    }


361
362
363
    
    /// Returns a map that maps to each rank all macro elements in this rank that
    /// have a given vertex DOF in common.
364
    map<int, ElementObjectData>& getElementsInRank(DegreeOfFreedom vertex)
365
366
367
368
    {
      return vertexInRank[vertex];
    }

369
370
    /// Returns a map that maps to each rank all macro elements in this rank that
    /// have a given edge in common.
371
    map<int, ElementObjectData>& getElementsInRank(DofEdge edge)
372
373
374
375
    {
      return edgeInRank[edge];
    }

376
377
    /// Returns a map that maps to each rank all macro elements in this rank that
    /// have a given face in common.
378
    map<int, ElementObjectData>& getElementsInRank(DofFace face)
379
380
381
382
    {
      return faceInRank[face];
    }

383
    /// Returns to an element object data the appropriate vertex DOF.
384
385
    DegreeOfFreedom getVertexLocalMap(ElementObjectData &data)
    {
386
387
      TEST_EXIT_DBG(vertexLocalMap.count(data))("Should not happen!\n");

388
389
390
      return vertexLocalMap[data];
    }

391
    /// Returns to an element object data the appropriate edge.
392
393
    DofEdge getEdgeLocalMap(ElementObjectData &data)
    {
394
395
      TEST_EXIT_DBG(edgeLocalMap.count(data))("Should not happen!\n");

396
397
398
      return edgeLocalMap[data];
    }

399
    /// Returns to an element object data the appropriate face.
400
401
    DofFace getFaceLocalMap(ElementObjectData &data)
    {
402
403
      TEST_EXIT_DBG(faceLocalMap.count(data))("Should not happen!\n");

404
405
406
      return faceLocalMap[data];
    }

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
    PerBoundMap<DegreeOfFreedom>::type& getPeriodicVertices()
    {
      return periodicVertices;
    }

    PerBoundMap<DofEdge>::type& getPeriodicEdges()
    {
      return periodicEdges;
    }

    PerBoundMap<DofFace>::type& getPeriodicFaces()
    {
      return periodicFaces;
    }

422
    inline bool getEdgeReverseMode(ElementObjectData &obj0, ElementObjectData &obj1)
423
    {
424
425
426
      if (mesh->getDim() == 2)
	return true;

427
428
429
430
431
432
      TEST_EXIT_DBG(edgeReverseMode.count(make_pair(obj0, obj1)))
	("Should not happen!\n");

      return edgeReverseMode[make_pair(obj0, obj1)];
    }

433
    inline bool getFaceReverseMode(ElementObjectData &obj0, ElementObjectData &obj1)
434
435
436
437
438
439
440
    {
      TEST_EXIT_DBG(faceReverseMode.count(make_pair(obj0, obj1)))
	("Should not happen!\n");

      return faceReverseMode[make_pair(obj0, obj1)];
    }

441
442
443
444
445
446
    /// Returns true if there is periodic data.
    bool hasPeriodicData()
    {
      return (periodicVertices.size() != 0);
    }

447
    /// Write the element database to disk.
448
    void serialize(ostream &out);
449
450
    
    /// Read the element database from disk.
451
    void deserialize(istream &in);
452

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
  protected:
    /// Adds the i-th DOF vertex of an element to the object database.
    void addVertex(Element *el, int ith)
    {
      DegreeOfFreedom vertex = el->getDof(ith, 0);
      int elIndex = el->getIndex();
      ElementObjectData elObj(elIndex, ith);

      vertexElements[vertex].push_back(elObj);
      vertexLocalMap[elObj] = vertex;
    }

    /// Adds the i-th edge of an element to the object database.
    void addEdge(Element *el, int ith)
    {
      DofEdge edge = el->getEdge(ith);
      int elIndex = el->getIndex();
      ElementObjectData elObj(elIndex, ith);

      edgeElements[edge].push_back(elObj);
      edgeLocalMap[elObj] = edge;
    }

    /// Adds the i-th face of an element to the object database.
    void addFace(Element *el, int ith)
    {
      DofFace face = el->getFace(ith);
      int elIndex = el->getIndex();
      ElementObjectData elObj(elIndex, ith);

      faceElements[face].push_back(elObj);
      faceLocalMap[elObj] = face;
    }

487
    BoundaryType getNewBoundaryType(DOFAdmin *admin);
488

489
490
491
    BoundaryType provideConnectedPeriodicBoundary(DOFAdmin *admin,
						  BoundaryType b0, 
						  BoundaryType b1);
492
493

    /// Some auxiliary function to write the element object database to disk.
494
    void serialize(ostream &out, vector<ElementObjectData>& elVec);
495

496
    /// Some auxiliary function to read the element object database from disk.
497
    void deserialize(istream &in, vector<ElementObjectData>& elVec);
498

499
    /// Some auxiliary function to write the element object database to disk.
500
    void serialize(ostream &out, map<int, ElementObjectData>& data);
501

502
    /// Some auxiliary function to read the element object database from disk.
503
    void deserialize(istream &in, map<int, ElementObjectData>& data);
504

Thomas Witkowski's avatar
Thomas Witkowski committed
505
  private:
506
507
508
509
    /// The mesh that is used to store all its element information in the database.
    Mesh *mesh;

    /// Maps to each vertex DOF all element objects that represent this vertex.
510
    map<DegreeOfFreedom, vector<ElementObjectData> > vertexElements;
511
512

    /// Maps to each edge all element objects that represent this edge.
513
    map<DofEdge, vector<ElementObjectData> > edgeElements;
Thomas Witkowski's avatar
Thomas Witkowski committed
514

515
516
    /// Maps to each face all element objects that represent this edge.
    map<DofFace, vector<ElementObjectData> > faceElements;
517

518
519
    
    /// Maps to an element object the corresponding vertex DOF.
520
    map<ElementObjectData, DegreeOfFreedom> vertexLocalMap;
521
522

    /// Maps to an element object the corresponding edge.
523
    map<ElementObjectData, DofEdge> edgeLocalMap;
524
525

    /// Maps to an element object the corresponding face.
526
    map<ElementObjectData, DofFace> faceLocalMap;
527
528


529
    /// Defines for all vertex DOFs the rank that ownes this vertex DOF.
530
    map<DegreeOfFreedom, int> vertexOwner;
531
532

    /// Defines for all edges the rank that ownes this edge.
533
    map<DofEdge, int> edgeOwner;
534
535

    /// Defines for all faces the rank that ownes this face.
536
    map<DofFace, int> faceOwner;
Thomas Witkowski's avatar
Thomas Witkowski committed
537

538

539
540
    /// Defines to each vertex DOF a map that maps to each rank number the element
    /// objects that have this vertex DOF in common.
541
    map<DegreeOfFreedom, map<int, ElementObjectData> > vertexInRank;
542
543
544

    /// Defines to each edge a map that maps to each rank number the element objects
    /// that have this edge in common.
545
    map<DofEdge, map<int, ElementObjectData> > edgeInRank;
546
547
548

    /// Defines to each face a map that maps to each rank number the element objects
    /// that have this face in common.
549
    map<DofFace, map<int, ElementObjectData> > faceInRank;
Thomas Witkowski's avatar
Thomas Witkowski committed
550

551
552

    /// Vertex iterator to iterate over \ref vertexInRank
553
    map<DegreeOfFreedom, map<int, ElementObjectData> >::iterator vertexIter;
554
555

    /// Edge iterator to iterate over \ref edgeInRank
556
    map<DofEdge, map<int, ElementObjectData> >::iterator edgeIter;
557
558

    /// Face iterator to iterate over \ref faceInRank
559
    map<DofFace, map<int, ElementObjectData> >::iterator faceIter;
Thomas Witkowski's avatar
Thomas Witkowski committed
560

561
562
563
564
565

    /// Defines the geometrical iteration index of the iterators. I.e., the value
    /// is either VERTEX, EDGE or FACE and the corresponding element objects are
    /// traversed. The value CENTER is used to define a not defined states of the
    /// iterators, i.e., if no iteration is running.
Thomas Witkowski's avatar
Thomas Witkowski committed
566
    GeoIndex iterGeoPos;
567

568
    map<pair<BoundaryType, BoundaryType>, BoundaryType> bConnMap;
569

570
571
572
573
    // The following three data structures store periodic DOFs, edges and faces.
    PerBoundMap<DegreeOfFreedom>::type periodicVertices;
    PerBoundMap<DofEdge>::type periodicEdges;
    PerBoundMap<DofFace>::type periodicFaces;
574
575

    // Stores to each vertex all its periodic associations.
576
    map<DegreeOfFreedom, std::set<BoundaryType> > periodicDofAssoc;
577
578

    // Stores to each edge all its periodic associations.
579
580
581
582
583
    map<DofEdge, std::set<DofEdge> > periodicEdgeAssoc;

    map<pair<ElementObjectData, ElementObjectData>, bool> edgeReverseMode;

    map<pair<ElementObjectData, ElementObjectData>, bool> faceReverseMode;
Thomas Witkowski's avatar
Thomas Witkowski committed
584
585
586
587
588
  };

}

#endif