MeshDistributor.h 20.2 KB
Newer Older
1 2 3 4
// ============================================================================
// ==                                                                        ==
// == AMDiS - Adaptive multidimensional simulations                          ==
// ==                                                                        ==
5
// ==  http://www.amdis-fem.org                                              ==
6 7
// ==                                                                        ==
// ============================================================================
8 9 10 11 12 13 14 15 16 17 18 19
//
// Software License for AMDiS
//
// Copyright (c) 2010 Dresden University of Technology 
// All rights reserved.
// Authors: Simon Vey, Thomas Witkowski et al.
//
// This file is part of AMDiS
//
// See also license.opensource.txt in the distribution.


20

21
/** \file MeshDistributor.h */
22

23 24
#ifndef AMDIS_MESHDISTRIBUTOR_H
#define AMDIS_MESHDISTRIBUTOR_H
25 26 27


#include <map>
28
#include <set>
29
#include <vector>
Thomas Witkowski's avatar
Thomas Witkowski committed
30
#include <mpi.h>
31

Thomas Witkowski's avatar
Thomas Witkowski committed
32
#include "parallel/InteriorBoundary.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
33
#include "Global.h"
34 35
#include "ProblemTimeInterface.h"
#include "ProblemIterationInterface.h"
36
#include "FiniteElemSpace.h"
37
#include "Serializer.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
38
#include "BoundaryManager.h"
39
#include "ElementObjectData.h"
40 41
#include "AMDiS_fwd.h"

42
namespace AMDiS {
43
  
44 45
  class ParMetisPartitioner;

46
  class MeshDistributor
47
  {
48
  protected:
Thomas Witkowski's avatar
Thomas Witkowski committed
49 50 51 52 53 54 55 56 57 58 59 60
    /// Defines a mapping type from DOFs to rank numbers.
    typedef std::map<const DegreeOfFreedom*, int> DofToRank;

    /// Defines a mapping type from DOFs to a set of rank numbers.
    typedef std::map<const DegreeOfFreedom*, std::set<int> > DofToPartitions;

    /// Defines a mapping type from rank numbers to sets of DOFs.
    typedef std::map<int, DofContainer> RankToDofContainer;

    /// Defines a mapping type from DOF indices to DOF indices.
    typedef std::map<DegreeOfFreedom, DegreeOfFreedom> DofMapping;

61 62 63
    /// Defines a mapping type from DOFs to boolean values.
    typedef std::map<const DegreeOfFreedom*, bool> DofToBool;

Thomas Witkowski's avatar
Thomas Witkowski committed
64
    /// Defines a mapping type from DOF indices to boolean values.
65
    typedef std::map<DegreeOfFreedom, bool> DofIndexToBool;
Thomas Witkowski's avatar
Thomas Witkowski committed
66

Thomas Witkowski's avatar
Thomas Witkowski committed
67 68 69
    /// Forward type (it maps rank numbers to the interior boundary objects).
    typedef InteriorBoundary::RankToBoundMap RankToBoundMap;

Thomas Witkowski's avatar
Thomas Witkowski committed
70 71
    typedef std::map<const DegreeOfFreedom*, DegreeOfFreedom> DofIndexMap;

72 73 74
    /// Mapps a boundar type, i.e., a boundary identifier index, to a periodic 
    /// dof mapping.
    typedef std::map<BoundaryType, DofMapping> PeriodicDofMap;
75 76
    
    typedef std::vector<MeshStructure> MeshCodeVec;
77

78
  public:
79 80 81
    MeshDistributor(std::string str);
		          
    virtual ~MeshDistributor() {}
82

83
    void initParallelization();
84

85
    void exitParallelization();
86 87

    void addProblemStat(ProblemVec *probVec);
88

89 90 91 92 93 94 95 96 97
    /** \brief
     * This function checks if the mesh has changed on at least on rank. In this case,
     * the interior boundaries are adapted on all ranks such that they fit together on
     * all ranks. Furthermore the function \ref updateLocalGlobalNumbering() is called
     * to update the dof numberings and mappings on all rank due to the new mesh
     * structure.
     */
    void checkMeshChange();

98 99 100 101 102 103 104
    /** \brief
     * Test, if the mesh consists of macro elements only. The mesh partitioning of
     * the parallelization works for macro meshes only and would fail, if the mesh
     * is already refined in some way. Therefore, this function will exit the program
     * if it finds a non macro element in the mesh.
     */
    void testForMacroMesh();
105 106

    /// Set for each element on the partitioning level the number of leaf elements.
107
    void setInitialElementWeights();
108

109 110 111 112
    inline virtual std::string getName() 
    { 
      return name; 
    }
113 114 115 116 117 118

    /// Returns \ref feSpace.
    inline const FiniteElemSpace* getFeSpace()
    {
      return feSpace;
    }
119 120 121
    
    /// Returns \ref nRankDOFs, the number of DOFs in the rank mesh.
    inline int getNumberRankDofs() 
122
    {
123
      return nRankDofs;
124
    }
125

126
    /// Returns \ref nOverallDofs, the global number of DOFs.
127
    inline int getNumberOverallDofs()
128
    {
129
      return nOverallDofs;
130
    }
131

132
    /// Maps a local dof to its global index.
133
    inline DegreeOfFreedom mapLocalToGlobal(DegreeOfFreedom dof)
134
    {
135
      return mapLocalGlobalDofs[dof];
136
    }
137

138
    /// Maps a local dof to its local index.
139 140 141 142 143
    inline DegreeOfFreedom mapLocalToDofIndex(DegreeOfFreedom dof)
    {
      return mapLocalDofIndex[dof];
    }

144 145
    /// Returns for a global dof index its periodic mapping for a given boundary type.
    inline int getPeriodicMapping(BoundaryType type, int globalDofIndex)
146
    {
147 148 149 150 151 152
      TEST_EXIT_DBG(periodicDof[type].count(globalDofIndex) == 1)
	("Should not happen!\n");

      return periodicDof[type][globalDofIndex];
    }

153 154 155
    /// For a given global DOF index, this function returns the set of periodic
    /// associations, i.e., the boundary types the DOF is associated to, for this DOF.
    inline std::set<BoundaryType>& getPerDofAssociations(int globalDofIndex)
156
    {      
157
      return periodicDofAssociations[globalDofIndex];
158
    }
159

160
    /// Returns true, if the DOF (global index) is a periodic DOF.
161
    inline bool isPeriodicDof(int globalDofIndex)
162
    {
163
      return (periodicDofAssociations.count(globalDofIndex) > 0);
164 165
    }

166 167 168
    /// Returns true, if the DOF (global index) is a periodic DOF for the given
    /// boundary type.
    inline bool isPeriodicDof(int globalDofIndex, BoundaryType type)
169 170
    {
      return (periodicDof[type].count(globalDofIndex) > 0);
171 172
    }

173 174
    /// Return true, if the given DOF is owned by the rank. If false, the DOF is in
    /// rank's partition, but is owned by some other rank.
175 176 177 178
    inline bool getIsRankDof(DegreeOfFreedom dof)
    {
      return isRankDof[dof];
    }
179

180
    inline long getLastMeshChangeIndex()
181
    {
182
      return lastMeshChangeIndex;
183
    }
184

185 186 187 188
    inline int getRstart()
    {
      return rstart;
    }
189

190
    inline int getMpiRank()
191
    {
192
      return mpiRank;
193
    }
194

195 196 197
    inline MPI::Intracomm& getMpiComm()
    {
      return mpiComm;
198 199
    }

200
    inline RankToDofContainer& getSendDofs()
201
    {
202
      return sendDofs;
203 204
    }

205
    inline RankToDofContainer& getRecvDofs()
206
    {
207
      return recvDofs;
208
    }
209

210
    // Writes all data of this object to an output stream.
211
    void serialize(std::ostream &out);
212

213
    // Reads the object data from an input stream.
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    void deserialize(std::istream &in);

    /** \brief
     * This function must be used if the values of a DOFVector must be synchronised
     * over all ranks. That means, that each rank sends the values of the DOFs, which
     * are owned by the rank and lie on an interior bounday, to all other ranks also
     * having these DOFs.
     *
     * This function must be used, for example, after the lineary system is solved, or
     * after the DOFVector is set by some user defined functions, e.g., initial
     * solution functions.
     */    
    void synchVector(DOFVector<double> &vec);

    /** \brief
     * Works in the same way as the function above defined for DOFVectors. Due to
     * performance, this function does not call \ref synchVector for each DOFVector,
     * but instead sends all values of all DOFVectors all at once.
     */
    void synchVector(SystemVector &vec);

235
  protected:
236
    /** \brief
Thomas Witkowski's avatar
Thomas Witkowski committed
237
     * Determines the interior boundaries, i.e. boundaries between ranks, and stores
238 239
     * all information about them in \ref interiorBoundary.
     */
240
    void createInteriorBoundaryInfo();
241

Thomas Witkowski's avatar
Thomas Witkowski committed
242 243 244 245 246
    void updateInteriorBoundaryInfo();

    void createMeshElementData();

    void createBoundaryData();
Thomas Witkowski's avatar
Thomas Witkowski committed
247

248 249 250
    /// Removes all macro elements from the mesh that are not part of ranks partition.
    void removeMacroElements();

251
    /// Updates the local and global DOF numbering after the mesh has been changed.
252
    void updateLocalGlobalNumbering();
253

254 255 256 257 258
    /** \brief
     * Creates to all dofs in rank's partition that are on a periodic boundary the
     * mapping from dof index to the other periodic dof indices. This information
     * is stored in \ref periodicDof.
     */
259 260
    void createPeriodicMap();

261 262
    void createMacroElementInfo();

263 264
    void updateMacroElementInfo();

265 266 267 268 269 270 271 272 273 274 275 276 277
    /** \brief
     * Checks for all given interior boundaries if the elements fit together on both
     * sides of the boundaries. If this is not the case, the mesh is adapted. Because
     * refinement of a certain element may forces the refinement of other elements,
     * it is not guaranteed that all rank's meshes fit together after this function
     * terminates. Hence, it must be called until a stable mesh refinement is reached.
     * If the mesh has  been changed by this function, it returns true. Otherwise, it
     * returns false, i.e., the given interior boundaries fit together on both sides.
     *
     * \param[in] allBound   Defines a map from rank to interior boundaries which 
     *                       should be checked.
     */
    bool checkAndAdaptBoundary(RankToBoundMap &allBound);
278 279 280 281 282 283 284 285
  
    /** \brief
     * Checks if is required to repartition the mesh. If this is the case, a new
     * partition will be created and the mesh will be redistributed between the
     * ranks.
     */
    void repartitionMesh();

286 287 288 289 290 291 292
    /** \brief
     * This functions create a Paraview file with the macro mesh where the elements
     * are colored by the partition they are part of. This function can be used for
     * debugging.
     */
    void writePartitioningMesh(std::string filename);

293 294 295
    /// Sets \ref isRankDof to all matrices and rhs vectors in all stationary problems.
    void setRankDofs();

296 297 298 299
    /// Removes all periodic boundary condition information from all matrices and
    /// vectors of all stationary problems and from the mesh itself.
    void removePeriodicBoundaryConditions();

Thomas Witkowski's avatar
Thomas Witkowski committed
300
    // Removes all periodic boundaries from a given boundary map.
301
    void removePeriodicBoundaryConditions(BoundaryIndexMap& boundaryMap);
Thomas Witkowski's avatar
Thomas Witkowski committed
302

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
    /** \brief
     * Starts the procedure to fit a given edge/face of an element with a mesh
     * structure code. This functions prepares some data structures and call
     * then \ref fitElementToMeshCode, that mainly refines the element such that
     * it fits to the mesh structure code.
     *
     * \param[in] code         The mesh structure code to which the edge/face of
     *                         an element must be fitted.
     * \param[in] el           Pointer to the element.
     * \param[in] subObj       Defines whether an edge or a face must be fitted.
     * \param[in] ithObj       Defines which edge/face must be fitted.
     * \param[in] elType       Element type of the element (only important in 3D).
     * \param[in] reverseMode  Defines, whether the mesh structure code is given
     *                         in reverse mode, i.e., left and right children where
     *                         changed when the code was created.
     */
    bool startFitElementToMeshCode(MeshStructure &code, 
				   Element *el, 
				   GeoIndex subObj,
				   int ithObj, 
				   int elType,
				   bool reverseMode);
    
    /** \brief
     * Recursively fits a given mesh structure code to an edge/face of an element.
     * This function is always initialy called from \ref startFitElementToMeshCode.
     *
     * \param[in] code         The mesh structure code which is used to fit an
     *                         edge/face of an element.
     * \param[in] stack        A traverse stack object. The upper most element in this
     *                         stack must be used for fitting the mesh structure code
     *                         at the current position.
     * \param[in] subObj       Defines whether an edge or a face must be fitted.
     * \param[in] ithObj       Defines which edge/face must be fitted.
     * \param[in] reverseMode  Defines, whether the mesh structure code is given
     *                         in reverse mode, i.e., left and right children where
     *                         changed when the code was created.
     */
341
    bool fitElementToMeshCode(MeshStructure &code, 
342
			      TraverseStack &stack,
343
			      GeoIndex subObj,
344
			      int ithObj,
345
			      bool reverseMode);
346

347 348 349 350 351 352 353 354 355 356 357 358 359
    /// Writes a vector of dof pointers to an output stream.
    void serialize(std::ostream &out, DofContainer &data);

    /// Reads a vector of dof pointers from an input stream.
    void deserialize(std::istream &in, DofContainer &data,
		     std::map<int, const DegreeOfFreedom*> &dofMap);

    /// Writes a \ref RankToDofContainer to an output stream.
    void serialize(std::ostream &out, RankToDofContainer &data);

    /// Reads a \ref RankToDofContainer from an input stream.
    void deserialize(std::istream &in, RankToDofContainer &data,
		     std::map<int, const DegreeOfFreedom*> &dofMap);
360

361 362 363
    /// Writes a periodic dof mapping to an output stream.
    void serialize(std::ostream &out, PeriodicDofMap &data);

364 365
    void serialize(std::ostream &out, std::map<int, std::set<int> >& data);

366 367 368
    /// Reads a periodic dof mapping from an input stream.
    void deserialize(std::istream &in, PeriodicDofMap &data);

369 370
    void deserialize(std::istream &in, std::map<int, std::set<int> >& data);

371 372 373 374
    /// Writes a mapping from dof pointers to some values to an output stream.
    template<typename T>
    void serialize(std::ostream &out, std::map<const DegreeOfFreedom*, T> &data)
    {
375 376
      FUNCNAME("ParallelDomainBase::serialize()");

377
      int mapSize = data.size();
378
      SerUtil::serialize(out, mapSize);
379 380 381 382
      for (typename std::map<const DegreeOfFreedom*, T>::iterator it = data.begin();
	   it != data.end(); ++it) {
	int v1 = (*(it->first));
	T v2 = it->second;
383 384
	SerUtil::serialize(out, v1);
	SerUtil::serialize(out, v2);
385 386 387 388 389 390 391 392
      }
    }

    /// Reads a mapping from dof pointer to some values from an input stream.
    template<typename T>
    void deserialize(std::istream &in, std::map<const DegreeOfFreedom*, T> &data,
		     std::map<int, const DegreeOfFreedom*> &dofMap)
    {
393 394
      FUNCNAME("ParallelDomainBase::deserialize()");

395
      int mapSize = 0;
396
      SerUtil::deserialize(in, mapSize);
397 398 399
      for (int i = 0; i < mapSize; i++) {
	int v1 = 0;
	T v2;
400 401
	SerUtil::deserialize(in, v1);
	SerUtil::deserialize(in, v2);
402 403 404

	TEST_EXIT_DBG(dofMap.count(v1) != 0)("Cannot find DOF %d in map!\n", v1);

405 406 407
	data[dofMap[v1]] = v2;
      }
    }
408 409

  public:
410
    std::vector<DOFVector<double>* > testVec;
411
		        
412
  protected:
Thomas Witkowski's avatar
Thomas Witkowski committed
413
    ///
414
    std::vector<ProblemVec*> probStat;
Thomas Witkowski's avatar
Thomas Witkowski committed
415

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    /// The rank of the current process.
    int mpiRank;

    /// Overall number of processes.
    int mpiSize;

    /** \brief
     * MPI communicator collected all processes, which should
     * be used for calculation. The Debug procces is not included
     * in this communicator.
     */
    MPI::Intracomm mpiComm;

    /// Name of the problem (as used in the init files)
    std::string name;

432 433 434
    /// Finite element space of the problem.
    FiniteElemSpace *feSpace;

435 436 437
    /// Mesh of the problem.
    Mesh *mesh;

438 439 440 441 442 443 444
    /** \brief
     * A refinement manager that should be used on the mesh. It is used to refine
     * elements at interior boundaries in order to fit together with elements on the
     * other side of the interior boundary.
     */    
    RefinementManager *refineManager;

445 446 447
    /// Info level.
    int info;

448 449 450 451 452 453 454
    /// Pointer to the paritioner which is used to devide a mesh into partitions.
    ParMetisPartitioner *partitioner;

    /// Weights for the elements, i.e., the number of leaf elements within this element.
    std::map<int, double> elemWeights;

    /** \brief
455 456
     * Stores to every macro element index the number of the rank that owns this
     * macro element.
457 458 459 460
     */
    std::map<int, int> partitionVec;

    /** \brief
461 462
     * Stores an old partitioning of elements. To every macro element index the
     * number of the rank it corresponds to is stored.
463 464
     */
    std::map<int, int> oldPartitionVec;    
465
   
466
    /// Number of DOFs in the rank mesh.
467
    int nRankDofs;
Thomas Witkowski's avatar
Thomas Witkowski committed
468

469
    /// Number of DOFs in the whole domain.
470 471
    int nOverallDofs;

Thomas Witkowski's avatar
Thomas Witkowski committed
472 473 474 475 476 477 478 479 480 481
    // Data structure to store all sub-objects of all elements of the macro mesh.
    ElementObjects elObjects;

    // Maps to each macro element index a pointer to the corresponding element.
    std::map<int, Element*> macroElIndexMap;
    
    // Maps to each macro element index the type of this element.
    std::map<int, int> macroElIndexTypeMap;

    // The following three data structures store periodic DOFs, edges and faces.
482
    std::map<std::pair<DegreeOfFreedom, DegreeOfFreedom>, BoundaryType> periodicVertices;
Thomas Witkowski's avatar
Thomas Witkowski committed
483 484 485
    std::map<std::pair<DofEdge, DofEdge>, BoundaryType> periodicEdges;
    std::map<std::pair<DofFace, DofFace>, BoundaryType> periodicFaces;

Thomas Witkowski's avatar
Thomas Witkowski committed
486
    /** \brief 
Thomas Witkowski's avatar
Thomas Witkowski committed
487 488 489 490 491 492 493 494 495 496 497 498
     * Defines the interior boundaries of the domain that result from partitioning
     * the whole mesh. Contains only the boundaries, which are owned by the rank, i.e.,
     * the object gives for every neighbour rank i the boundaries this rank owns and 
     * shares with rank i.
     */
    InteriorBoundary myIntBoundary;
    
    /** \brief
     * Defines the interior boundaries of the domain that result from partitioning
     * the whole mesh. Contains only the boundaries, which are not owned by the rank,
     * i.e., the object gives for every neighbour rank i the boundaries that are
     * owned by rank i and are shared with this rank.
Thomas Witkowski's avatar
Thomas Witkowski committed
499
     */
Thomas Witkowski's avatar
Thomas Witkowski committed
500
    InteriorBoundary otherIntBoundary;
Thomas Witkowski's avatar
Thomas Witkowski committed
501

502
    /** \brief
503 504
     * Defines the periodic boundaries with other ranks. Periodic boundaries have
     * no owner, as it is the case of interior boundaries.
505 506 507
     */
    InteriorBoundary periodicBoundary;

508 509 510 511
    /** \brief
     * This map contains for each rank the list of dofs the current rank must send
     * to exchange solution dofs at the interior boundaries.
     */
Thomas Witkowski's avatar
Thomas Witkowski committed
512
    RankToDofContainer sendDofs;
513 514

    /** \brief
515 516 517
     * This map contains for each rank the list of DOFs from which the current rank 
     * will receive DOF values (i.e., this are all DOFs at an interior boundary). The
     * DOF indices are given in rank's local numbering.
518
     */
Thomas Witkowski's avatar
Thomas Witkowski committed
519
    RankToDofContainer recvDofs;
520 521

    /// Maps local to global dof indices.
522
    DofMapping mapLocalGlobalDofs;
523

Thomas Witkowski's avatar
Thomas Witkowski committed
524
    /// Maps local dof indices to real dof indices.
525
    DofMapping mapLocalDofIndex;  
526 527 528 529 530 531

    /** \brief
     * Maps all DOFs in ranks partition to a bool value. If it is true, the DOF is
     * owned by the rank. Otherwise, its an interior boundary DOF that is owned by
     * another rank.
     */
532 533
    DofIndexToBool isRankDof;

534
    /** \brief
535 536 537 538
     * If periodic boundaries are used, this map stores, for each periodic boundary
     * type, for all DOFs in rank's partition (that are on periodic boundaries), the 
     * corresponding mapped periodic DOFs. The mapping is defined by using global 
     * dof indices.
539
     */
540
    PeriodicDofMap periodicDof;
541 542 543 544 545 546 547 548
    
    /** \brief
     * If periodic boundaries are used, this map stores to each periodic DOF in rank's
     * partition the set of periodic boundaries the DOF is associated to. In 2D, most
     * DOFs are only on one periodic boundary. Only, e.g., in a box with all boundaries
     * being periodic, the for corners are associated by two different boundaries.     
     */
    std::map<int, std::set<BoundaryType> > periodicDofAssociations;
549

550
    /// Is the index of the first row of the linear system, which is owned by the rank.
Thomas Witkowski's avatar
n  
Thomas Witkowski committed
551
    int rstart;
552

553 554 555 556 557 558 559
    /** \brief
     * If the problem definition has been read from a serialization file, this 
     * variable is true, otherwise it is false. This variable is used to stop the
     * initialization function, if the problem definition has already been read from
     * a serialization file.
     */
    bool deserialized;
560

561 562 563
    /// Denotes whether there exists a filewriter for this object.
    bool writeSerializationFile;

564 565 566
    /// If true, it is possible to repartition the mesh during computations.
    bool repartitioningAllowed;

567 568
    int repartitionIthChange;

569 570
    int nTimestepsAfterLastRepartitioning;

571 572
    int repartCounter;

573 574 575
    /// Directory name where all debug output files should be written to.
    std::string debugOutputDir;

576 577 578 579 580
    /** \brief
     * Stores the mesh change index. This is used to recognize changes in the mesh 
     * structure (e.g. through refinement or coarsening managers).
     */
    long lastMeshChangeIndex;
581

582 583
    std::map<int, std::vector<int> > macroElementNeighbours;

584 585 586 587
    /// Store all macro elements of the overall mesh, i.e., before the macro mesh is
    /// redistributed for the first time.
    std::vector<MacroElement*> allMacroElements;

588
    friend class ParallelDebug;
589 590 591
  };
}

592
#endif // AMDIS_MESHDISTRIBUTOR_H