ProblemVec.cc 37.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#include "ProblemVec.h"
#include "RecoveryEstimator.h"
#include "Serializer.h"
#include "AbstractFunction.h"
#include "Operator.h"
#include "SystemVector.h"
#include "DOFMatrix.h"
#include "FiniteElemSpace.h"
#include "Estimator.h"
#include "Marker.h"
#include "AdaptInfo.h"
#include "FileWriter.h"
#include "CoarseningManager.h"
#include "RefinementManager.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
15
#include "DualTraverse.h"
16
17
18
19
20
21
22
23
#include "Mesh.h"
#include "OEMSolver.h"
#include "Preconditioner.h"
#include "MatVecMultiplier.h"
#include "DirichletBC.h"
#include "RobinBC.h"
#include "PeriodicBC.h"
#include "Lagrange.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
24
#include "Flag.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
25
#include "TraverseParallel.h"
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

namespace AMDiS {

  ProblemVec *ProblemVec::traversePtr_ = NULL;

  void ProblemVec::initialize(Flag initFlag,
			      ProblemVec *adoptProblem,
			      Flag adoptFlag)
  {
    FUNCNAME("ProblemVec::initialize()");
    
    // === create meshes ===
    if (meshes_.size() != 0) { 
      WARNING("meshes already created\n");
    } else {
      if (initFlag.isSet(CREATE_MESH) || 
	  ((!adoptFlag.isSet(INIT_MESH))&&
	   (initFlag.isSet(INIT_SYSTEM) || initFlag.isSet(INIT_FE_SPACE)))) {
	createMesh();
      } 
      if (adoptProblem && 
	  (adoptFlag.isSet(INIT_MESH) || 
	   adoptFlag.isSet(INIT_SYSTEM) ||
	   adoptFlag.isSet(INIT_FE_SPACE))) {
	meshes_ = adoptProblem->getMeshes();
Thomas Witkowski's avatar
Thomas Witkowski committed
51
	componentMeshes = adoptProblem->componentMeshes;
52
53
54
55
56
57
58
59
60
	refinementManager_ = adoptProblem->refinementManager_;
	coarseningManager_ = adoptProblem->coarseningManager_;
      }
    }

    if (meshes_.size() == 0) 
      WARNING("no mesh created\n");

    // === create fespace ===
61
    if (feSpaces.size() != 0) {
62
63
64
65
66
67
68
69
      WARNING("feSpaces already created\n");
    } else {
      if (initFlag.isSet(INIT_FE_SPACE) || 
	  (initFlag.isSet(INIT_SYSTEM)&&!adoptFlag.isSet(INIT_FE_SPACE))) {
	createFESpace();
      } 
      if (adoptProblem &&
	  (adoptFlag.isSet(INIT_FE_SPACE) || adoptFlag.isSet(INIT_SYSTEM))) {
70
71
	feSpaces = adoptProblem->getFESpaces();
	componentSpaces = adoptProblem->componentSpaces;
72
73
74
      }
    }

75
    if (feSpaces.size() == 0) 
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
      WARNING("no feSpace created\n");

    // === create system ===
    if (initFlag.isSet(INIT_SYSTEM)) {
      createMatricesAndVectors();
    } 
    if (adoptProblem && adoptFlag.isSet(INIT_SYSTEM)) {
      solution_ = adoptProblem->getSolution();
      rhs_ = adoptProblem->getRHS();
      systemMatrix_ = adoptProblem->getSystemMatrix();
    }

    // === create solver ===
    if (solver_) {
      WARNING("solver already created\n");
    } else {
      if (initFlag.isSet(INIT_SOLVER)) {
	createSolver();
      } 
      if (adoptProblem && adoptFlag.isSet(INIT_SOLVER)) {
	TEST_EXIT(!solver_)("solver already created\n");
	solver_ = adoptProblem->getSolver();
      }
    }

    if (!solver_) 
      WARNING("no solver created\n");

    // === create estimator ===
    if (initFlag.isSet(INIT_ESTIMATOR)) {
      createEstimator();
    } 
    if (adoptProblem && adoptFlag.isSet(INIT_ESTIMATOR)) {
      estimator_ = adoptProblem->getEstimator();
    } 

    // === create marker ===
    if (initFlag.isSet(INIT_MARKER)) {
      createMarker();
    } 
    if (adoptProblem && adoptFlag.isSet(INIT_MARKER)) {
117
      marker = adoptProblem->getMarker();
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    } 


    // === create file writer ===
    if (initFlag.isSet(INIT_FILEWRITER)) {
      createFileWriter();
    }

    
    // === read serialization and init mesh ===
    
    // There are two possiblities where the user can define a serialization
    // to be read from disk. Either by providing the parameter -rs when executing
    // the program or in the init file. The -rs parameter is always checked first,
    // because it can be added automatically when  rescheduling the program
    // before timeout of the runqueue.

    int readSerialization = 0;
136
    std::string serializationFilename = "";
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    GET_PARAMETER(0, "argv->rs", &serializationFilename);

    // If the parameter -rs is set, we do nothing here, because the problem will be
    // deserialized in the constructor of a following AdaptInstationary initialization.
    if (!serializationFilename.compare("")) {
      int readSerializationWithAdaptInfo = 0;

      GET_PARAMETER(0, name_ + "->input->read serialization", "%d", 
		    &readSerialization);
      GET_PARAMETER(0, name_ + "->input->serialization with adaptinfo", "%d",
		    &readSerializationWithAdaptInfo);

      // The serialization file is only read, if the adaptInfo part should not be used.
      // If the adaptInfo part should be also read, the serialization file will be read
      // in the constructor of the AdaptInstationary problem, because we do not have here
      // the adaptInfo object.
      if (readSerialization && !readSerializationWithAdaptInfo) {
	GET_PARAMETER(0, name_ + "->input->serialization filename", 
		      &serializationFilename);
	TEST_EXIT(serializationFilename != "")("no serialization file\n");

	MSG("Deserialization from file: %s\n", serializationFilename.c_str());
159
	std::ifstream in(serializationFilename.c_str());
160
161
162
	deserialize(in);
	in.close();
      } else {
163
164
165
166
	int globalRefinements = 0;
	GET_PARAMETER(0, meshes_[0]->getName() + "->global refinements", "%d", 
		      &globalRefinements);

167
168
169
170
171
	// Initialize the meshes if there is no serialization file.
	for (int i = 0; i < static_cast<int>(meshes_.size()); i++) {
	  if (initFlag.isSet(INIT_MESH) && 
	      meshes_[i] && 
	      !(meshes_[i]->isInitialized())) {
172
173
	    meshes_[i]->initialize();	    
	    refinementManager_->globalRefine(meshes_[i], globalRefinements);
174
175
176
177
178
179
180
181
182
183
184
185
	  }
	}	
      }
    }

    doOtherStuff();
  }

  void ProblemVec::createMesh() 
  {
    FUNCNAME("ProblemVec::createMesh()");

Thomas Witkowski's avatar
Thomas Witkowski committed
186
    componentMeshes.resize(nComponents);
187
    std::map<int, Mesh*> meshForRefinementSet;
188
189
    char number[3];

190
    std::string meshName("");
191
    GET_PARAMETER(0, name_ + "->mesh", &meshName);
192
    TEST_EXIT(meshName != "")("no mesh name specified\n");
193
194
    int dim = 0;
    GET_PARAMETER(0, name_ + "->dim", "%d", &dim);
195
    TEST_EXIT(dim)("no problem dimension specified!\n");
196

197
    for (int i = 0; i < nComponents; i++) {
198
      sprintf(number, "%d", i);
199
200
201
      int refSet = -1;
      GET_PARAMETER(0, name_ + "->refinement set[" + number + "]", "%d", &refSet);
      if (refSet < 0) {
202
203
	refSet = 0;
      }
204
      if (meshForRefinementSet[refSet] == NULL) {
205
206
207
208
	Mesh *newMesh = NEW Mesh(meshName, dim);
	meshForRefinementSet[refSet] = newMesh;
	meshes_.push_back(newMesh);
      }
Thomas Witkowski's avatar
Thomas Witkowski committed
209
      componentMeshes[i] = meshForRefinementSet[refSet];
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    }
    switch(dim) {
    case 1:
      coarseningManager_ = NEW CoarseningManager1d();
      refinementManager_ = NEW RefinementManager1d();
      break;
    case 2:
      coarseningManager_ = NEW CoarseningManager2d();
      refinementManager_ = NEW RefinementManager2d();
      break;
    case 3:
      coarseningManager_ = NEW CoarseningManager3d();
      refinementManager_ = NEW RefinementManager3d();
      break;
    default:
      ERROR_EXIT("invalid dim!\n");
    }
  }

  void ProblemVec::createFESpace()
  {
    FUNCNAME("ProblemVec::createFESpace()");

    int degree = 1;
    char number[3];

236
    std::map< std::pair<Mesh*, int>, FiniteElemSpace*> feSpaceMap;
237
    int dim = -1;
238
    GET_PARAMETER(0, name_ + "->dim", "%d", &dim);
239
    TEST_EXIT(dim != -1)("no problem dimension specified!\n");
240

241
    componentSpaces.resize(nComponents, NULL);
242

243
    for (int i = 0; i < nComponents; i++) {
244
245
246
      sprintf(number, "%d", i);
      GET_PARAMETER(0, name_ + "->polynomial degree[" + number + "]","%d", &degree);

247
      TEST_EXIT(componentSpaces[i] == NULL)("feSpace already created\n");
248

Thomas Witkowski's avatar
Thomas Witkowski committed
249
      if (feSpaceMap[std::pair<Mesh*, int>(componentMeshes[i], degree)] == NULL) {
250
251
252
	FiniteElemSpace *newFESpace = 
	  FiniteElemSpace::provideFESpace(NULL,
					  Lagrange::getLagrange(dim, degree),
Thomas Witkowski's avatar
Thomas Witkowski committed
253
					  componentMeshes[i],
254
					  name_ + "->feSpace");
Thomas Witkowski's avatar
Thomas Witkowski committed
255
	feSpaceMap[std::pair<Mesh*, int>(componentMeshes[i], degree)] = newFESpace;
256
	feSpaces.push_back(newFESpace);
257
      }
258
      componentSpaces[i] = 
Thomas Witkowski's avatar
Thomas Witkowski committed
259
	feSpaceMap[std::pair<Mesh*, int>(componentMeshes[i], degree)];
260
261
262
    }

    // create dof admin for vertex dofs if neccessary
263
    for (int i = 0; i < static_cast<int>(meshes_.size()); i++) {
264
265
266
267
268
269
270
271
272
273
274
275
276
277
      if (meshes_[i]->getNumberOfDOFs(VERTEX) == 0) {
	DimVec<int> ln_dof(meshes_[i]->getDim(), DEFAULT_VALUE, 0);
	ln_dof[VERTEX]= 1;
	meshes_[i]->createDOFAdmin("vertex dofs", ln_dof);      
      }
    }
  }

  void ProblemVec::createMatricesAndVectors()
  {
    FUNCNAME("ProblemVec::createMatricesAndVectors()");

    // === create vectors and system matrix ===

278
    systemMatrix_ = NEW Matrix<DOFMatrix*>(nComponents, nComponents);
279
    systemMatrix_->set(NULL);
280
281
    rhs_ = NEW SystemVector("rhs", componentSpaces, nComponents);
    solution_ = NEW SystemVector("solution", componentSpaces, nComponents);
282
283

    char number[10];
284
    std::string numberedName;
Thomas Witkowski's avatar
Thomas Witkowski committed
285
    for (int i = 0; i < nComponents; i++) {
286
287
      (*systemMatrix_)[i][i] = NEW DOFMatrix(componentSpaces[i], 
					     componentSpaces[i], "A_ii");
288
289
      (*systemMatrix_)[i][i]->setCoupleMatrix(false);
      sprintf(number, "[%d]", i);
290
      numberedName = "rhs" + std::string(number);
291
      rhs_->setDOFVector(i, NEW DOFVector<double>(componentSpaces[i], numberedName));
292
      numberedName = name_ + std::string(number);
293
      solution_->setDOFVector(i, NEW DOFVector<double>(componentSpaces[i], 
294
295
296
297
298
299
300
301
302
303
304
305
306
307
						       numberedName));
      solution_->getDOFVector(i)->setCoarsenOperation(COARSE_INTERPOL);
      solution_->getDOFVector(i)->set(0.0);
    }

    // === create matVec ===
    matVec_ = NEW StandardMatVec<Matrix<DOFMatrix*>, SystemVector>(systemMatrix_);
  }

  void ProblemVec::createSolver()
  {
    FUNCNAME("ProblemVec::createSolver()");

    // === create solver ===
308
    std::string solverType("no");
309
310
311
312
313
314
315
316
317
318
319
320
    GET_PARAMETER(0, name_ + "->solver", &solverType);
    OEMSolverCreator<SystemVector> *solverCreator = 
      dynamic_cast<OEMSolverCreator<SystemVector>*>(
						    CreatorMap<OEMSolver<SystemVector> >
						    ::getCreator(solverType)
						    );
    TEST_EXIT(solverCreator)("no solver type\n");
    solverCreator->setName(name_ + "->solver");
    solver_ = solverCreator->create();
    solver_->initParameters();

    // === create preconditioners ===
321
    std::string preconType("no");
322
323

    PreconditionerScal *scalPrecon;
324
    PreconditionerVec *vecPrecon = NEW PreconditionerVec(nComponents);
325
326
327
328
329
330
331
332
333
334
335

    GET_PARAMETER(0, name_ + "->solver->left precon", &preconType);
    CreatorInterface<PreconditionerScal> *preconCreator =
      CreatorMap<PreconditionerScal>::getCreator(preconType);

    int i, j;

    if (!preconCreator->isNullCreator()) {
      dynamic_cast<PreconditionerScalCreator*>(preconCreator)->
	setName(name_ + "->solver->left precon");

336
      for(i = 0; i < nComponents; i++) {
337
	dynamic_cast<PreconditionerScalCreator*>(preconCreator)->
338
	  setSizeAndRow(nComponents, i);
339
340
    
	scalPrecon = preconCreator->create();
341
	for(j = 0; j < nComponents; j++) {
342
343
344
345
346
347
348
349
	  scalPrecon->setMatrix(&(*systemMatrix_)[i][j], j);
	}
	vecPrecon->setScalarPrecon(i, scalPrecon);
      }
      leftPrecon_ = vecPrecon;
    }


350
    vecPrecon = NEW PreconditionerVec(nComponents);
351
352
353
354
355
356
357
358
359
360

    GET_PARAMETER(0, name_ + "->solver->right precon", &preconType);
    preconCreator = 
      CreatorMap<PreconditionerScal>::getCreator(preconType);

    if(!preconCreator->isNullCreator()) {
      dynamic_cast<PreconditionerScalCreator*>(preconCreator)->
	setName(name_ + "->solver->left precon");


361
      for(i = 0; i < nComponents; i++) {
362
	dynamic_cast<PreconditionerScalCreator*>(preconCreator)->
363
	  setSizeAndRow(nComponents, i);
364
365
    
	scalPrecon = preconCreator->create();
366
	for(j = 0; j < nComponents; j++) {
367
368
369
370
371
372
373
374
375
376
	  scalPrecon->setMatrix(&(*systemMatrix_)[i][j], j);
	}
	vecPrecon->setScalarPrecon(i, scalPrecon);
      }
      rightPrecon_ = vecPrecon;
    }


    // === create vector creator ===
    solver_->setVectorCreator(NEW SystemVector::Creator("temp",
377
							componentSpaces, 
378
							nComponents));
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
  }

  void ProblemVec::createEstimator()
  {
    FUNCNAME("ProblemVec::createEstimator()");

    int i, j;

    // create and set leaf data prototype
    for(i = 0; i < static_cast<int>(meshes_.size()); i++) {
      meshes_[i]->setElementDataPrototype
	(NEW LeafDataEstimatableVec(NEW LeafDataCoarsenableVec));
    }  

    char number[3];
394
    std::string estName;
395

396
    for(i = 0; i < nComponents; i++) {
397
398
      TEST_EXIT(estimator_[i] == NULL)("estimator already created\n");
      sprintf(number, "%d", i);
399
      estName = name_ + "->estimator[" + std::string(number) + "]";
400
401

      // === create estimator ===
402
      std::string estimatorType("no");
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
      GET_PARAMETER(0, estName, &estimatorType);
      EstimatorCreator *estimatorCreator = 
	dynamic_cast<EstimatorCreator*>(
					CreatorMap<Estimator>::getCreator(estimatorType));
      if(estimatorCreator) {
	estimatorCreator->setName(estName);
	estimatorCreator->setRow(i);
	if(estimatorType == "recovery") {
	  dynamic_cast<RecoveryEstimator::Creator*>(estimatorCreator)->
	    setSolution(solution_->getDOFVector(i));
	}
	estimator_[i] = estimatorCreator->create();
      }


      if(estimator_[i]) {
419
	for(j=0; j < nComponents; j++) {
420
421
422
423
424
425
426
427
428
429
430
431
	  estimator_[i]->addSystem((*systemMatrix_)[i][j], 
				   solution_->getDOFVector(j), 
				   rhs_->getDOFVector(j));
	}
      }
    }
  }

  void ProblemVec::createMarker()
  {
    FUNCNAME("ProblemVec::createMarker()");

432
    std::string numberedName;
433
434
    char number[10];
    int numMarkersCreated = 0;
435

436
    for (int i = 0; i < nComponents; i++) {
437
      sprintf(number, "[%d]", i);
438
      numberedName = name_ + "->marker" + std::string(number);
439
440
      marker[i] = Marker::createMarker(numberedName, i);
      if (marker[i]) {
441
442
	numMarkersCreated++;
	if (numMarkersCreated > 1)
443
	  marker[i]->setMaximumMarking(true);
444
445
446
447
448
449
450
451
452
453
      }
    }
  }

  void ProblemVec::createFileWriter()
  {
    FUNCNAME("ProblemVec::createFileWriter()");
  

    // Create one filewriter for all components of the problem
454
455
    std::string numberedName  = name_ + "->output";
    std::string filename = "";
456
457
458
    GET_PARAMETER(0, numberedName + "->filename", &filename);

    if (filename != "") {
459
      std::vector< DOFVector<double>* > solutionList(nComponents);
460

461
      for (int i = 0; i < nComponents; i++) {
Thomas Witkowski's avatar
Thomas Witkowski committed
462
	TEST_EXIT(componentMeshes[0] == componentMeshes[i])
463
464
465
466
467
468
	  ("All Meshes have to be equal to write a vector file.\n");

	solutionList[i] = solution_->getDOFVector(i);
      }

      fileWriters_.push_back(NEW FileWriter(numberedName,
Thomas Witkowski's avatar
Thomas Witkowski committed
469
					    componentMeshes[0],
470
471
472
473
474
475
					    solutionList));
    }


    // Create own filewriters for each components of the problem
    char number[10];
476
    for (int i = 0; i < nComponents; i++) {
477
      sprintf(number, "[%d]", i);
478
      numberedName  = name_ + "->output" + std::string(number);
479
480
481
482
483
      filename = "";
      GET_PARAMETER(0, numberedName + "->filename", &filename);

      if (filename != "") {
	fileWriters_.push_back(NEW FileWriter(numberedName, 
Thomas Witkowski's avatar
Thomas Witkowski committed
484
					      componentMeshes[i], 
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
					      solution_->getDOFVector(i)));
      }
    }


    // Check for serializer
    int writeSerialization = 0;
    GET_PARAMETER(0, name_ + "->write serialization", "%d", &writeSerialization);
    if (writeSerialization) {
      MSG("Use are using the obsolete parameter: %s->write serialization\n", name_.c_str());
      MSG("Please use instead the following parameter: %s->output->write serialization\n", name_.c_str());
      ERROR_EXIT("Usage of an obsolete parameter (see message above)!\n");
    }

    GET_PARAMETER(0, name_ + "->output->write serialization", "%d", &writeSerialization);
    if (writeSerialization) {
      fileWriters_.push_back(NEW Serializer<ProblemVec>(this));
    }
  }

  void ProblemVec::doOtherStuff()
  {
  }

  void ProblemVec::solve(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("Problem::solve()");

    if (!solver_) {
      WARNING("no solver\n");
      return;
    }

#ifdef _OPENMP
    double wtime = omp_get_wtime();
#endif

    clock_t first = clock();
    int iter = solver_->solve(matVec_, solution_, rhs_, leftPrecon_, rightPrecon_);   
524
    
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
#ifdef _OPENMP
    INFO(info_, 8)("solution of discrete system needed %.5f seconds system time / %.5f seconds wallclock time\n",
		   TIME_USED(first, clock()),
		   omp_get_wtime() - wtime);
#else
    INFO(info_, 8)("solution of discrete system needed %.5f seconds\n",
		   TIME_USED(first, clock()));
#endif


    adaptInfo->setSolverIterations(iter);
    adaptInfo->setMaxSolverIterations(solver_->getMaxIterations());
    adaptInfo->setSolverTolerance(solver_->getTolerance());
    adaptInfo->setSolverResidual(solver_->getResidual());
  }

  void ProblemVec::estimate(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("ProblemVec::estimate()");

    clock_t first = clock();

547
548
549
550
#ifdef _OPENMP
    double wtime = omp_get_wtime();
#endif

551
    if (computeExactError) {
Thomas Witkowski's avatar
Thomas Witkowski committed
552
      computeError(adaptInfo);
553
554
555
556
557
558
559
560
561
562
563
564
565
    } else {
      for (int i = 0; i < nComponents; i++) {
	Estimator *scalEstimator = estimator_[i];
	
	if (scalEstimator) {
	  scalEstimator->estimate(adaptInfo->getTimestep());
	  adaptInfo->setEstSum(scalEstimator->getErrorSum(), i);
	  adaptInfo->setEstMax(scalEstimator->getErrorMax(), i);
	  adaptInfo->setTimeEstSum(scalEstimator->getTimeEst(), i);
	  adaptInfo->setTimeEstMax(scalEstimator->getTimeEstMax(), i);
	} else {
	  WARNING("no estimator for component %d\n" , i);
	}
566
567
568
      }
    }

569
570
571
572
573
574
575
576
577
578
#ifdef _OPENMP
    INFO(info_, 8)("estimation of the error needed %.5f seconds system time / %.5f seconds wallclock time\n",
		   TIME_USED(first, clock()),
		   omp_get_wtime() - wtime);
#else
    INFO(info_, 8)("estimation of the error needed %.5f seconds\n",
		   TIME_USED(first, clock()));

#endif

579
580
581
582
583
584
585
586
587
588
589
  }

  Flag ProblemVec::markElements(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("ProblemVec::markElements()");

    // to enforce albert-like behavior: refinement even if space tolerance
    // here is reached already because of time adaption
    allowFirstRefinement();

    Flag markFlag = 0;
590
    for (int i = 0; i < nComponents; i++) {
591
      if (marker[i]) {
Thomas Witkowski's avatar
Thomas Witkowski committed
592
	markFlag |= marker[i]->markMesh(adaptInfo, componentMeshes[i]);
593
594
595
596
      } else {
	WARNING("no marker for component %d\n", i);
      }
    }
597
    
598
599
600
601
602
603
604
    return markFlag;
  }

  Flag ProblemVec::refineMesh(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("ProblemVec::refineMesh()");

605
    int nMeshes = static_cast<int>(meshes_.size());
606
    Flag refineFlag = 0;
607
    for (int i = 0; i < nMeshes; i++) {
608
609
610
611
612
613
614
615
616
      refineFlag |= refinementManager_->refineMesh(meshes_[i]);
    }
    return refineFlag;
  }

  Flag ProblemVec::coarsenMesh(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("ProblemVec::coarsenMesh()");

617
    int nMeshes = static_cast<int>(meshes_.size());
618
    Flag coarsenFlag = 0;
619
620
    for (int i = 0; i < nMeshes; i++) {
      if (adaptInfo->isCoarseningAllowed(i)) {
621
622
623
624
625
626
627
628
629
630
631
632
633
	coarsenFlag |= coarseningManager_->coarsenMesh(meshes_[i]);

	WARNING("coarsening for component %d no allowed\n", i);
      }
    }
    return coarsenFlag;
  }

  Flag ProblemVec::oneIteration(AdaptInfo *adaptInfo, Flag toDo)
  {
    FUNCNAME("ProblemVec::oneIteration()");

    if (allowFirstRef_) {
634
      for (int i = 0; i < nComponents; i++) {
635
636
637
638
	adaptInfo->allowRefinement(true, i);
      }
      allowFirstRef_ = false;
    } else {
639
      for (int i = 0; i < nComponents; i++) {
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
	if (adaptInfo->spaceToleranceReached(i)) {
	  adaptInfo->allowRefinement(false, i);
	} else {
	  adaptInfo->allowRefinement(true, i);	
	}
      }
    }

    return StandardProblemIteration::oneIteration(adaptInfo, toDo);
  }

  void ProblemVec::buildAfterCoarsen(AdaptInfo *adaptInfo, Flag flag) 
  {
    FUNCNAME("ProblemVec::buildAfterCoarsen()");

    clock_t first = clock();

657
658
659
660
#ifdef _OPENMP
    double wtime = omp_get_wtime();
#endif

Thomas Witkowski's avatar
Thomas Witkowski committed
661
    for (int i = 0; i < static_cast<int>(meshes_.size()); i++) {
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
      meshes_[i]->dofCompress();
    }

    Flag assembleFlag = 
      flag | 
      (*systemMatrix_)[0][0]->getAssembleFlag() | 
      rhs_->getDOFVector(0)->getAssembleFlag()   |
      Mesh::CALL_LEAF_EL                        | 
      Mesh::FILL_COORDS                         |
      Mesh::FILL_DET                            |
      Mesh::FILL_GRD_LAMBDA |
      Mesh::FILL_NEIGH;

    if (useGetBound_) {
      assembleFlag |= Mesh::FILL_BOUND;
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
679

680
    for (int i = 0; i < nComponents; i++) {
681
      MSG("%d DOFs for %s\n", 
682
683
	  componentSpaces[i]->getAdmin()->getUsedSize(), 
	  componentSpaces[i]->getName().c_str());
684
685

      rhs_->getDOFVector(i)->set(0.0);
686
      for (int j = 0; j < nComponents; j++) {
687
688
689
690
691
692
693
	if ((*systemMatrix_)[i][j]) {
	  // The matrix should not be deleted, if it was assembled before
	  // and it is marked to be assembled only once.
	  if (!(assembleMatrixOnlyOnce_[i][j] && assembledMatrix_[i][j])) {
	    (*systemMatrix_)[i][j]->clear();
	  }
	}
694
695
696
      }
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
697
    for (int i = 0; i < nComponents; i++) {
698
      for (int j = 0; j < nComponents; j++) {
699
700
701
702
	// Only if this variable is true, the current matrix will be assembled.	
	bool assembleMatrix = true;
	// The DOFMatrix which should be assembled (or not, if assembleMatrix
	// will be set to false).
703
704
	DOFMatrix *matrix = (*systemMatrix_)[i][j];

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
	// If the matrix was assembled before and it is marked to be assembled
	// only once, it will not be assembled.
	if (assembleMatrixOnlyOnce_[i][j] && assembledMatrix_[i][j]) {
	  assembleMatrix = false;
	}
	// If there is no DOFMatrix (e.g. if it is completly 0), do not assemble.
	if (!matrix) {
	  assembleMatrix = false;
	}

	// If the matrix should not be assembled, the rhs vector has to be considered.
	// This will be only done, if i == j. So, if both is not true, we can jump
	// to the next matrix.
	if (!assembleMatrix && i != j) {
	  continue;
	}

722
723
724
	if (assembleMatrix && matrix->getBoundaryManager())
	  matrix->getBoundaryManager()->initMatrix(matrix);

Thomas Witkowski's avatar
Thomas Witkowski committed
725
	if (componentSpaces[i] == componentSpaces[j]) {
726
	  //	  std::cout << "--- assembleOnOneMesh ---\n";
Thomas Witkowski's avatar
Thomas Witkowski committed
727
728
729
730
	  assembleOnOneMesh(componentSpaces[i],
			    assembleFlag,
			    assembleMatrix ? matrix : NULL,
			    (i == j) ? rhs_->getDOFVector(i) : NULL);
731
732
	  //	  std::cout << "--- Finished ---\n";
	  //	  std::cout << "--- Dim: " << matrix->getUsedSize() << "x" << matrix->getNumCols() << "---\n";
Thomas Witkowski's avatar
Thomas Witkowski committed
733
	} else {
734
	  //	  std::cout << "--- assembleOnDifMesh ---\n";
Thomas Witkowski's avatar
Thomas Witkowski committed
735
736
737
738
	  assembleOnDifMeshes(componentSpaces[i], componentSpaces[j],
			      assembleFlag,
			      assembleMatrix ? matrix : NULL,
			      (i == j) ? rhs_->getDOFVector(i) : NULL);	  
739
740
	  //	  std::cout << "--- Finished ---\n";
	  //	  std::cout << "--- Dim: " << matrix->getUsedSize() << "x" << matrix->getNumCols() << "---\n";
741
	}
Thomas Witkowski's avatar
Thomas Witkowski committed
742

743
744
745
	if (assembleMatrix && matrix->getBoundaryManager())
	  matrix->getBoundaryManager()->exitMatrix(matrix);	  
	
746
	assembledMatrix_[i][j] = true;
747
748
      }

749
750
751
752
753
      // And now assemble boundary conditions on the vectors
      assembleBoundaryConditions(rhs_->getDOFVector(i),
				 solution_->getDOFVector(i),
				 componentMeshes[i],
				 assembleFlag);
754
    }
755
756
757
758
759
760

#ifdef _OPENMP
    INFO(info_, 8)("buildAfterCoarsen needed %.5f seconds system time / %.5f seconds wallclock time\n",
		   TIME_USED(first, clock()),
		   omp_get_wtime() - wtime);
#else
761
    INFO(info_, 8)("buildAfterCoarsen needed %.5f seconds\n",
Thomas Witkowski's avatar
Thomas Witkowski committed
762
		   TIME_USED(first, clock()));
763
#endif
764
765
766
767
768
769
  }

  void ProblemVec::writeFiles(AdaptInfo *adaptInfo, bool force) 
  {
    FUNCNAME("ProblemVec::writeFiles()");

770
771
772
773
774
775
776
777
778
779
780
781
782
    clock_t first = clock();

#ifdef _OPENMP
    double wtime = omp_get_wtime();
#endif

    int i;
    int size = static_cast<int>(fileWriters_.size());
#ifdef _OPENMP
#pragma omp parallel for schedule(static, 1)
#endif
    for (i = 0; i < size; i++) {
      fileWriters_[i]->writeFiles(adaptInfo, force);
783
    }
784
785
786
787
788
789
790
791
792
    
#ifdef _OPENMP
    INFO(info_, 8)("writeFiles needed %.5f seconds system time / %.5f seconds wallclock time\n",
		   TIME_USED(first, clock()),
		   omp_get_wtime() - wtime);
#else
    INFO(info_, 8)("writeFiles needed %.5f seconds\n",
		   TIME_USED(first, clock()));
#endif
793
794
  }

795
  void ProblemVec::interpolInitialSolution(std::vector<AbstractFunction<double, WorldVector<double> >*> *fct) 
796
797
798
799
800
801
802
803
804
805
806
807
808
  {
    FUNCNAME("ProblemVec::interpolInitialSolution()");

    solution_->interpol(fct);
  }

  void ProblemVec::addMatrixOperator(Operator *op, 
				     int i, int j,
				     double *factor,
				     double *estFactor)
  {
    FUNCNAME("ProblemVec::addMatrixOperator()");

809
    if (!(*systemMatrix_)[i][j]) {
810
      TEST_EXIT(i != j)("should have been created already\n");
811
812
      (*systemMatrix_)[i][j] = NEW DOFMatrix(componentSpaces[i],
					     componentSpaces[j],
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
					     "");
      (*systemMatrix_)[i][j]->setCoupleMatrix(true);

      (*systemMatrix_)[i][j]->getBoundaryManager()->
	setBoundaryConditionMap((*systemMatrix_)[i][i]->getBoundaryManager()->
				getBoundaryConditionMap());
    }    
    (*systemMatrix_)[i][j]->addOperator(op, factor, estFactor);
  }

  void ProblemVec::addVectorOperator(Operator *op, int i,
				     double *factor,
				     double *estFactor)
  {
    FUNCNAME("ProblemVec::addVectorOperator()");

    rhs_->getDOFVector(i)->addOperator(op, factor, estFactor);
  }

  void ProblemVec::addDirichletBC(BoundaryType type, int system,
				  AbstractFunction<double, WorldVector<double> >* b)
  {
    FUNCNAME("ProblemVec::addDirichletBC()");

    DirichletBC *dirichlet = new DirichletBC(type, 
					     b, 
839
					     componentSpaces[system]);
840
    for (int i = 0; i < nComponents; i++) {
841
842
843
844
      if (systemMatrix_ && (*systemMatrix_)[system][i]) {
	(*systemMatrix_)[system][i]->getBoundaryManager()->addBoundaryCondition(dirichlet);
      }
    }
845

846
847
    if (rhs_)
      rhs_->getDOFVector(system)->getBoundaryManager()->addBoundaryCondition(dirichlet);
848

849
850
851
852
853
854
855
856
857
858
859
    if (solution_)
      solution_->getDOFVector(system)->getBoundaryManager()->addBoundaryCondition(dirichlet);
  }

  void ProblemVec::addNeumannBC(BoundaryType type, int row, int col, 
				AbstractFunction<double, WorldVector<double> > *n)
  {
    FUNCNAME("ProblemVec::addNeumannBC()");

    NeumannBC *neumann = 
      new NeumannBC(type, n, 
860
861
		    componentSpaces[row], 
		    componentSpaces[col]);
862
    if (rhs_)
863
864
865
866
867
868
869
870
871
872
873
      rhs_->getDOFVector(row)->getBoundaryManager()->addBoundaryCondition(neumann);
  }

  void ProblemVec::addRobinBC(BoundaryType type, int row, int col, 
			      AbstractFunction<double, WorldVector<double> > *n,
			      AbstractFunction<double, WorldVector<double> > *r)
  {
    FUNCNAME("ProblemVec::addRobinBC()");

    RobinBC *robin = 
      new RobinBC(type, n, r, 
874
875
		  componentSpaces[row], 
		  componentSpaces[col]);
876
    if (rhs_)
877
      rhs_->getDOFVector(row)->getBoundaryManager()->addBoundaryCondition(robin);
878
879

    if (systemMatrix_ && (*systemMatrix_)[row][col]) {
880
881
882
883
884
885
886
887
      (*systemMatrix_)[row][col]->getBoundaryManager()->addBoundaryCondition(robin);
    }
  }

  void ProblemVec::addPeriodicBC(BoundaryType type, int row, int col) 
  {
    FUNCNAME("ProblemVec::addPeriodicBC()");

888
    FiniteElemSpace *feSpace = componentSpaces[row];
889
890
891

    PeriodicBC *periodic = new PeriodicBC(type, feSpace);

892
    if (systemMatrix_ && (*systemMatrix_)[row][col]) 
893
      (*systemMatrix_)[row][col]->getBoundaryManager()->addBoundaryCondition(periodic);
894
895

    if (rhs_) 
896
897
898
899
      rhs_->getDOFVector(row)->getBoundaryManager()->
	addBoundaryCondition(periodic);
  }

Thomas Witkowski's avatar
Thomas Witkowski committed
900
901
902
903
904
  void ProblemVec::assembleOnOneMesh(FiniteElemSpace *feSpace, Flag assembleFlag,
				     DOFMatrix *matrix, DOFVector<double> *vector)
  {
    Mesh *mesh = feSpace->getMesh();
    const BasisFunction *basisFcts = feSpace->getBasisFcts();
905
906

#ifdef _OPENMP
Thomas Witkowski's avatar
Thomas Witkowski committed
907
    TraverseParallelStack stack;
908
909
910
#else
    TraverseStack stack;
#endif   
Thomas Witkowski's avatar
Thomas Witkowski committed
911

912
#ifdef _OPENMP
Thomas Witkowski's avatar
Thomas Witkowski committed
913
#pragma omp parallel
914
#endif
Thomas Witkowski's avatar
Thomas Witkowski committed
915
916
917
918
919
920
921
    {
      BoundaryType *bound = useGetBound_ ? GET_MEMORY(BoundaryType, basisFcts->getNumber()) : NULL;

      // Create for every thread its private matrix and vector, on that
      // the thread will assemble its part of the mesh.
      DOFMatrix *tmpMatrix = NULL;
      DOFVector<double> *tmpVector = NULL; 
Thomas Witkowski's avatar
Thomas Witkowski committed
922
923

      if (matrix) {
Thomas Witkowski's avatar
Thomas Witkowski committed
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
	tmpMatrix = NEW DOFMatrix(matrix->getRowFESpace(),
				  matrix->getColFESpace(),
				  "tmp");

	// Copy the global matrix to the private matrix, because we need the
	// operators defined on the global matrix in the private one. Only the
	// values have to be set to zero.
	*tmpMatrix = *matrix;
	tmpMatrix->clear();
      }

      if (vector) {
	tmpVector = NEW DOFVector<double>(vector->getFESpace(), "tmp");

	// Copy the global vector to the private vector, because we need the
	// operatirs defined on the global vector in the private one. But set
	// the values to zero of the private vector after copying.
	*tmpVector = *vector;
	tmpVector->set(0.0);
      }

945
946
947
948
      // Because we are using the parallel traverse stack, each thread will
      // traverse only a part of the mesh.
      ElInfo *elInfo = stack.traverseFirst(mesh, -1, assembleFlag);

949
950
951
952
953
954
955
      // After creating privat copies of the DOFMatrix and the DOFVector, all threads
      // have to wait at this barrier. Especially for small problems this is required,
      // because otherwise one thread may be finished with assembling, before another
      // has made his private copy.
#ifdef _OPENMP
#pragma omp barrier
#endif
Thomas Witkowski's avatar
Thomas Witkowski committed
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
      while (elInfo) {
	if (useGetBound_) {
	  basisFcts->getBound(elInfo, bound);
	}
	
	if (matrix) {
	  tmpMatrix->assemble(1.0, elInfo, bound);
	  
	  // Take the matrix boundary manager from the public matrix,
	  // but assemble the boundary conditions on the thread private matrix.
	  if (matrix->getBoundaryManager()) {
	    matrix->getBoundaryManager()->
	      fillBoundaryConditions(elInfo, tmpMatrix);
	  }		      
	}
	
	if (vector) {
	  tmpVector->assemble(1.0, elInfo, bound);
	}
Thomas Witkowski's avatar
Thomas Witkowski committed
975
	
Thomas Witkowski's avatar
Thomas Witkowski committed
976
	elInfo = stack.traverseNext(elInfo);
Thomas Witkowski's avatar
Thomas Witkowski committed
977
      }
Thomas Witkowski's avatar
Thomas Witkowski committed
978
979
980
981
982
983
984

      // After mesh traverse, all thread have to added their private matrices and
      // vectors to the global public matrix and public vector. Therefore, this is 
      // a critical section, which is allowed to be executed by on thread only at 
      // the same time.

      if (matrix) {
985
#ifdef _OPENMP
Thomas Witkowski's avatar
Thomas Witkowski committed
986
#pragma omp critical
987
#endif
Thomas Witkowski's avatar
Thomas Witkowski committed
988
989
990
991
992
993
994
995
996
997
	{
	  addDOFMatrix(matrix, tmpMatrix);

	  // Remove rows corresponding to DOFs on a Dirichlet boundary.
	  matrix->removeRowsWithDBC(tmpMatrix->getApplyDBCs());
	}

	DELETE tmpMatrix;
      }

Thomas Witkowski's avatar
Thomas Witkowski committed
998
      if (vector) {
999
#ifdef _OPENMP
Thomas Witkowski's avatar
Thomas Witkowski committed
1000
#pragma omp critical
1001
#endif
Thomas Witkowski's avatar
Thomas Witkowski committed
1002
1003
1004
	*vector += *tmpVector;

	DELETE tmpVector;
Thomas Witkowski's avatar
Thomas Witkowski committed
1005
1006
      }

Thomas Witkowski's avatar
Thomas Witkowski committed
1007
1008
1009
1010
1011
1012
      if (useGetBound_) {
	FREE_MEMORY(bound, BoundaryType, basisFcts->getNumber());
      }	      

    } // pragma omp parallel

Thomas Witkowski's avatar
Thomas Witkowski committed
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
  }

  void ProblemVec::assembleOnDifMeshes(FiniteElemSpace *rowFeSpace, FiniteElemSpace *colFeSpace,
				       Flag assembleFlag,
				       DOFMatrix *matrix, DOFVector<double> *vector)
  {
    Mesh *rowMesh = rowFeSpace->getMesh();
    Mesh *colMesh = colFeSpace->getMesh();

    const BasisFunction *basisFcts = rowFeSpace->getBasisFcts();
    BoundaryType *bound = NULL;
    if (useGetBound_) {
      bound = GET_MEMORY(BoundaryType, basisFcts->getNumber());
    }

    DualTraverse dualTraverse;
    ElInfo *rowElInfo, *colElInfo;
    ElInfo *largeElInfo, *smallElInfo;

1032
    dualTraverse.setFillSubElemInfo(true);
Thomas Witkowski's avatar
Thomas Witkowski committed
1033
1034
1035
1036
1037
1038
1039
1040
1041
    bool cont = dualTraverse.traverseFirst(rowMesh, colMesh, -1, -1,
					   assembleFlag, assembleFlag,
					   &rowElInfo, &colElInfo,
					   &smallElInfo, &largeElInfo);
    while (cont) {
      Element *rowElem = rowElInfo->getElement();
      Element *colElem = colElInfo->getElement();

      if (rowElInfo->getLevel() != colElInfo->getLevel()) {
1042
	if (smallElInfo == rowElInfo) {
Thomas Witkowski's avatar
Thomas Witkowski committed
1043
	  std::cout << "Row = small\n";
1044
1045
	  ERROR_EXIT("NOCH EIN PAAR GEDANKEN MACHEN!\n");
	} else {
Thomas Witkowski's avatar
Thomas Witkowski committed
1046
	  std::cout << "Row = large\n";
1047
	}
Thomas Witkowski's avatar
Thomas Witkowski committed
1048
1049
1050
1051
1052
1053

	if (largeElInfo == colElInfo) 
	  std::cout << "Col = large\n";
	else
	  std::cout << "Col = small\n";

1054
1055
1056
	if (useGetBound_) {
	  basisFcts->getBound(rowElInfo, bound);
	}
Thomas Witkowski's avatar
Thomas Witkowski committed
1057

1058
	if (matrix) {
1059
1060
1061
1062
1063
	  matrix->assemble(1.0, rowElInfo, colElInfo, bound);
	}
      } else {
	if (useGetBound_) {
	  basisFcts->getBound(rowElInfo, bound);
1064
	}
Thomas Witkowski's avatar
Thomas Witkowski committed
1065
      
1066
1067
1068
1069
1070
1071
1072
1073
	if (matrix) {
	  matrix->assemble(1.0, rowElInfo, bound);
	  
	  if (matrix->getBoundaryManager()) {
	    matrix->getBoundaryManager()->
	      fillBoundaryConditions(rowElInfo, matrix);
	  }		      
	}
Thomas Witkowski's avatar
Thomas Witkowski committed
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
      }
      
      if (vector) {
	vector->assemble(1.0, rowElInfo, bound);
      }

      cont = dualTraverse.traverseNext(&rowElInfo, &colElInfo,
				       &smallElInfo, &largeElInfo);
    }

    if (useGetBound_) {
      FREE_MEMORY(bound, BoundaryType, basisFcts->getNumber());
    }
  }

1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
  void ProblemVec::assembleBoundaryConditions(DOFVector<double> *rhs,
					      DOFVector<double> *solution,
					      Mesh *mesh,
					      Flag assembleFlag)
  {
    /* ================ Initialization of vectors ==================== */

    if (rhs->getBoundaryManager())
      rhs->getBoundaryManager()->initVector(rhs);      
    if (solution->getBoundaryManager())
      solution->getBoundaryManager()->initVector(solution);
    
#ifdef _OPENMP
    TraverseParallelStack stack;
#else
    TraverseStack stack;
#endif

    /* ================= Parallel Boundary Assemblage ================= */
#ifdef _OPENMP
#pragma omp parallel
#endif
    {
      // Each thread assembles on its own dof-vectors.
      DOFVector<double> *tmpRhsVec = NEW DOFVector<double>(rhs->getFESpace(), "tmpRhs");
      DOFVector<double> *tmpSolVec = NEW DOFVector<double>(solution->getFESpace(), "tmpSol");
      tmpRhsVec->set(0.0);
      tmpSolVec->set(0.0);


      // (Parallel) traverse of mesh.
      ElInfo *elInfo = stack.traverseFirst(mesh, -1, assembleFlag);
      while (elInfo) {
	if (rhs->getBoundaryManager())
	  rhs->getBoundaryManager()-> fillBoundaryConditions(elInfo, tmpRhsVec);
	
	if (solution->getBoundaryManager())
	  solution->getBoundaryManager()->fillBoundaryConditions(elInfo, tmpSolVec);
      
	elInfo = stack.traverseNext(elInfo);
      }


      // After (parallel) mesh traverse, the result is applied to the final
      // vectors. This section is not allowed to be executed by more than one
      // thread at the same time.
#ifdef _OPENMP
#pragma omp critical
#endif
      {
	DOFVector<double>::Iterator rhsIt(rhs, USED_DOFS);
	DOFVector<double>::Iterator solIt(solution, USED_DOFS);
	DOFVector<double>::Iterator tmpRhsIt(tmpRhsVec, USED_DOFS);
	DOFVector<double>::Iterator tmpSolIt(tmpSolVec, USED_DOFS);
	for (rhsIt.reset(), solIt.reset(), tmpRhsIt.reset(), tmpSolIt.reset();
	     !rhsIt.end();
	     ++rhsIt, ++solIt, ++tmpRhsIt, ++tmpSolIt) {	     
	  if (*tmpRhsIt != 0.0)
	    *rhsIt = *tmpRhsIt;
	  
	  if (*tmpSolIt != 0.0)
	    *solIt = *tmpSolIt;	  
	}
      } // pragma omp critical


      DELETE tmpRhsVec;
      DELETE tmpSolVec;
    } // pragma omp parallel
     

    /* ======================= Finalize vectors ================== */

    if (rhs->getBoundaryManager())
      rhs->getBoundaryManager()->exitVector(rhs);
    if (solution->getBoundaryManager())
      solution->getBoundaryManager()->exitVector(solution);
  }


1169
  void ProblemVec::writeResidualMesh(AdaptInfo *adaptInfo, const std::string name)
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
  {
    FUNCNAME("ProblemVec::writeResidualMesh()");

    Mesh *mesh = this->getMesh(0);
    FiniteElemSpace *fe = this->getFESpace(0);
    
    std::map<int, double> vec;
    
    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(mesh,
					 -1, 
					 Mesh::CALL_LEAF_EL | 
					 Mesh::FILL_COORDS);
    
    while (elInfo) {		  
      Element *el = elInfo->getElement();
      double lError = el->getEstimation(0);
      
      vec[elInfo->getElement()->getIndex()] = lError;
      elInfo = stack.traverseNext(elInfo);
    }
    
    ElementFileWriter fw(name, mesh, fe, vec);
    fw.writeFiles(adaptInfo, true);    
  }

1196
  void ProblemVec::serialize(std::ostream &out) 
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
  {
    FUNCNAME("ProblemVec::serialize()");

    SerializerUtil::serializeBool(out, &allowFirstRef_);
    
    for (int i = 0; i < static_cast<int>(meshes_.size()); i++) {
      meshes_[i]->serialize(out);
    }

    solution_->serialize(out);
  }

1209
  void ProblemVec::deserialize(std::istream &in) 
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
  {
    FUNCNAME("ProblemVec::deserialize()");

    SerializerUtil::deserializeBool(in, &allowFirstRef_);

    for (int i = 0; i < static_cast<int>(meshes_.size()); i++) {
      meshes_[i]->deserialize(in);
    }

    solution_->deserialize(in);
  }
Thomas Witkowski's avatar
Thomas Witkowski committed
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276

  void ProblemVec::computeError(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("ProblemVec::computeError()");

    for (int i = 0; i < nComponents; i++) {		
      TEST_EXIT(exactSolutionFcts[i])("No solution function given!\n");

      // Compute the difference between exact and computed solution
      DOFVector<double> *tmp = NEW DOFVector<double>(componentSpaces[i], "tmp");
      tmp->interpol(exactSolutionFcts[i]);
      double solMax = tmp->absMax();
      *tmp -= *(solution_->getDOFVector(i));
      
      MSG("L2    error = %.8e\n", tmp->L2Norm());
      MSG("L-inf error = %.8e\n", tmp->absMax() / solMax);
      
      adaptInfo->setEstSum(tmp->absMax() / solMax, i);
      adaptInfo->setEstMax(tmp->absMax() / solMax, i);
      
      // To set element estimates, compute a vector with the difference
      // between exact and computed solution for each DOF.
      DOFVector<double> *sol = NEW DOFVector<double>(componentSpaces[i], "tmp");
      sol->interpol(exactSolutionFcts[i]);
      DOFVector<double>::Iterator it1(sol, USED_DOFS);
      DOFVector<double>::Iterator it2(tmp, USED_DOFS);
      for (it1.reset(), it2.reset(); !it1.end(); ++it1, ++it2) {
	if ((abs(*it1) <= DBL_TOL) || (abs(*it2) <= DBL_TOL)) {
	  *it2 = 0.0;
	} else {
	  *it2 = abs(*it2 / *it1);
	}
      }

      // Compute estimate for every mesh element
      Vector<DegreeOfFreedom> locInd(componentSpaces[i]->getBasisFcts()->getNumber());
      TraverseStack stack;
      ElInfo *elInfo = stack.traverseFirst(componentMeshes[i], -1, Mesh::CALL_LEAF_EL);
      while (elInfo) {
	componentSpaces[i]->getBasisFcts()->getLocalIndicesVec(elInfo->getElement(),
							       componentSpaces[i]->getAdmin(),
							       &locInd);
	double estimate = 0.0;
	for (int j = 0; j < componentSpaces[i]->getBasisFcts()->getNumber(); j++) {
	  estimate += (*tmp)[locInd[j]];
	}
	elInfo->getElement()->setEstimation(estimate, i);
	elInfo->getElement()->setMark(0);
								
	elInfo = stack.traverseNext(elInfo);
      }  
      
      DELETE tmp;	
      DELETE sol;
    }						           
  }
1277
1278
}