ProblemVec.cc 37.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#include "ProblemVec.h"
#include "RecoveryEstimator.h"
#include "Serializer.h"
#include "AbstractFunction.h"
#include "Operator.h"
#include "SystemVector.h"
#include "DOFMatrix.h"
#include "FiniteElemSpace.h"
#include "Estimator.h"
#include "Marker.h"
#include "AdaptInfo.h"
#include "FileWriter.h"
#include "CoarseningManager.h"
#include "RefinementManager.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
15
#include "DualTraverse.h"
16
17
18
19
20
21
22
23
#include "Mesh.h"
#include "OEMSolver.h"
#include "Preconditioner.h"
#include "MatVecMultiplier.h"
#include "DirichletBC.h"
#include "RobinBC.h"
#include "PeriodicBC.h"
#include "Lagrange.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
24
#include "Flag.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
25
#include "TraverseParallel.h"
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

namespace AMDiS {

  ProblemVec *ProblemVec::traversePtr_ = NULL;

  void ProblemVec::initialize(Flag initFlag,
			      ProblemVec *adoptProblem,
			      Flag adoptFlag)
  {
    FUNCNAME("ProblemVec::initialize()");
    
    // === create meshes ===
    if (meshes_.size() != 0) { 
      WARNING("meshes already created\n");
    } else {
      if (initFlag.isSet(CREATE_MESH) || 
	  ((!adoptFlag.isSet(INIT_MESH))&&
	   (initFlag.isSet(INIT_SYSTEM) || initFlag.isSet(INIT_FE_SPACE)))) {
	createMesh();
      } 
      if (adoptProblem && 
	  (adoptFlag.isSet(INIT_MESH) || 
	   adoptFlag.isSet(INIT_SYSTEM) ||
	   adoptFlag.isSet(INIT_FE_SPACE))) {
	meshes_ = adoptProblem->getMeshes();
Thomas Witkowski's avatar
Thomas Witkowski committed
51
	componentMeshes = adoptProblem->componentMeshes;
52
53
54
55
56
57
58
59
60
	refinementManager_ = adoptProblem->refinementManager_;
	coarseningManager_ = adoptProblem->coarseningManager_;
      }
    }

    if (meshes_.size() == 0) 
      WARNING("no mesh created\n");

    // === create fespace ===
61
    if (feSpaces.size() != 0) {
62
63
64
65
66
67
68
69
      WARNING("feSpaces already created\n");
    } else {
      if (initFlag.isSet(INIT_FE_SPACE) || 
	  (initFlag.isSet(INIT_SYSTEM)&&!adoptFlag.isSet(INIT_FE_SPACE))) {
	createFESpace();
      } 
      if (adoptProblem &&
	  (adoptFlag.isSet(INIT_FE_SPACE) || adoptFlag.isSet(INIT_SYSTEM))) {
70
71
	feSpaces = adoptProblem->getFESpaces();
	componentSpaces = adoptProblem->componentSpaces;
72
73
74
      }
    }

75
    if (feSpaces.size() == 0) 
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
      WARNING("no feSpace created\n");

    // === create system ===
    if (initFlag.isSet(INIT_SYSTEM)) {
      createMatricesAndVectors();
    } 
    if (adoptProblem && adoptFlag.isSet(INIT_SYSTEM)) {
      solution_ = adoptProblem->getSolution();
      rhs_ = adoptProblem->getRHS();
      systemMatrix_ = adoptProblem->getSystemMatrix();
    }

    // === create solver ===
    if (solver_) {
      WARNING("solver already created\n");
    } else {
      if (initFlag.isSet(INIT_SOLVER)) {
	createSolver();
      } 
      if (adoptProblem && adoptFlag.isSet(INIT_SOLVER)) {
	TEST_EXIT(!solver_)("solver already created\n");
	solver_ = adoptProblem->getSolver();
      }
    }

    if (!solver_) 
      WARNING("no solver created\n");

    // === create estimator ===
    if (initFlag.isSet(INIT_ESTIMATOR)) {
      createEstimator();
    } 
    if (adoptProblem && adoptFlag.isSet(INIT_ESTIMATOR)) {
      estimator_ = adoptProblem->getEstimator();
    } 

    // === create marker ===
    if (initFlag.isSet(INIT_MARKER)) {
      createMarker();
    } 
    if (adoptProblem && adoptFlag.isSet(INIT_MARKER)) {
117
      marker = adoptProblem->getMarker();
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    } 


    // === create file writer ===
    if (initFlag.isSet(INIT_FILEWRITER)) {
      createFileWriter();
    }

    
    // === read serialization and init mesh ===
    
    // There are two possiblities where the user can define a serialization
    // to be read from disk. Either by providing the parameter -rs when executing
    // the program or in the init file. The -rs parameter is always checked first,
    // because it can be added automatically when  rescheduling the program
    // before timeout of the runqueue.

    int readSerialization = 0;
136
    std::string serializationFilename = "";
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    GET_PARAMETER(0, "argv->rs", &serializationFilename);

    // If the parameter -rs is set, we do nothing here, because the problem will be
    // deserialized in the constructor of a following AdaptInstationary initialization.
    if (!serializationFilename.compare("")) {
      int readSerializationWithAdaptInfo = 0;

      GET_PARAMETER(0, name_ + "->input->read serialization", "%d", 
		    &readSerialization);
      GET_PARAMETER(0, name_ + "->input->serialization with adaptinfo", "%d",
		    &readSerializationWithAdaptInfo);

      // The serialization file is only read, if the adaptInfo part should not be used.
      // If the adaptInfo part should be also read, the serialization file will be read
      // in the constructor of the AdaptInstationary problem, because we do not have here
      // the adaptInfo object.
      if (readSerialization && !readSerializationWithAdaptInfo) {
	GET_PARAMETER(0, name_ + "->input->serialization filename", 
		      &serializationFilename);
	TEST_EXIT(serializationFilename != "")("no serialization file\n");

	MSG("Deserialization from file: %s\n", serializationFilename.c_str());
159
	std::ifstream in(serializationFilename.c_str());
160
161
162
	deserialize(in);
	in.close();
      } else {
163
164
165
166
	int globalRefinements = 0;
	GET_PARAMETER(0, meshes_[0]->getName() + "->global refinements", "%d", 
		      &globalRefinements);

167
168
169
170
171
	// Initialize the meshes if there is no serialization file.
	for (int i = 0; i < static_cast<int>(meshes_.size()); i++) {
	  if (initFlag.isSet(INIT_MESH) && 
	      meshes_[i] && 
	      !(meshes_[i]->isInitialized())) {
172
173
	    meshes_[i]->initialize();	    
	    refinementManager_->globalRefine(meshes_[i], globalRefinements);
174
175
176
177
178
179
180
181
182
183
184
185
	  }
	}	
      }
    }

    doOtherStuff();
  }

  void ProblemVec::createMesh() 
  {
    FUNCNAME("ProblemVec::createMesh()");

Thomas Witkowski's avatar
Thomas Witkowski committed
186
    componentMeshes.resize(nComponents);
187
    std::map<int, Mesh*> meshForRefinementSet;
188
189
    char number[3];

190
    std::string meshName("");
191
    GET_PARAMETER(0, name_ + "->mesh", &meshName);
192
    TEST_EXIT(meshName != "")("no mesh name specified\n");
193
194
    int dim = 0;
    GET_PARAMETER(0, name_ + "->dim", "%d", &dim);
195
    TEST_EXIT(dim)("no problem dimension specified!\n");
196

197
    for (int i = 0; i < nComponents; i++) {
198
      sprintf(number, "%d", i);
199
200
201
      int refSet = -1;
      GET_PARAMETER(0, name_ + "->refinement set[" + number + "]", "%d", &refSet);
      if (refSet < 0) {
202
203
	refSet = 0;
      }
204
      if (meshForRefinementSet[refSet] == NULL) {
205
206
207
208
	Mesh *newMesh = NEW Mesh(meshName, dim);
	meshForRefinementSet[refSet] = newMesh;
	meshes_.push_back(newMesh);
      }
Thomas Witkowski's avatar
Thomas Witkowski committed
209
      componentMeshes[i] = meshForRefinementSet[refSet];
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    }
    switch(dim) {
    case 1:
      coarseningManager_ = NEW CoarseningManager1d();
      refinementManager_ = NEW RefinementManager1d();
      break;
    case 2:
      coarseningManager_ = NEW CoarseningManager2d();
      refinementManager_ = NEW RefinementManager2d();
      break;
    case 3:
      coarseningManager_ = NEW CoarseningManager3d();
      refinementManager_ = NEW RefinementManager3d();
      break;
    default:
      ERROR_EXIT("invalid dim!\n");
    }
  }

  void ProblemVec::createFESpace()
  {
    FUNCNAME("ProblemVec::createFESpace()");

    int degree = 1;
    char number[3];

236
    std::map< std::pair<Mesh*, int>, FiniteElemSpace*> feSpaceMap;
237
    int dim = -1;
238
    GET_PARAMETER(0, name_ + "->dim", "%d", &dim);
239
    TEST_EXIT(dim != -1)("no problem dimension specified!\n");
240

241
    componentSpaces.resize(nComponents, NULL);
242

243
    for (int i = 0; i < nComponents; i++) {
244
245
246
      sprintf(number, "%d", i);
      GET_PARAMETER(0, name_ + "->polynomial degree[" + number + "]","%d", &degree);

247
      TEST_EXIT(componentSpaces[i] == NULL)("feSpace already created\n");
248

Thomas Witkowski's avatar
Thomas Witkowski committed
249
      if (feSpaceMap[std::pair<Mesh*, int>(componentMeshes[i], degree)] == NULL) {
250
251
252
	FiniteElemSpace *newFESpace = 
	  FiniteElemSpace::provideFESpace(NULL,
					  Lagrange::getLagrange(dim, degree),
Thomas Witkowski's avatar
Thomas Witkowski committed
253
					  componentMeshes[i],
254
					  name_ + "->feSpace");
Thomas Witkowski's avatar
Thomas Witkowski committed
255
	feSpaceMap[std::pair<Mesh*, int>(componentMeshes[i], degree)] = newFESpace;
256
	feSpaces.push_back(newFESpace);
257
      }
258
      componentSpaces[i] = 
Thomas Witkowski's avatar
Thomas Witkowski committed
259
	feSpaceMap[std::pair<Mesh*, int>(componentMeshes[i], degree)];
260
261
262
    }

    // create dof admin for vertex dofs if neccessary
263
    for (int i = 0; i < static_cast<int>(meshes_.size()); i++) {
264
265
266
267
268
269
270
271
272
273
274
275
276
277
      if (meshes_[i]->getNumberOfDOFs(VERTEX) == 0) {
	DimVec<int> ln_dof(meshes_[i]->getDim(), DEFAULT_VALUE, 0);
	ln_dof[VERTEX]= 1;
	meshes_[i]->createDOFAdmin("vertex dofs", ln_dof);      
      }
    }
  }

  void ProblemVec::createMatricesAndVectors()
  {
    FUNCNAME("ProblemVec::createMatricesAndVectors()");

    // === create vectors and system matrix ===

278
    systemMatrix_ = NEW Matrix<DOFMatrix*>(nComponents, nComponents);
279
    systemMatrix_->set(NULL);
280
281
    rhs_ = NEW SystemVector("rhs", componentSpaces, nComponents);
    solution_ = NEW SystemVector("solution", componentSpaces, nComponents);
282
283

    char number[10];
284
    std::string numberedName;
Thomas Witkowski's avatar
Thomas Witkowski committed
285
    for (int i = 0; i < nComponents; i++) {
286
287
      (*systemMatrix_)[i][i] = NEW DOFMatrix(componentSpaces[i], 
					     componentSpaces[i], "A_ii");
288
289
      (*systemMatrix_)[i][i]->setCoupleMatrix(false);
      sprintf(number, "[%d]", i);
290
      numberedName = "rhs" + std::string(number);
291
      rhs_->setDOFVector(i, NEW DOFVector<double>(componentSpaces[i], numberedName));
292
      numberedName = name_ + std::string(number);
293
      solution_->setDOFVector(i, NEW DOFVector<double>(componentSpaces[i], 
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
						       numberedName));
      solution_->getDOFVector(i)->refineInterpol(true);
      solution_->getDOFVector(i)->setCoarsenOperation(COARSE_INTERPOL);
      solution_->getDOFVector(i)->set(0.0);
    }

    // === create matVec ===
    matVec_ = NEW StandardMatVec<Matrix<DOFMatrix*>, SystemVector>(systemMatrix_);
  }

  void ProblemVec::createSolver()
  {
    FUNCNAME("ProblemVec::createSolver()");

    // === create solver ===
309
    std::string solverType("no");
310
311
312
313
314
315
316
317
318
319
320
321
    GET_PARAMETER(0, name_ + "->solver", &solverType);
    OEMSolverCreator<SystemVector> *solverCreator = 
      dynamic_cast<OEMSolverCreator<SystemVector>*>(
						    CreatorMap<OEMSolver<SystemVector> >
						    ::getCreator(solverType)
						    );
    TEST_EXIT(solverCreator)("no solver type\n");
    solverCreator->setName(name_ + "->solver");
    solver_ = solverCreator->create();
    solver_->initParameters();

    // === create preconditioners ===
322
    std::string preconType("no");
323
324

    PreconditionerScal *scalPrecon;
325
    PreconditionerVec *vecPrecon = NEW PreconditionerVec(nComponents);
326
327
328
329
330
331
332
333
334
335
336

    GET_PARAMETER(0, name_ + "->solver->left precon", &preconType);
    CreatorInterface<PreconditionerScal> *preconCreator =
      CreatorMap<PreconditionerScal>::getCreator(preconType);

    int i, j;

    if (!preconCreator->isNullCreator()) {
      dynamic_cast<PreconditionerScalCreator*>(preconCreator)->
	setName(name_ + "->solver->left precon");

337
      for(i = 0; i < nComponents; i++) {
338
	dynamic_cast<PreconditionerScalCreator*>(preconCreator)->
339
	  setSizeAndRow(nComponents, i);
340
341
    
	scalPrecon = preconCreator->create();
342
	for(j = 0; j < nComponents; j++) {
343
344
345
346
347
348
349
350
	  scalPrecon->setMatrix(&(*systemMatrix_)[i][j], j);
	}
	vecPrecon->setScalarPrecon(i, scalPrecon);
      }
      leftPrecon_ = vecPrecon;
    }


351
    vecPrecon = NEW PreconditionerVec(nComponents);
352
353
354
355
356
357
358
359
360
361

    GET_PARAMETER(0, name_ + "->solver->right precon", &preconType);
    preconCreator = 
      CreatorMap<PreconditionerScal>::getCreator(preconType);

    if(!preconCreator->isNullCreator()) {
      dynamic_cast<PreconditionerScalCreator*>(preconCreator)->
	setName(name_ + "->solver->left precon");


362
      for(i = 0; i < nComponents; i++) {
363
	dynamic_cast<PreconditionerScalCreator*>(preconCreator)->
364
	  setSizeAndRow(nComponents, i);
365
366
    
	scalPrecon = preconCreator->create();
367
	for(j = 0; j < nComponents; j++) {
368
369
370
371
372
373
374
375
376
377
	  scalPrecon->setMatrix(&(*systemMatrix_)[i][j], j);
	}
	vecPrecon->setScalarPrecon(i, scalPrecon);
      }
      rightPrecon_ = vecPrecon;
    }


    // === create vector creator ===
    solver_->setVectorCreator(NEW SystemVector::Creator("temp",
378
							componentSpaces, 
379
							nComponents));
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
  }

  void ProblemVec::createEstimator()
  {
    FUNCNAME("ProblemVec::createEstimator()");

    int i, j;

    // create and set leaf data prototype
    for(i = 0; i < static_cast<int>(meshes_.size()); i++) {
      meshes_[i]->setElementDataPrototype
	(NEW LeafDataEstimatableVec(NEW LeafDataCoarsenableVec));
    }  

    char number[3];
395
    std::string estName;
396

397
    for(i = 0; i < nComponents; i++) {
398
399
      TEST_EXIT(estimator_[i] == NULL)("estimator already created\n");
      sprintf(number, "%d", i);
400
      estName = name_ + "->estimator[" + std::string(number) + "]";
401
402

      // === create estimator ===
403
      std::string estimatorType("no");
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
      GET_PARAMETER(0, estName, &estimatorType);
      EstimatorCreator *estimatorCreator = 
	dynamic_cast<EstimatorCreator*>(
					CreatorMap<Estimator>::getCreator(estimatorType));
      if(estimatorCreator) {
	estimatorCreator->setName(estName);
	estimatorCreator->setRow(i);
	if(estimatorType == "recovery") {
	  dynamic_cast<RecoveryEstimator::Creator*>(estimatorCreator)->
	    setSolution(solution_->getDOFVector(i));
	}
	estimator_[i] = estimatorCreator->create();
      }


      if(estimator_[i]) {
420
	for(j=0; j < nComponents; j++) {
421
422
423
424
425
426
427
428
429
430
431
432
	  estimator_[i]->addSystem((*systemMatrix_)[i][j], 
				   solution_->getDOFVector(j), 
				   rhs_->getDOFVector(j));
	}
      }
    }
  }

  void ProblemVec::createMarker()
  {
    FUNCNAME("ProblemVec::createMarker()");

433
    std::string numberedName;
434
435
    char number[10];
    int numMarkersCreated = 0;
436

437
    for (int i = 0; i < nComponents; i++) {
438
      sprintf(number, "[%d]", i);
439
      numberedName = name_ + "->marker" + std::string(number);
440
441
      marker[i] = Marker::createMarker(numberedName, i);
      if (marker[i]) {
442
443
	numMarkersCreated++;
	if (numMarkersCreated > 1)
444
	  marker[i]->setMaximumMarking(true);
445
446
447
448
449
450
451
452
453
454
      }
    }
  }

  void ProblemVec::createFileWriter()
  {
    FUNCNAME("ProblemVec::createFileWriter()");
  

    // Create one filewriter for all components of the problem
455
456
    std::string numberedName  = name_ + "->output";
    std::string filename = "";
457
458
459
    GET_PARAMETER(0, numberedName + "->filename", &filename);

    if (filename != "") {
460
      std::vector< DOFVector<double>* > solutionList(nComponents);
461

462
      for (int i = 0; i < nComponents; i++) {
Thomas Witkowski's avatar
Thomas Witkowski committed
463
	TEST_EXIT(componentMeshes[0] == componentMeshes[i])
464
465
466
467
468
469
	  ("All Meshes have to be equal to write a vector file.\n");

	solutionList[i] = solution_->getDOFVector(i);
      }

      fileWriters_.push_back(NEW FileWriter(numberedName,
Thomas Witkowski's avatar
Thomas Witkowski committed
470
					    componentMeshes[0],
471
472
473
474
475
476
					    solutionList));
    }


    // Create own filewriters for each components of the problem
    char number[10];
477
    for (int i = 0; i < nComponents; i++) {
478
      sprintf(number, "[%d]", i);
479
      numberedName  = name_ + "->output" + std::string(number);
480
481
482
483
484
      filename = "";
      GET_PARAMETER(0, numberedName + "->filename", &filename);

      if (filename != "") {
	fileWriters_.push_back(NEW FileWriter(numberedName, 
Thomas Witkowski's avatar
Thomas Witkowski committed
485
					      componentMeshes[i], 
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
					      solution_->getDOFVector(i)));
      }
    }


    // Check for serializer
    int writeSerialization = 0;
    GET_PARAMETER(0, name_ + "->write serialization", "%d", &writeSerialization);
    if (writeSerialization) {
      MSG("Use are using the obsolete parameter: %s->write serialization\n", name_.c_str());
      MSG("Please use instead the following parameter: %s->output->write serialization\n", name_.c_str());
      ERROR_EXIT("Usage of an obsolete parameter (see message above)!\n");
    }

    GET_PARAMETER(0, name_ + "->output->write serialization", "%d", &writeSerialization);
    if (writeSerialization) {
      fileWriters_.push_back(NEW Serializer<ProblemVec>(this));
    }
  }

  void ProblemVec::doOtherStuff()
  {
  }

  void ProblemVec::solve(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("Problem::solve()");

    if (!solver_) {
      WARNING("no solver\n");
      return;
    }

#ifdef _OPENMP
    double wtime = omp_get_wtime();
#endif

    clock_t first = clock();
    int iter = solver_->solve(matVec_, solution_, rhs_, leftPrecon_, rightPrecon_);   
525
    
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
#ifdef _OPENMP
    INFO(info_, 8)("solution of discrete system needed %.5f seconds system time / %.5f seconds wallclock time\n",
		   TIME_USED(first, clock()),
		   omp_get_wtime() - wtime);
#else
    INFO(info_, 8)("solution of discrete system needed %.5f seconds\n",
		   TIME_USED(first, clock()));
#endif


    adaptInfo->setSolverIterations(iter);
    adaptInfo->setMaxSolverIterations(solver_->getMaxIterations());
    adaptInfo->setSolverTolerance(solver_->getTolerance());
    adaptInfo->setSolverResidual(solver_->getResidual());
  }

  void ProblemVec::estimate(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("ProblemVec::estimate()");

    clock_t first = clock();

548
549
550
551
#ifdef _OPENMP
    double wtime = omp_get_wtime();
#endif

552
    if (computeExactError) {
Thomas Witkowski's avatar
Thomas Witkowski committed
553
      computeError(adaptInfo);
554
555
556
557
558
559
560
561
562
563
564
565
566
    } else {
      for (int i = 0; i < nComponents; i++) {
	Estimator *scalEstimator = estimator_[i];
	
	if (scalEstimator) {
	  scalEstimator->estimate(adaptInfo->getTimestep());
	  adaptInfo->setEstSum(scalEstimator->getErrorSum(), i);
	  adaptInfo->setEstMax(scalEstimator->getErrorMax(), i);
	  adaptInfo->setTimeEstSum(scalEstimator->getTimeEst(), i);
	  adaptInfo->setTimeEstMax(scalEstimator->getTimeEstMax(), i);
	} else {
	  WARNING("no estimator for component %d\n" , i);
	}
567
568
569
      }
    }

570
571
572
573
574
575
576
577
578
579
#ifdef _OPENMP
    INFO(info_, 8)("estimation of the error needed %.5f seconds system time / %.5f seconds wallclock time\n",
		   TIME_USED(first, clock()),
		   omp_get_wtime() - wtime);
#else
    INFO(info_, 8)("estimation of the error needed %.5f seconds\n",
		   TIME_USED(first, clock()));

#endif

580
581
582
583
584
585
586
587
588
589
590
  }

  Flag ProblemVec::markElements(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("ProblemVec::markElements()");

    // to enforce albert-like behavior: refinement even if space tolerance
    // here is reached already because of time adaption
    allowFirstRefinement();

    Flag markFlag = 0;
591
    for (int i = 0; i < nComponents; i++) {
592
      if (marker[i]) {
Thomas Witkowski's avatar
Thomas Witkowski committed
593
	markFlag |= marker[i]->markMesh(adaptInfo, componentMeshes[i]);
594
595
596
597
      } else {
	WARNING("no marker for component %d\n", i);
      }
    }
598
    
599
600
601
602
603
604
605
    return markFlag;
  }

  Flag ProblemVec::refineMesh(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("ProblemVec::refineMesh()");

606
    int nMeshes = static_cast<int>(meshes_.size());
607
    Flag refineFlag = 0;
608
    for (int i = 0; i < nMeshes; i++) {
609
610
611
612
613
614
615
616
617
      refineFlag |= refinementManager_->refineMesh(meshes_[i]);
    }
    return refineFlag;
  }

  Flag ProblemVec::coarsenMesh(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("ProblemVec::coarsenMesh()");

618
    int nMeshes = static_cast<int>(meshes_.size());
619
    Flag coarsenFlag = 0;
620
621
    for (int i = 0; i < nMeshes; i++) {
      if (adaptInfo->isCoarseningAllowed(i)) {
622
623
624
625
626
627
628
629
630
631
632
633
634
	coarsenFlag |= coarseningManager_->coarsenMesh(meshes_[i]);

	WARNING("coarsening for component %d no allowed\n", i);
      }
    }
    return coarsenFlag;
  }

  Flag ProblemVec::oneIteration(AdaptInfo *adaptInfo, Flag toDo)
  {
    FUNCNAME("ProblemVec::oneIteration()");

    if (allowFirstRef_) {
635
      for (int i = 0; i < nComponents; i++) {
636
637
638
639
	adaptInfo->allowRefinement(true, i);
      }
      allowFirstRef_ = false;
    } else {
640
      for (int i = 0; i < nComponents; i++) {
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
	if (adaptInfo->spaceToleranceReached(i)) {
	  adaptInfo->allowRefinement(false, i);
	} else {
	  adaptInfo->allowRefinement(true, i);	
	}
      }
    }

    return StandardProblemIteration::oneIteration(adaptInfo, toDo);
  }

  void ProblemVec::buildAfterCoarsen(AdaptInfo *adaptInfo, Flag flag) 
  {
    FUNCNAME("ProblemVec::buildAfterCoarsen()");

    clock_t first = clock();

658
659
660
661
#ifdef _OPENMP
    double wtime = omp_get_wtime();
#endif

Thomas Witkowski's avatar
Thomas Witkowski committed
662
    for (int i = 0; i < static_cast<int>(meshes_.size()); i++) {
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
      meshes_[i]->dofCompress();
    }

    Flag assembleFlag = 
      flag | 
      (*systemMatrix_)[0][0]->getAssembleFlag() | 
      rhs_->getDOFVector(0)->getAssembleFlag()   |
      Mesh::CALL_LEAF_EL                        | 
      Mesh::FILL_COORDS                         |
      Mesh::FILL_DET                            |
      Mesh::FILL_GRD_LAMBDA |
      Mesh::FILL_NEIGH;

    if (useGetBound_) {
      assembleFlag |= Mesh::FILL_BOUND;
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
680

681
    for (int i = 0; i < nComponents; i++) {
682
      MSG("%d DOFs for %s\n", 
683
684
	  componentSpaces[i]->getAdmin()->getUsedSize(), 
	  componentSpaces[i]->getName().c_str());
685
686

      rhs_->getDOFVector(i)->set(0.0);
687
      for (int j = 0; j < nComponents; j++) {
688
689
690
691
692
693
694
	if ((*systemMatrix_)[i][j]) {
	  // The matrix should not be deleted, if it was assembled before
	  // and it is marked to be assembled only once.
	  if (!(assembleMatrixOnlyOnce_[i][j] && assembledMatrix_[i][j])) {
	    (*systemMatrix_)[i][j]->clear();
	  }
	}
695
696
697
      }
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
698
    for (int i = 0; i < nComponents; i++) {
699
      for (int j = 0; j < nComponents; j++) {
700
701
702
703
	// Only if this variable is true, the current matrix will be assembled.	
	bool assembleMatrix = true;
	// The DOFMatrix which should be assembled (or not, if assembleMatrix
	// will be set to false).
704
705
	DOFMatrix *matrix = (*systemMatrix_)[i][j];

706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
	// If the matrix was assembled before and it is marked to be assembled
	// only once, it will not be assembled.
	if (assembleMatrixOnlyOnce_[i][j] && assembledMatrix_[i][j]) {
	  assembleMatrix = false;
	}
	// If there is no DOFMatrix (e.g. if it is completly 0), do not assemble.
	if (!matrix) {
	  assembleMatrix = false;
	}

	// If the matrix should not be assembled, the rhs vector has to be considered.
	// This will be only done, if i == j. So, if both is not true, we can jump
	// to the next matrix.
	if (!assembleMatrix && i != j) {
	  continue;
	}

723
724
725
	if (assembleMatrix && matrix->getBoundaryManager())
	  matrix->getBoundaryManager()->initMatrix(matrix);

Thomas Witkowski's avatar
Thomas Witkowski committed
726
	if (componentSpaces[i] == componentSpaces[j]) {
727
	  //	  std::cout << "--- assembleOnOneMesh ---\n";
Thomas Witkowski's avatar
Thomas Witkowski committed
728
729
730
731
	  assembleOnOneMesh(componentSpaces[i],
			    assembleFlag,
			    assembleMatrix ? matrix : NULL,
			    (i == j) ? rhs_->getDOFVector(i) : NULL);
732
733
	  //	  std::cout << "--- Finished ---\n";
	  //	  std::cout << "--- Dim: " << matrix->getUsedSize() << "x" << matrix->getNumCols() << "---\n";
Thomas Witkowski's avatar
Thomas Witkowski committed
734
	} else {
735
	  //	  std::cout << "--- assembleOnDifMesh ---\n";
Thomas Witkowski's avatar
Thomas Witkowski committed
736
737
738
739
	  assembleOnDifMeshes(componentSpaces[i], componentSpaces[j],
			      assembleFlag,
			      assembleMatrix ? matrix : NULL,
			      (i == j) ? rhs_->getDOFVector(i) : NULL);	  
740
741
	  //	  std::cout << "--- Finished ---\n";
	  //	  std::cout << "--- Dim: " << matrix->getUsedSize() << "x" << matrix->getNumCols() << "---\n";
742
	}
Thomas Witkowski's avatar
Thomas Witkowski committed
743

744
745
746
	if (assembleMatrix && matrix->getBoundaryManager())
	  matrix->getBoundaryManager()->exitMatrix(matrix);	  
	
747
	assembledMatrix_[i][j] = true;
748
749
      }

750
751
752
753
754
      // And now assemble boundary conditions on the vectors
      assembleBoundaryConditions(rhs_->getDOFVector(i),
				 solution_->getDOFVector(i),
				 componentMeshes[i],
				 assembleFlag);
755
    }
756
757
758
759
760
761

#ifdef _OPENMP
    INFO(info_, 8)("buildAfterCoarsen needed %.5f seconds system time / %.5f seconds wallclock time\n",
		   TIME_USED(first, clock()),
		   omp_get_wtime() - wtime);
#else
762
    INFO(info_, 8)("buildAfterCoarsen needed %.5f seconds\n",
Thomas Witkowski's avatar
Thomas Witkowski committed
763
		   TIME_USED(first, clock()));
764
#endif
765
766
767
768
769
770
  }

  void ProblemVec::writeFiles(AdaptInfo *adaptInfo, bool force) 
  {
    FUNCNAME("ProblemVec::writeFiles()");

771
772
773
774
775
776
777
778
779
780
781
782
783
    clock_t first = clock();

#ifdef _OPENMP
    double wtime = omp_get_wtime();
#endif

    int i;
    int size = static_cast<int>(fileWriters_.size());
#ifdef _OPENMP
#pragma omp parallel for schedule(static, 1)
#endif
    for (i = 0; i < size; i++) {
      fileWriters_[i]->writeFiles(adaptInfo, force);
784
    }
785
786
787
788
789
790
791
792
793
    
#ifdef _OPENMP
    INFO(info_, 8)("writeFiles needed %.5f seconds system time / %.5f seconds wallclock time\n",
		   TIME_USED(first, clock()),
		   omp_get_wtime() - wtime);
#else
    INFO(info_, 8)("writeFiles needed %.5f seconds\n",
		   TIME_USED(first, clock()));
#endif
794
795
  }

796
  void ProblemVec::interpolInitialSolution(std::vector<AbstractFunction<double, WorldVector<double> >*> *fct) 
797
798
799
800
801
802
803
804
805
806
807
808
809
  {
    FUNCNAME("ProblemVec::interpolInitialSolution()");

    solution_->interpol(fct);
  }

  void ProblemVec::addMatrixOperator(Operator *op, 
				     int i, int j,
				     double *factor,
				     double *estFactor)
  {
    FUNCNAME("ProblemVec::addMatrixOperator()");

810
    if (!(*systemMatrix_)[i][j]) {
811
      TEST_EXIT(i != j)("should have been created already\n");
812
813
      (*systemMatrix_)[i][j] = NEW DOFMatrix(componentSpaces[i],
					     componentSpaces[j],
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
					     "");
      (*systemMatrix_)[i][j]->setCoupleMatrix(true);

      (*systemMatrix_)[i][j]->getBoundaryManager()->
	setBoundaryConditionMap((*systemMatrix_)[i][i]->getBoundaryManager()->
				getBoundaryConditionMap());
    }    
    (*systemMatrix_)[i][j]->addOperator(op, factor, estFactor);
  }

  void ProblemVec::addVectorOperator(Operator *op, int i,
				     double *factor,
				     double *estFactor)
  {
    FUNCNAME("ProblemVec::addVectorOperator()");

    rhs_->getDOFVector(i)->addOperator(op, factor, estFactor);
  }

  void ProblemVec::addDirichletBC(BoundaryType type, int system,
				  AbstractFunction<double, WorldVector<double> >* b)
  {
    FUNCNAME("ProblemVec::addDirichletBC()");

    DirichletBC *dirichlet = new DirichletBC(type, 
					     b, 
840
					     componentSpaces[system]);
841
    for (int i = 0; i < nComponents; i++) {
842
843
844
845
      if (systemMatrix_ && (*systemMatrix_)[system][i]) {
	(*systemMatrix_)[system][i]->getBoundaryManager()->addBoundaryCondition(dirichlet);
      }
    }
846

847
848
    if (rhs_)
      rhs_->getDOFVector(system)->getBoundaryManager()->addBoundaryCondition(dirichlet);
849

850
851
852
853
854
855
856
857
858
859
860
    if (solution_)
      solution_->getDOFVector(system)->getBoundaryManager()->addBoundaryCondition(dirichlet);
  }

  void ProblemVec::addNeumannBC(BoundaryType type, int row, int col, 
				AbstractFunction<double, WorldVector<double> > *n)
  {
    FUNCNAME("ProblemVec::addNeumannBC()");

    NeumannBC *neumann = 
      new NeumannBC(type, n, 
861
862
		    componentSpaces[row], 
		    componentSpaces[col]);
863
    if (rhs_)
864
865
866
867
868
869
870
871
872
873
874
      rhs_->getDOFVector(row)->getBoundaryManager()->addBoundaryCondition(neumann);
  }

  void ProblemVec::addRobinBC(BoundaryType type, int row, int col, 
			      AbstractFunction<double, WorldVector<double> > *n,
			      AbstractFunction<double, WorldVector<double> > *r)
  {
    FUNCNAME("ProblemVec::addRobinBC()");

    RobinBC *robin = 
      new RobinBC(type, n, r, 
875
876
		  componentSpaces[row], 
		  componentSpaces[col]);
877
    if (rhs_)
878
      rhs_->getDOFVector(row)->getBoundaryManager()->addBoundaryCondition(robin);
879
880

    if (systemMatrix_ && (*systemMatrix_)[row][col]) {
881
882
883
884
885
886
887
888
      (*systemMatrix_)[row][col]->getBoundaryManager()->addBoundaryCondition(robin);
    }
  }

  void ProblemVec::addPeriodicBC(BoundaryType type, int row, int col) 
  {
    FUNCNAME("ProblemVec::addPeriodicBC()");

889
    FiniteElemSpace *feSpace = componentSpaces[row];
890
891
892

    PeriodicBC *periodic = new PeriodicBC(type, feSpace);

893
    if (systemMatrix_ && (*systemMatrix_)[row][col]) 
894
      (*systemMatrix_)[row][col]->getBoundaryManager()->addBoundaryCondition(periodic);
895
896

    if (rhs_) 
897
898
899
900
      rhs_->getDOFVector(row)->getBoundaryManager()->
	addBoundaryCondition(periodic);
  }

Thomas Witkowski's avatar
Thomas Witkowski committed
901
902
903
904
905
  void ProblemVec::assembleOnOneMesh(FiniteElemSpace *feSpace, Flag assembleFlag,
				     DOFMatrix *matrix, DOFVector<double> *vector)
  {
    Mesh *mesh = feSpace->getMesh();
    const BasisFunction *basisFcts = feSpace->getBasisFcts();
906
907

#ifdef _OPENMP
Thomas Witkowski's avatar
Thomas Witkowski committed
908
    TraverseParallelStack stack;
909
910
911
#else
    TraverseStack stack;
#endif   
Thomas Witkowski's avatar
Thomas Witkowski committed
912

913
#ifdef _OPENMP
Thomas Witkowski's avatar
Thomas Witkowski committed
914
#pragma omp parallel
915
#endif
Thomas Witkowski's avatar
Thomas Witkowski committed
916
917
918
919
920
921
922
    {
      BoundaryType *bound = useGetBound_ ? GET_MEMORY(BoundaryType, basisFcts->getNumber()) : NULL;

      // Create for every thread its private matrix and vector, on that
      // the thread will assemble its part of the mesh.
      DOFMatrix *tmpMatrix = NULL;
      DOFVector<double> *tmpVector = NULL; 
Thomas Witkowski's avatar
Thomas Witkowski committed
923
924

      if (matrix) {
Thomas Witkowski's avatar
Thomas Witkowski committed
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
	tmpMatrix = NEW DOFMatrix(matrix->getRowFESpace(),
				  matrix->getColFESpace(),
				  "tmp");

	// Copy the global matrix to the private matrix, because we need the
	// operators defined on the global matrix in the private one. Only the
	// values have to be set to zero.
	*tmpMatrix = *matrix;
	tmpMatrix->clear();
      }

      if (vector) {
	tmpVector = NEW DOFVector<double>(vector->getFESpace(), "tmp");

	// Copy the global vector to the private vector, because we need the
	// operatirs defined on the global vector in the private one. But set
	// the values to zero of the private vector after copying.
	*tmpVector = *vector;
	tmpVector->set(0.0);
      }

946
947
948
949
950
951
952
953
      // After creating privat copies of the DOFMatrix and the DOFVector, all threads
      // have to wait at this barrier. Especially for small problems this is required,
      // because otherwise one thread may be finished with assembling, before another
      // has made his private copy.
#ifdef _OPENMP
#pragma omp barrier
#endif

Thomas Witkowski's avatar
Thomas Witkowski committed
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
      // Because we are using the parallel traverse stack, each thread will
      // traverse only a part of the mesh.
      ElInfo *elInfo = stack.traverseFirst(mesh, -1, assembleFlag);
      while (elInfo) {
	if (useGetBound_) {
	  basisFcts->getBound(elInfo, bound);
	}
	
	if (matrix) {
	  tmpMatrix->assemble(1.0, elInfo, bound);
	  
	  // Take the matrix boundary manager from the public matrix,
	  // but assemble the boundary conditions on the thread private matrix.
	  if (matrix->getBoundaryManager()) {
	    matrix->getBoundaryManager()->
	      fillBoundaryConditions(elInfo, tmpMatrix);
	  }		      
	}
	
	if (vector) {
	  tmpVector->assemble(1.0, elInfo, bound);
	}
Thomas Witkowski's avatar
Thomas Witkowski committed
976
	
Thomas Witkowski's avatar
Thomas Witkowski committed
977
	elInfo = stack.traverseNext(elInfo);
Thomas Witkowski's avatar
Thomas Witkowski committed
978
      }
Thomas Witkowski's avatar
Thomas Witkowski committed
979
980
981
982
983
984
985

      // After mesh traverse, all thread have to added their private matrices and
      // vectors to the global public matrix and public vector. Therefore, this is 
      // a critical section, which is allowed to be executed by on thread only at 
      // the same time.

      if (matrix) {
986
#ifdef _OPENMP
Thomas Witkowski's avatar
Thomas Witkowski committed
987
#pragma omp critical
988
#endif
Thomas Witkowski's avatar
Thomas Witkowski committed
989
990
991
992
993
994
995
996
997
998
	{
	  addDOFMatrix(matrix, tmpMatrix);

	  // Remove rows corresponding to DOFs on a Dirichlet boundary.
	  matrix->removeRowsWithDBC(tmpMatrix->getApplyDBCs());
	}

	DELETE tmpMatrix;
      }

Thomas Witkowski's avatar
Thomas Witkowski committed
999
      if (vector) {
1000
#ifdef _OPENMP
Thomas Witkowski's avatar
Thomas Witkowski committed
1001
#pragma omp critical
1002
#endif
Thomas Witkowski's avatar
Thomas Witkowski committed
1003
1004
1005
	*vector += *tmpVector;

	DELETE tmpVector;
Thomas Witkowski's avatar
Thomas Witkowski committed
1006
1007
      }

Thomas Witkowski's avatar
Thomas Witkowski committed
1008
1009
1010
1011
1012
1013
      if (useGetBound_) {
	FREE_MEMORY(bound, BoundaryType, basisFcts->getNumber());
      }	      

    } // pragma omp parallel

Thomas Witkowski's avatar
Thomas Witkowski committed
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
  }

  void ProblemVec::assembleOnDifMeshes(FiniteElemSpace *rowFeSpace, FiniteElemSpace *colFeSpace,
				       Flag assembleFlag,
				       DOFMatrix *matrix, DOFVector<double> *vector)
  {
    Mesh *rowMesh = rowFeSpace->getMesh();
    Mesh *colMesh = colFeSpace->getMesh();

    const BasisFunction *basisFcts = rowFeSpace->getBasisFcts();
    BoundaryType *bound = NULL;
    if (useGetBound_) {
      bound = GET_MEMORY(BoundaryType, basisFcts->getNumber());
    }

    DualTraverse dualTraverse;
    ElInfo *rowElInfo, *colElInfo;
    ElInfo *largeElInfo, *smallElInfo;

1033
    dualTraverse.setFillSubElemInfo(true);
Thomas Witkowski's avatar
Thomas Witkowski committed
1034
1035
1036
1037
1038
1039
1040
1041
1042
    bool cont = dualTraverse.traverseFirst(rowMesh, colMesh, -1, -1,
					   assembleFlag, assembleFlag,
					   &rowElInfo, &colElInfo,
					   &smallElInfo, &largeElInfo);
    while (cont) {
      Element *rowElem = rowElInfo->getElement();
      Element *colElem = colElInfo->getElement();

      if (rowElInfo->getLevel() != colElInfo->getLevel()) {
1043
	if (smallElInfo == rowElInfo) {
Thomas Witkowski's avatar
Thomas Witkowski committed
1044
	  std::cout << "Row = small\n";
1045
1046
	  ERROR_EXIT("NOCH EIN PAAR GEDANKEN MACHEN!\n");
	} else {
Thomas Witkowski's avatar
Thomas Witkowski committed
1047
	  std::cout << "Row = large\n";
1048
	}
Thomas Witkowski's avatar
Thomas Witkowski committed
1049
1050
1051
1052
1053
1054

	if (largeElInfo == colElInfo) 
	  std::cout << "Col = large\n";
	else
	  std::cout << "Col = small\n";

1055
1056
1057
	if (useGetBound_) {
	  basisFcts->getBound(rowElInfo, bound);
	}
Thomas Witkowski's avatar
Thomas Witkowski committed
1058

1059
	if (matrix) {
1060
1061
1062
1063
1064
	  matrix->assemble(1.0, rowElInfo, colElInfo, bound);
	}
      } else {
	if (useGetBound_) {
	  basisFcts->getBound(rowElInfo, bound);
1065
	}
Thomas Witkowski's avatar
Thomas Witkowski committed
1066
      
1067
1068
1069
1070
1071
1072
1073
1074
	if (matrix) {
	  matrix->assemble(1.0, rowElInfo, bound);
	  
	  if (matrix->getBoundaryManager()) {
	    matrix->getBoundaryManager()->
	      fillBoundaryConditions(rowElInfo, matrix);
	  }		      
	}
Thomas Witkowski's avatar
Thomas Witkowski committed
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
      }
      
      if (vector) {
	vector->assemble(1.0, rowElInfo, bound);
      }

      cont = dualTraverse.traverseNext(&rowElInfo, &colElInfo,
				       &smallElInfo, &largeElInfo);
    }

    if (useGetBound_) {
      FREE_MEMORY(bound, BoundaryType, basisFcts->getNumber());
    }
  }

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
  void ProblemVec::assembleBoundaryConditions(DOFVector<double> *rhs,
					      DOFVector<double> *solution,
					      Mesh *mesh,
					      Flag assembleFlag)
  {
    /* ================ Initialization of vectors ==================== */

    if (rhs->getBoundaryManager())
      rhs->getBoundaryManager()->initVector(rhs);      
    if (solution->getBoundaryManager())
      solution->getBoundaryManager()->initVector(solution);
    
#ifdef _OPENMP
    TraverseParallelStack stack;
#else
    TraverseStack stack;
#endif

    /* ================= Parallel Boundary Assemblage ================= */
#ifdef _OPENMP
#pragma omp parallel
#endif
    {
      // Each thread assembles on its own dof-vectors.
      DOFVector<double> *tmpRhsVec = NEW DOFVector<double>(rhs->getFESpace(), "tmpRhs");
      DOFVector<double> *tmpSolVec = NEW DOFVector<double>(solution->getFESpace(), "tmpSol");
      tmpRhsVec->set(0.0);
      tmpSolVec->set(0.0);


      // (Parallel) traverse of mesh.
      ElInfo *elInfo = stack.traverseFirst(mesh, -1, assembleFlag);
      while (elInfo) {
	if (rhs->getBoundaryManager())
	  rhs->getBoundaryManager()-> fillBoundaryConditions(elInfo, tmpRhsVec);
	
	if (solution->getBoundaryManager())
	  solution->getBoundaryManager()->fillBoundaryConditions(elInfo, tmpSolVec);
      
	elInfo = stack.traverseNext(elInfo);
      }


      // After (parallel) mesh traverse, the result is applied to the final
      // vectors. This section is not allowed to be executed by more than one
      // thread at the same time.
#ifdef _OPENMP
#pragma omp critical
#endif
      {
	DOFVector<double>::Iterator rhsIt(rhs, USED_DOFS);
	DOFVector<double>::Iterator solIt(solution, USED_DOFS);
	DOFVector<double>::Iterator tmpRhsIt(tmpRhsVec, USED_DOFS);
	DOFVector<double>::Iterator tmpSolIt(tmpSolVec, USED_DOFS);
	for (rhsIt.reset(), solIt.reset(), tmpRhsIt.reset(), tmpSolIt.reset();
	     !rhsIt.end();
	     ++rhsIt, ++solIt, ++tmpRhsIt, ++tmpSolIt) {	     
	  if (*tmpRhsIt != 0.0)
	    *rhsIt = *tmpRhsIt;
	  
	  if (*tmpSolIt != 0.0)
	    *solIt = *tmpSolIt;	  
	}
      } // pragma omp critical


      DELETE tmpRhsVec;
      DELETE tmpSolVec;
    } // pragma omp parallel
     

    /* ======================= Finalize vectors ================== */

    if (rhs->getBoundaryManager())
      rhs->getBoundaryManager()->exitVector(rhs);
    if (solution->getBoundaryManager())
      solution->getBoundaryManager()->exitVector(solution);
  }


1170
  void ProblemVec::writeResidualMesh(AdaptInfo *adaptInfo, const std::string name)
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
  {
    FUNCNAME("ProblemVec::writeResidualMesh()");

    Mesh *mesh = this->getMesh(0);
    FiniteElemSpace *fe = this->getFESpace(0);
    
    std::map<int, double> vec;
    
    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(mesh,
					 -1, 
					 Mesh::CALL_LEAF_EL | 
					 Mesh::FILL_COORDS);
    
    while (elInfo) {		  
      Element *el = elInfo->getElement();
      double lError = el->getEstimation(0);
      
      vec[elInfo->getElement()->getIndex()] = lError;
      elInfo = stack.traverseNext(elInfo);
    }
    
    ElementFileWriter fw(name, mesh, fe, vec);
    fw.writeFiles(adaptInfo, true);    
  }

1197
  void ProblemVec::serialize(std::ostream &out) 
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
  {
    FUNCNAME("ProblemVec::serialize()");

    SerializerUtil::serializeBool(out, &allowFirstRef_);
    
    for (int i = 0; i < static_cast<int>(meshes_.size()); i++) {
      meshes_[i]->serialize(out);
    }

    solution_->serialize(out);
  }

1210
  void ProblemVec::deserialize(std::istream &in) 
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
  {
    FUNCNAME("ProblemVec::deserialize()");

    SerializerUtil::deserializeBool(in, &allowFirstRef_);

    for (int i = 0; i < static_cast<int>(meshes_.size()); i++) {
      meshes_[i]->deserialize(in);
    }

    solution_->deserialize(in);
  }
Thomas Witkowski's avatar
Thomas Witkowski committed
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277

  void ProblemVec::computeError(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("ProblemVec::computeError()");

    for (int i = 0; i < nComponents; i++) {		
      TEST_EXIT(exactSolutionFcts[i])("No solution function given!\n");

      // Compute the difference between exact and computed solution
      DOFVector<double> *tmp = NEW DOFVector<double>(componentSpaces[i], "tmp");
      tmp->interpol(exactSolutionFcts[i]);
      double solMax = tmp->absMax();
      *tmp -= *(solution_->getDOFVector(i));
      
      MSG("L2    error = %.8e\n", tmp->L2Norm());
      MSG("L-inf error = %.8e\n", tmp->absMax() / solMax);
      
      adaptInfo->setEstSum(tmp->absMax() / solMax, i);
      adaptInfo->setEstMax(tmp->absMax() / solMax, i);
      
      // To set element estimates, compute a vector with the difference
      // between exact and computed solution for each DOF.
      DOFVector<double> *sol = NEW DOFVector<double>(componentSpaces[i], "tmp");
      sol->interpol(exactSolutionFcts[i]);
      DOFVector<double>::Iterator it1(sol, USED_DOFS);
      DOFVector<double>::Iterator it2(tmp, USED_DOFS);
      for (it1.reset(), it2.reset(); !it1.end(); ++it1, ++it2) {
	if ((abs(*it1) <= DBL_TOL) || (abs(*it2) <= DBL_TOL)) {
	  *it2 = 0.0;
	} else {
	  *it2 = abs(*it2 / *it1);
	}
      }

      // Compute estimate for every mesh element
      Vector<DegreeOfFreedom> locInd(componentSpaces[i]->getBasisFcts()->getNumber());
      TraverseStack stack;
      ElInfo *elInfo = stack.traverseFirst(componentMeshes[i], -1, Mesh::CALL_LEAF_EL);
      while (elInfo) {
	componentSpaces[i]->getBasisFcts()->getLocalIndicesVec(elInfo->getElement(),
							       componentSpaces[i]->getAdmin(),
							       &locInd);
	double estimate = 0.0;
	for (int j = 0; j < componentSpaces[i]->getBasisFcts()->getNumber(); j++) {
	  estimate += (*tmp)[locInd[j]];
	}
	elInfo->getElement()->setEstimation(estimate, i);
	elInfo->getElement()->setMark(0);
								
	elInfo = stack.traverseNext(elInfo);
      }  
      
      DELETE tmp;	
      DELETE sol;
    }						           
  }
1278
1279
}