MeshDistributor.h 32.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/******************************************************************************
 *
 * AMDiS - Adaptive multidimensional simulations
 *
 * Copyright (C) 2013 Dresden University of Technology. All Rights Reserved.
 * Web: https://fusionforge.zih.tu-dresden.de/projects/amdis
 *
 * Authors: 
 * Simon Vey, Thomas Witkowski, Andreas Naumann, Simon Praetorius, et al.
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 *
 * This file is part of AMDiS
 *
 * See also license.opensource.txt in the distribution.
 * 
 ******************************************************************************/
20 21


22

23
/** \file MeshDistributor.h */
24

25 26
#ifndef AMDIS_MESHDISTRIBUTOR_H
#define AMDIS_MESHDISTRIBUTOR_H
27 28


Thomas Witkowski's avatar
Thomas Witkowski committed
29
#include <mpi.h>
30
#include "parallel/DofComm.h"
31
#include "parallel/ElementObjectDatabase.h"
32
#include "parallel/ParallelTypes.h"
33
#include "parallel/MeshLevelData.h"
34
#include "parallel/MeshPartitioner.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
35
#include "parallel/InteriorBoundary.h"
36
#include "parallel/ParallelDofMapping.h"
37
#include "parallel/PeriodicMap.h"
38
#include "parallel/StdMpi.h"
39
#include "AMDiS_fwd.h"
40
#include "Containers.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
41
#include "Global.h"
42 43
#include "ProblemTimeInterface.h"
#include "ProblemIterationInterface.h"
44
#include "FiniteElemSpace.h"
45
#include "Serializer.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
46
#include "BoundaryManager.h"
47 48 49
#include <string>

#include "operations/functors.hpp"
50

51
namespace AMDiS { namespace Parallel {
52

Thomas Witkowski's avatar
Thomas Witkowski committed
53 54 55

  struct BoundaryDofInfo
  {
56
    std::map<GeoIndex, DofContainerSet> geoDofs;
Thomas Witkowski's avatar
Thomas Witkowski committed
57 58
  };

59

60
  class MeshDistributor
61
  {
62
  private:
63
    MeshDistributor();
64 65
	          
  public:
Thomas Witkowski's avatar
Thomas Witkowski committed
66 67
    ~MeshDistributor();

68
    /// Initialization of mesh distributor.
69
    void initParallelization();
70

71
    /// Clean up procedure for the mesh distributor and attached objects.
72
    void exitParallelization();
73

74 75 76 77 78 79 80 81
    /** \brief
     * Register a parallel DOF mapping. This DOF mapping object will than 
     * automatically updated by the mesh distributer after mesh changes.
     *
     * \param[in]  dofMap   Parallel DOF mapping object.
     */
    void registerDofMap(ParallelDofMapping &dofMap);

Thomas Witkowski's avatar
Thomas Witkowski committed
82 83 84 85 86 87 88
    /** \brief
     * Removes a registered DOF mapping from the mesh distributor.
     *
     * \param[in] dofMap   Parallel DOF mapping object to be removed.
     */
    void removeDofMap(ParallelDofMapping &dofMap);

89 90 91
    /// Adds a DOFVector to the set of \ref interchangeVecs. Thus, this vector 
    /// will be automatically interchanged between ranks when mesh is 
    /// repartitioned.
92 93
    template< typename T >
    void addInterchangeVector(DOFVector<T> *vec) {}
94 95 96 97 98
    void addInterchangeVector(DOFVector<double> *vec)
    {
      interchangeVectors.push_back(vec);
    }

99 100 101 102 103 104 105 106 107 108 109 110
    /// Removes the pointer to DOFVector @param vec from the
    /// set of interchange vectors.
    template< typename T >
    void removeInterchangeVector(DOFVector<T> *vec) {}
    void removeInterchangeVector(DOFVector< double >* vec)
    {
      std::vector< DOFVector< double >* >::iterator it;
      it = std::find(interchangeVectors.begin(), interchangeVectors.end(), vec);
      if ( it != interchangeVectors.end())
        interchangeVectors.erase(it);
    }

111
    /// Adds all DOFVectors of a SystemVector to \ref interchangeVecs.
112
    void addInterchangeVector(SystemVector *vec);
113 114 115

    /// The same as for DOFVectors
    void removeInterchangeVector(SystemVector* vec);
116
    
117
    /** \brief
118
     * This function checks if the mesh has changed on at least one rank. In 
119 120 121 122
     * this case, the interior boundaries are adapted on all ranks such that 
     * they fit together on all ranks. Furthermore the function 
     * \ref updateLocalGlobalNumbering() is called to update the DOF numberings 
     * and mappings on all rank due to the new mesh structure.
123
     *
124 125 126 127 128
     * \param[in]  tryRepartition   If this parameter is true, repartitioning 
     *                              may be done. This depends on several other 
     *                              parameters. If the parameter is false, the 
     *                              mesh is only checked and adapted but never 
     *                              repartitioned.
129
     */
130
    void checkMeshChange(bool tryRepartition = true);
131

Thomas Witkowski's avatar
Thomas Witkowski committed
132 133 134
    /// Checks if is required to repartition the mesh. If this is the case, a new
    /// partition will be created and the mesh will be redistributed between the
    /// ranks.
Siqi Ling's avatar
Siqi Ling committed
135
    bool repartitionMesh();
136
    
137
    
Thomas Witkowski's avatar
Thomas Witkowski committed
138 139 140 141 142 143 144
    void getImbalanceFactor(double &imbalance, 
			    int &minDofs, 
			    int &maxDofs,
			    int &sumDofs);

    double getImbalanceFactor();

145 146 147
    /// Calculates the imbalancing factor and prints it to screen.
    void printImbalanceFactor();

Thomas Witkowski's avatar
Thomas Witkowski committed
148 149 150 151
    /// Test, if the mesh consists of macro elements only. The mesh partitioning 
    /// of the parallelization works for macro meshes only and would fail, if the 
    /// mesh is already refined in some way. Therefore, this function will exit
    /// the program if it finds a non macro element in the mesh.
152
    void testForMacroMesh();
153

154
    inline std::string getName() 
155 156 157
    { 
      return name; 
    }
158

159 160 161 162 163 164
    inline Mesh* getMacroMesh()
    {
      return macroMesh;
    }
    
    inline Mesh* getMesh(int i = 0)
Thomas Witkowski's avatar
Thomas Witkowski committed
165
    {
166 167 168 169 170 171
      return meshes[i];
    }
    
    inline int getNumberOfMeshes()
    {
      return meshes.size();
Thomas Witkowski's avatar
Thomas Witkowski committed
172 173
    }

174 175
    /// Returns the periodic mapping handler, \ref periodicMap.
    inline PeriodicMap& getPeriodicMap()
176
    {
177
      return periodicMap;
178
    }
179

180 181 182 183
//     DofComm& getDofComm(int level)
//     {
//       return dofComm[level];
//     }
184 185 186 187 188 189 190 191 192 193
    
    DofComm& getDofComm(Mesh* mesh, int level)
    {
      return dofComms[mesh][level];
    }
    
    std::map<Mesh*, MultiLevelDofComm>& getDofComms()
    {
      return dofComms;
    }
194

195
    InteriorBoundary& getIntBoundary(int level)
196
    {
197
      return intBoundary[level];
198
    }
199 200 201 202 203
    
    std::map<int, int>& getPartitionMap()
    {
      return partitionMap;
    }
204

205
    inline long getLastMeshChangeIndex()
206
    {
207 208 209 210 211 212 213 214 215 216
      int overallMeshChangeIndex = 0;
      for(size_t i = 0; i < meshes.size(); i++) {
	overallMeshChangeIndex += lastMeshChangeIndexs[meshes[i]];
      }
      return overallMeshChangeIndex;
    }
    
    inline long getLastMeshChangeIndex(Mesh* m)
    {
      return lastMeshChangeIndexs[m];
217
    }
218

219
    inline int getMpiRank()
220
    {
221
      return mpiRank;
222
    }
223

224
    inline int getMpiSize(int level)
Thomas Witkowski's avatar
Thomas Witkowski committed
225
    {
226
      return levelData.getMpiComm(level).Get_size();
Thomas Witkowski's avatar
Thomas Witkowski committed
227 228
    }

229
    inline MPI::Intracomm& getMpiComm(int level)
230
    {
231
      return levelData.getMpiComm(level);
232 233
    }

234 235 236 237 238
    inline bool isInitialized()
    {
      return initialized;
    }

239
    // Writes all data of this object to an output stream.
240
    void serialize(std::ostream &out);
241

242
    // Reads the object data from an input stream.
243
    void deserialize(std::istream &in);
244 245 246 247
    
    /// Works quite similar to the function \ref synchVector, but instead the 
    /// values of subdomain vectors are combined along the boundaries, by a
    /// binary functor. 
248
    // minorRank => majorRank
249 250
    template<typename T, typename Operator>
    void synchVector(DOFVector<T> &vec, Operator op)
251
    {
252
      const FiniteElemSpace *fe = vec.getFeSpace();
253
      MultiLevelDofComm& dofComm = dofComms[fe->getMesh()];
254

255 256
      int nLevels = levelData.getNumberOfLevels();
      for (int level = nLevels - 1; level >= 0; level--) {
257
	StdMpi<std::vector<T> > stdMpi(levelData.getMpiComm(level));
258

259
	for (DofComm::Iterator it(dofComm[level].getRecvDofs(), fe);
260
	     !it.end(); it.nextRank()) {
261
	  std::vector<T> dofs;
262 263 264 265 266 267 268 269
	  dofs.reserve(it.getDofs().size());
	  
	  for (; !it.endDofIter(); it.nextDof())
	    dofs.push_back(vec[it.getDofIndex()]);
	  
	  stdMpi.send(it.getRank(), dofs);
	}
	
270
	for (DofComm::Iterator it(dofComm[level].getSendDofs(), fe); 
271 272
	     !it.end(); it.nextRank())
	  stdMpi.recv(it.getRank());
273
	
274
	stdMpi.startCommunication();
275
	
276
	for (DofComm::Iterator it(dofComm[level].getSendDofs(), fe); 
277 278
	     !it.end(); it.nextRank())
	  for (; !it.endDofIter(); it.nextDof())
279 280
	    op(vec[it.getDofIndex()],
	       stdMpi.getRecvData(it.getRank())[it.getDofCounter()]);
281
      }
282
      synchVector(vec);
283 284
    }
    
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
    /** \brief
    * This function must be used if the values of a set of DOFVectors must be
    * synchronized over all ranks. That means, that each rank sends the
    * values of the DOFs, which are owned by the rank and lie on an interior
    * boundary, to all other ranks also having these DOFs.
    *
    * The synchronization direction is from major to minor rank. This means
    * that the value of the rank with the higher number sends its value
    * to the rank with the lower number.
    */
    // majorRank => minorRank
    template<typename T>
    void synchVector(std::vector<DOFVector<T>*> &vecs)
    {
      if (vecs.size() > 0)
      {
        // get FE space
        const FiniteElemSpace *fe = vecs[0]->getFeSpace();
        // TODO: check equal FE space
        // The lines below do not work!
        // for ( typename std::vector<DOFVector<T>*>::iterator vecIt = vecs.begin(); vecIt != vecs.end(); ++vecIt)
        //   TEST_EXIT( (*vecIt)->getFeSpace()->getBasisFcts()->getDegree() == fe->getBasisFcts()->getDegree() )("FE space of vectors to synch not equal!\n");

        MultiLevelDofComm& dofComm = dofComms[fe->getMesh()];
        
        int nLevels = levelData.getNumberOfLevels();
        for (int level = nLevels - 1; level >= 0; level--)
        {
          StdMpi<std::vector<std::vector<T> > > stdMpi(levelData.getMpiComm(level));
          
          for (DofComm::Iterator it(dofComm[level].getSendDofs(), fe); !it.end(); it.nextRank())
          {
            std::vector<std::vector<T> > dofs;
            dofs.reserve(it.getDofs().size());
            for (; !it.endDofIter(); it.nextDof())
            {
              std::vector<T> values;
              values.reserve(vecs.size());
              for (typename std::vector<DOFVector<T>*>::iterator vecIt = vecs.begin(); vecIt != vecs.end(); ++vecIt )
                values.push_back((**vecIt)[it.getDofIndex()]);
              dofs.push_back(values);
            }
            stdMpi.send(it.getRank(), dofs);
          }

          for (DofComm::Iterator it(dofComm[level].getRecvDofs(), fe); !it.end(); it.nextRank())
            stdMpi.recv(it.getRank());

          stdMpi.startCommunication();

          for (DofComm::Iterator it(dofComm[level].getRecvDofs(), fe); !it.end(); it.nextRank())
          {
            for (; !it.endDofIter(); it.nextDof())
            {
              std::vector<T> values = stdMpi.getRecvData(it.getRank())[it.getDofCounter()];
              typename std::vector<DOFVector<T>*>::iterator vecIt = vecs.begin();
              typename std::vector<T>::iterator valuesIt = values.begin();
              for (; vecIt != vecs.end(), valuesIt != values.end(); ++vecIt , ++valuesIt)
                (**vecIt)[it.getDofIndex()] = *valuesIt;
            }
          }
        }
      }
    }
    
    /** \brief
    * Works quite similar to the function \ref synchVector with an operator/
    * assigner for the values on the subdomain boundaries of the DOFVector vec.
    * Additionally, the values stored in additionalVecs are synchronized in
    * the same way (direction (minor to major or major to minor rank)) as the
    * DOFs of the variable vec.
    */
    template<typename T, typename Operator>
    void synchVectorSameWay(DOFVector<T> &vec, std::vector<DOFVector<T>*> additionalVecs, Operator op)
    {
      // get FE space and check equal FE space
      const FiniteElemSpace *fe = vec.getFeSpace();
      // TODO: check equal FE space
      // The lines below do not work!
      // for ( typename std::vector<DOFVector<T>*>::iterator vecIt = additionalVecs.begin(); vecIt != additionalVecs.end(); ++vecIt)
      //   TEST_EXIT( (*vecIt)->getFeSpace()->getBasisFcts()->getDegree() == fe->getBasisFcts()->getDegree() )("FE space of vectors to synch not equal!\n");

      MultiLevelDofComm& dofComm = dofComms[fe->getMesh()];

      int nLevels = levelData.getNumberOfLevels();
      for (int level = nLevels - 1; level >= 0; level--)
      {
        StdMpi < std::vector<std::vector<T> > > stdMpi(levelData.getMpiComm(level));

        for (DofComm::Iterator it(dofComm[level].getRecvDofs(), fe); !it.end(); it.nextRank())
        {
          std::vector<std::vector<T> > dofs;
          dofs.reserve(it.getDofs().size());
          for (; !it.endDofIter(); it.nextDof())
          {
            std::vector<T> values;
            values.reserve(additionalVecs.size() + 1);
            values.push_back( vec[it.getDofIndex()] );
            for (typename std::vector<DOFVector<T>*>::iterator vecIt = additionalVecs.begin(); vecIt != additionalVecs.end(); ++vecIt )
              values.push_back( (**vecIt)[it.getDofIndex()] );
            dofs.push_back( values );
          }
          stdMpi.send(it.getRank(), dofs);
        }

        for (DofComm::Iterator it(dofComm[level].getSendDofs(), fe); !it.end(); it.nextRank())
          stdMpi.recv(it.getRank());

        stdMpi.startCommunication();

        for (DofComm::Iterator it(dofComm[level].getSendDofs(), fe); !it.end(); it.nextRank())
        {
          for (; !it.endDofIter(); it.nextDof())
          {
            DegreeOfFreedom idx = it.getDofIndex();
            std::vector<T> values = stdMpi.getRecvData(it.getRank())[it.getDofCounter()];

            T minorRankValue = vec[idx];
            T majorRankValue = values[0];
            op(vec[idx], values[0]);
            T synchValue = vec[idx];

            TEST_EXIT(additionalVecs.size() == values.size()-1)("The number of additional vectors and the received values do not match!\n");

            typename std::vector<DOFVector<T>*>::iterator vecIt = additionalVecs.begin();
            typename std::vector<T>::iterator valuesIt = values.begin();
            ++valuesIt; // exclude the first one since it belongs to the variable vec
            for (; vecIt != additionalVecs.end(), valuesIt != values.end(); ++vecIt , ++valuesIt)
              if (synchValue == majorRankValue)
                (**vecIt)[idx] = *valuesIt;
          }
        }
      }
      // call simple sync method
      std::vector<DOFVector<T>*> allDOFVectors;
      allDOFVectors.push_back(&vec);
      for ( int i = 0; i < additionalVecs.size(); ++i )
        allDOFVectors.push_back(additionalVecs[i]);
      synchVector(allDOFVectors);
    }
    
426 427 428 429 430 431 432 433 434 435
    /** \brief
     * This function must be used if the values of a DOFVector must be 
     * synchronised over all ranks. That means, that each rank sends the 
     * values of the DOFs, which are owned by the rank and lie on an interior 
     * boundary, to all other ranks also having these DOFs.
     *
     * This function must be used, for example, after the linear system is
     * solved, or after the DOFVector is set by some user defined functions, 
     * e.g., initial solution functions.
     */    
436
     // majorRank => minorRank
437 438 439
    template<typename T>
    void synchVector(DOFVector<T> &vec) 
    {
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
      const FiniteElemSpace *fe = vec.getFeSpace();
      MultiLevelDofComm& dofComm = dofComms[fe->getMesh()];

      int nLevels = levelData.getNumberOfLevels();
      for (int level = nLevels - 1; level >= 0; level--) {
	StdMpi<std::vector<T> > stdMpi(levelData.getMpiComm(level));

	for (DofComm::Iterator it(dofComm[level].getSendDofs(), fe); 
	     !it.end(); it.nextRank()) {

	  std::vector<T> dofs;
	  dofs.reserve(it.getDofs().size());
	  
	  for (; !it.endDofIter(); it.nextDof())
	    dofs.push_back(vec[it.getDofIndex()]);
	  
	  stdMpi.send(it.getRank(), dofs);
	}
	
459
	for (DofComm::Iterator it(dofComm[level].getRecvDofs(), fe); 
460 461 462 463 464 465 466 467 468 469 470
	     !it.end(); it.nextRank())
	  stdMpi.recv(it.getRank());
	
	stdMpi.startCommunication();
	
	for (DofComm::Iterator it(dofComm[level].getRecvDofs(), fe); 
	     !it.end(); it.nextRank())
	  for (; !it.endDofIter(); it.nextDof())
	    vec[it.getDofIndex()] = 
	      stdMpi.getRecvData(it.getRank())[it.getDofCounter()];
      }
471
    }
Thomas Witkowski's avatar
Thomas Witkowski committed
472
   
Thomas Witkowski's avatar
Blub  
Thomas Witkowski committed
473 474 475
    /// Works in the same way as the function above defined for DOFVectors. Due
    /// to performance, this function does not call \ref synchVector for each 
    /// DOFVector, but instead sends all values of all DOFVectors all at once.
476
    void synchVector(SystemVector &vec);
477
    
478 479
    /// Works quite similar to the function \ref synchVector, but instead the 
    /// values of subdomain vectors are add along the boundaries.
480
    // minorRank => majorRank
Thomas Witkowski's avatar
Thomas Witkowski committed
481 482 483
    template<typename T>
    void synchAddVector(DOFVector<T> &vec)
    {
484
      const FiniteElemSpace *fe = vec.getFeSpace();
485
      MultiLevelDofComm& dofComm = dofComms[fe->getMesh()];
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501

      int nLevels = levelData.getNumberOfLevels();
      for (int level = nLevels - 1; level >= 0; level--) {
	StdMpi<std::vector<T> > stdMpi(levelData.getMpiComm(level));

	for (DofComm::Iterator it(dofComm[level].getRecvDofs(), fe);
	     !it.end(); it.nextRank()) {
	  std::vector<T> dofs;
	  dofs.reserve(it.getDofs().size());
	  
	  for (; !it.endDofIter(); it.nextDof())
	    dofs.push_back(vec[it.getDofIndex()]);
	  
	  stdMpi.send(it.getRank(), dofs);
	}
	
502
	for (DofComm::Iterator it(dofComm[level].getSendDofs(), fe); 
503 504 505 506 507 508 509 510 511 512 513 514 515
	     !it.end(); it.nextRank())
	  stdMpi.recv(it.getRank());
	
	stdMpi.startCommunication();
	
	for (DofComm::Iterator it(dofComm[level].getSendDofs(), fe); 
	     !it.end(); it.nextRank())
	  for (; !it.endDofIter(); it.nextDof())
	    vec[it.getDofIndex()] += 
	      stdMpi.getRecvData(it.getRank())[it.getDofCounter()];
      }

      synchVector(vec);
Thomas Witkowski's avatar
Thomas Witkowski committed
516 517
    }

518 519 520 521 522 523
    /// In 3D, a subdomain may not be a valid AMDiS mesh if it contains two
    /// parts which are only connected by an edge. In this case, the standard
    /// refinement algorithm does not work correctly, as two elements connected
    /// only on one edge are not neighours by definition. This functions checks
    /// for this situation and fix the problem. For this, the mesh is search for
    /// all edges connecting two elements that are otherwise not connected.
524 525 526 527 528 529 530 531 532 533 534 535 536
    void fix3dMeshRefinement();

    /** \brief Is used only within \ref fix3dMeshRefinement.
     * 
     * \param[in]  elems            Set of macro element indices.
     * \param[out] disconnectedEls  On output, this vector contains sets of
     *                              element indices. The union is equal to elems.
     *                              Each set contains all element indices, which
     *                              are reachable among each other by neighbour
     *                              relations. Elements within two different sets
     *                              cannot be reached via neigbourhood relation.
     */
    void helpToFix(std::set<int> &elems, 
537
		   std::vector<std::set<int> > &disconnectedEls);
538

Thomas Witkowski's avatar
Thomas Witkowski committed
539 540
    void setBoundaryDofRequirement(Flag flag)
    {
541
      createBoundaryDofFlag |= flag;
Thomas Witkowski's avatar
Thomas Witkowski committed
542 543
    }

544 545
    BoundaryDofInfo& getBoundaryDofInfo(const FiniteElemSpace *feSpace,
					int level)
546
    {
547 548 549 550 551 552 553
      FUNCNAME("MeshDistributor::getBoundaryDofInfo()");

      TEST_EXIT_DBG(level < static_cast<int>(boundaryDofInfo.size()))
	("Wrong level number: %d, whereas array size is %d!\n", 
	 level, boundaryDofInfo.size());

      return boundaryDofInfo[level][feSpace];
554 555
    }

556 557
    void getAllBoundaryDofs(const FiniteElemSpace *feSpace, 
			    int level,
558
			    DofContainer& dofs);
559

Thomas Witkowski's avatar
Thomas Witkowski committed
560
    ElementObjectDatabase& getElementObjectDb() 
561 562 563
    {
      return elObjDb;
    }
564 565 566

    /// Adds a stationary problem to the global mesh distributor objects.
    static void addProblemStatGlobal(ProblemStatSeq *probStat);
Thomas Witkowski's avatar
Thomas Witkowski committed
567 568 569 570 571

    MeshLevelData& getMeshLevelData() 
    {
      return levelData;
    }
572 573 574 575 576 577 578 579
    
    /// Update dof communicators, boundary dof info and the parallel dof mappings.
    /// If it is called for all meshes, \ref updateLocalGlobalNumbering is automatically
    /// called inside. If it is used for each mesh seperately, please don't forget to 
    /// add \ref updateLocalGlobalNumbering to update the global matrix index.
    void updateDofRelatedStruct();
    
    void updateDofRelatedStruct(Mesh* mesh);
Thomas Witkowski's avatar
Thomas Witkowski committed
580

581
    void updateLocalGlobalNumbering();
582 583 584 585 586 587
    
    /// set variable \ref repartitioningAllowed
    void setRepartitioningAllowed(bool allowed)
    {
      repartitioningAllowed = allowed;
    }
Siqi Ling's avatar
Siqi Ling committed
588 589 590 591 592
    
    void setElementWeights(std::map<int, double>& elWgts)
    {
      elemWeights = elWgts;
    }
593

594
  protected:
595 596 597 598 599 600 601 602 603 604 605 606
    /// Rebuild only part of the mesh domain, which is necessary
    void quickRepartition(Mesh* mesh);
    
    /// Rebuild whole mesh domain
    void fullRepartition(Mesh* mesh);
    
    /// Updates all registered parallel DOF mappings, see \ref dofMaps.
    void updateDofsToDofMapping(Mesh* mesh = NULL);

    /// Updates the DOF after the mesh has been changed, see \ref dofMaps.
    void updateDofsToDofMapping(ParallelDofMapping &dmap,
				    const FiniteElemSpace *feSpace);
607 608 609 610
    
    /// Checks if repartition is needed.
    bool isRepartitionNecessary();
    
611
    /// Creates an initial partitioning of the mesh.
Thomas Witkowski's avatar
Thomas Witkowski committed
612 613 614 615 616
    void createInitialPartitioning();

    /// Set for each element on the partitioning level the number of 
    /// leaf elements.
    void setInitialElementWeights();
617 618 619 620
    
    /// Calculates \ref elemWeights with the gloabl max weight and 
    /// global sum of weight.
    void calculateElemWeights();
Thomas Witkowski's avatar
Thomas Witkowski committed
621 622

    ///
623 624
    void addProblemStat(ProblemStatSeq *probStat);

625 626
    /// Determines the interior boundaries, i.e. boundaries between ranks, and
    /// stores all information about them in \ref interiorBoundary.
627
    void createInteriorBoundary(bool firstCall);
Thomas Witkowski's avatar
Thomas Witkowski committed
628

Thomas Witkowski's avatar
Thomas Witkowski committed
629
    ///
630
    void createBoundaryDofs(Mesh* mesh = NULL);
Thomas Witkowski's avatar
Thomas Witkowski committed
631

632 633
    /// Removes all macro elements from the mesh that are not part of ranks 
    /// partition.
634 635
    void removeMacroElements();

636 637 638 639
    /// Calls \ref createPeriodicMap(feSpace) for all FE spaces that are
    /// handled by the mesh distributor.
    void createPeriodicMap();

640 641 642
    /// Creates, for a specific FE space, to all DOFs in rank's partition that 
    /// are on a periodic boundary the mapping from dof index to the other 
    /// periodic dof indices. This information is stored in \ref periodicDofMap.  
643
    void createPeriodicMap(const FiniteElemSpace *feSpace);
644

645 646 647 648 649 650
    /// This function is called only once during the initialization when the
    /// whole macro mesh is available on all cores. It copies the pointers of all
    /// macro elements to \ref allMacroElements and stores all neighbour 
    /// information based on macro element indices (and not pointer based) in 
    /// \ref macroElementNeighbours. These information are then used to 
    /// reconstruct macro elements during mesh redistribution.
651 652
    void createMacroElementInfo();

653 654
    void updateMacroElementInfo();

655
    /** \brief
656 657 658 659 660 661
     * Checks for all given interior boundaries if the elements fit together on
     * both sides of the boundaries. If this is not the case, the mesh is 
     * adapted. Because refinement of a certain element may forces the 
     * refinement of other elements, it is not guaranteed that all rank's meshes
     * fit together after this function terminates. Hence, it must be called 
     * until a stable mesh refinement is reached.
662
     *
663 664
     * \param[in] allBound   Defines a map from rank to interior boundaries 
     *                       which should be checked.
665
     * \param[in] mesh       The mesh the interior boundaries belong to.
666
     *
667 668 669
     * \return    If the mesh has  been changed by this function, it returns 
     *            true. Otherwise, it returns false, i.e., the given interior 
     *            boundaries fit together on both sides.
670
     */
671
    bool checkAndAdaptBoundary(RankToBoundMap &allBound, Mesh* mesh);
672
  
673 674 675 676
    /// Removes all periodic boundary condition information from all matrices and
    /// vectors of all stationary problems and from the mesh itself.
    void removePeriodicBoundaryConditions();

677 678 679 680
    /// Removes all periodic boundary condition information from all matrices and
    /// vector of a given stationary problem.
    void removePeriodicBoundaryConditions(ProblemStatSeq *probStat);

Thomas Witkowski's avatar
Thomas Witkowski committed
681
    // Removes all periodic boundaries from a given boundary map.
682
    void removePeriodicBoundaryConditions(BoundaryIndexMap& boundaryMap);
Thomas Witkowski's avatar
Thomas Witkowski committed
683

684 685
    void createMeshLevelStructure();

686
    /// Writes a vector of dof pointers to an output stream.
687
    void serialize(std::ostream &out, DofContainer &data);
688

689
    /// Writes a \ref RankToDofContainer to an output stream.
690 691
    void serialize(std::ostream &out, 
		   std::map<int, std::map<const FiniteElemSpace*, DofContainer> > &data);
692

693
    /// Reads a vector of dof pointers from an input stream.
694 695
    void deserialize(std::istream &in, DofContainer &data,
		     std::map<int, const DegreeOfFreedom*> &dofIndexMap);
696 697

    /// Reads a \ref RankToDofContainer from an input stream.
698 699 700
    void deserialize(std::istream &in, 
		     std::map<int, std::map<const FiniteElemSpace*, DofContainer> > &data,
		     std::map<const FiniteElemSpace*, std::map<int, const DegreeOfFreedom*> > &dofIndexMap);
701 702 703

    /// Writes a mapping from dof pointers to some values to an output stream.
    template<typename T>
704
    void serialize(std::ostream &out, std::map<const DegreeOfFreedom*, T> &data)
705
    {
706 707
      FUNCNAME("ParallelDomainBase::serialize()");

708
      int mapSize = data.size();
709
      SerUtil::serialize(out, mapSize);
710
      for (typename std::map<const DegreeOfFreedom*, T>::iterator it = data.begin();
711 712 713
	   it != data.end(); ++it) {
	int v1 = (*(it->first));
	T v2 = it->second;
714 715
	SerUtil::serialize(out, v1);
	SerUtil::serialize(out, v2);
716 717 718 719 720
      }
    }

    /// Reads a mapping from dof pointer to some values from an input stream.
    template<typename T>
721 722
    void deserialize(std::istream &in, std::map<const DegreeOfFreedom*, T> &data,
		     std::map<int, const DegreeOfFreedom*> &dofIndexMap)
723
    {
724 725
      FUNCNAME("ParallelDomainBase::deserialize()");

726
      int mapSize = 0;
727
      SerUtil::deserialize(in, mapSize);
728 729 730
      for (int i = 0; i < mapSize; i++) {
	int v1 = 0;
	T v2;
731 732
	SerUtil::deserialize(in, v1);
	SerUtil::deserialize(in, v2);
733

734 735
	TEST_EXIT_DBG(dofIndexMap.count(v1) != 0)
	  ("Cannot find DOF %d in map!\n", v1);
736

737
	data[dofIndexMap[v1]] = v2;
738 739
      }
    }
740

741
  protected:
742 743
    /// List of all stationary problems that are managed by this mesh 
    /// distributor.
744
    std::vector<ProblemStatSeq*> problemStat;
Thomas Witkowski's avatar
Thomas Witkowski committed
745

746 747 748
    /// If true, the mesh distributor is already initialized;
    bool initialized;

749 750 751 752
    /// The rank of the current process.
    int mpiRank;

    /// Name of the problem (as used in the init files)
753
    std::string name;
754

755
    /// Set of all different FE spaces.
756
    std::vector<const FiniteElemSpace*> feSpaces;
757
    
758 759 760 761 762 763 764 765 766 767
    /// Always equal to meshes[0] which is used as macro
    /// mesh. For example, passed to \ref meshPartitioner.
    Mesh *macroMesh;
    
    /// Meshes to be managed for parallelization. Currently only two meshes
    /// are allowed since multi mesh method is limited to two meshes.
    std::vector<Mesh*> meshes;
    
    /// Stores the map of meshes and the corresponding FE spaces defined on them
    MeshToFeSpaces meshToFeSpaces;
768

769 770 771
    /// A refinement manager that should be used on the mesh. It is used to 
    /// refine elements at interior boundaries in order to fit together with 
    /// elements on the other side of the interior boundary.    
772 773
    RefinementManager *refineManager;

774 775
    /// Pointer to a mesh partitioner that is used to partition the mesh to 
    /// the ranks.
776
    MeshPartitioner *partitioner;
777

778 779 780 781 782 783
    /// Pointer to a mesh partitioner that is used for the very first 
    /// partitioning of the mesh. In most cases, this pointer points to the
    /// same object as \ref partitioner, but this must not be the case in
    /// general.
    MeshPartitioner *initialPartitioner;

784 785
    /// Weights for the elements, i.e., the number of leaf elements within 
    /// this element.
786
    std::map<int, double> elemWeights;
787

788 789
    /// Stores to every macro element index the number of the rank that owns this
    /// macro element.
790
    std::map<int, int> partitionMap;
791

792
    /// Database to store and query all sub-objects of all elements of the 
793
    /// macro mesh.
794
    ElementObjectDatabase elObjDb;
Thomas Witkowski's avatar
Thomas Witkowski committed
795

796
    /// Defines the interior boundaries of the domain that result from 
797
    /// partitioning the whole mesh. 
798
    MultiLevelInteriorBoundary intBoundary;
799 800 801
    
    /// Dof communicator objects for each mesh
    std::map<Mesh*, MultiLevelDofComm> dofComms;
802

803
    PeriodicMap periodicMap;
804

805 806
    /// This set of values must be interchanged between ranks when the mesh is 
    /// repartitioned.
807
    std::vector<DOFVector<double>*> interchangeVectors;
808
		        
809 810 811 812
    /// If the problem definition has been read from a serialization file, this 
    /// variable is true, otherwise it is false. This variable is used to stop the
    /// initialization function, if the problem definition has already been read
    /// from a serialization file.
813
    bool deserialized;
814

815 816 817
    /// Denotes whether there exists a filewriter for this object.
    bool writeSerializationFile;

818 819
    /// If true, it is possible to repartition the mesh during computations.
    bool repartitioningAllowed;
820 821 822
    
    /// repartition the mesh (only) the first time repartitionMesh() is called
    bool repartitionOnlyOnce;
823

824
    /// Stores the number of mesh changes that must lie in between two 
825
    /// repartitionings.
826 827
    int repartitionIthChange;

828 829 830
    ///
    int repartitioningWaitAfterFail;

831 832
    /// Counts the number of mesh changes after the last mesh repartitioning 
    /// was done.
833
    int nMeshChangesAfterLastRepartitioning;
834

835 836 837
    /// Countes the number of mesh repartitions that were done. Till now, this 
    /// variable is used only for debug outputs.
    int repartitioningCounter;
838

839 840 841 842 843
    /// If repartitioning of the mesh fail, this variable has a positive value
    /// that gives the number of mesh changes the mesh distributer will wait
    /// before trying new mesh repartitioning.
    int repartitioningFailed;

844
    /// Directory name where all debug output files should be written to.
845
    std::string debugOutputDir;
846

847 848
    /// Stores the mesh change index. This is used to recognize changes in the
    /// mesh structure (e.g. through refinement or coarsening managers).
849
    std::map<Mesh*, long> lastMeshChangeIndexs;
850

851 852 853 854
    /// Stores for all macro elements of the original macro mesh the
    /// neighbourhood information based on element indices. Thus, each macro
    /// element index is mapped to a vector containing all indices of 
    /// neighbouring macro elements.
855
    std::map<int, std::vector<int> > macroElementNeighbours;
856

857 858
    /// Store all macro elements of the overall mesh, i.e., before the
    /// mesh is redistributed for the first time.
859 860 861
    /// Store all macro elements of the overall mesh, i.e., before the
    /// mesh is redistributed for the first time.   
    std::map<Mesh*, std::vector<MacroElement*> > allMacroElements;
862

Thomas Witkowski's avatar
Thomas Witkowski committed
863 864
    Flag createBoundaryDofFlag;

865 866
    /// Stores on each mesh level for all FE spaces the information about
    /// all boundary DOFs.
867
    std::vector<std::map<const FiniteElemSpace*, BoundaryDofInfo> > boundaryDofInfo;
868

869 870
    /// Stores information about hierarchical decomposition of the mesh levels.
    /// Is used to specify multi level solver methods.
871 872
    MeshLevelData levelData;

Thomas Witkowski's avatar
bla  
Thomas Witkowski committed
873 874 875 876 877 878
    /// If there is no mesh adaptivity, the mesh distributor can remove some
    /// data structures which are only used if mesh changes or it must be
    /// redistributed due to some local adaptivity. By default, this variable
    /// is set to true, and thus no special assumption are made.
    bool meshAdaptivity;

879 880 881 882 883
    /// Specifies whether the global domain has periodic boundaries. Thus, this
    /// variable is not related to rank's subdomain but to the global problem
    /// and therefore the value if the same on all ranks.
    bool hasPeriodicBoundary;

884 885
    /// Set of all parallel DOF mapping object that are registered by parallel
    /// solver objects and must be updated automatically after mesh change.
886
    std::vector<ParallelDofMapping*> dofMaps;
887

Thomas Witkowski's avatar
Thomas Witkowski committed
888 889 890
    /// If true, detailed timings for benchmarking are printed.
    bool printTimings;

891 892 893
    /// If true, detailed information about memory usage are printed.
    bool printMemoryUsage;

Thomas Witkowski's avatar
Thomas Witkowski committed
894
  public:
895 896 897
    /// The boundary DOFs are sorted by subobject entities, i.e., first all
    /// face DOFs, edge DOFs and to the last vertex DOFs will be set to
    /// communication structure vectors, \ref sendDofs and \ref recvDofs.
Thomas Witkowski's avatar
Thomas Witkowski committed
898 899
    static const Flag BOUNDARY_SUBOBJ_SORTED;

900 901 902 903 904 905 906 907 908
    /// When boundary DOFs are created, \ref boundaryDofInfo is filled for
    /// all DOFs that this rank will send to other ranks (thus, rank 
    /// owned DOFs.
    static const Flag BOUNDARY_FILL_INFO_SEND_DOFS;

    /// When boundary DOFs are created, \ref boundaryDofInfo is filled for
    /// all DOFs that this rank will receive from other ranks (thus, DOFs
    /// that are owned by another rank).
    static const Flag BOUNDARY_FILL_INFO_RECV_DOFS;
Thomas Witkowski's avatar
Thomas Witkowski committed
909

910 911
    static MeshDistributor *globalMeshDistributor;

912
    friend class ParallelDebug;
913
  };
914
} }
915

916
#endif // AMDIS_MESHDISTRIBUTOR_H