ParallelDomainProblem.cc 9.91 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#include "ParallelDomainProblem.h"
#include "ProblemScal.h"
#include "ProblemInstat.h"
#include "ParMetisPartitioner.h"
#include "Mesh.h"
#include "Traverse.h"
#include "ElInfo.h"
#include "Element.h"
#include "MacroElement.h"
#include "PartitionElementData.h"

namespace AMDiS {

  ParallelDomainProblemBase::ParallelDomainProblemBase(const std::string& name,
15
16
						       ProblemIterationInterface *iIF,
						       ProblemTimeInterface *tIF,
17
						       FiniteElemSpace *fe)
18
19
    : iterationIF(iIF),
      timeIF(tIF),
20
21
      feSpace(fe),
      mesh(fe->getMesh()),
22
      initialPartitionMesh(true),
23
      nRankDOFs(0)
24
25
26
27
28
29
30
  {
    mpiRank = MPI::COMM_WORLD.Get_rank();
    mpiSize = MPI::COMM_WORLD.Get_size();
    mpiComm = MPI::COMM_WORLD;
    partitioner = new ParMetisPartitioner(mesh, &mpiComm);
  }

31
32
33
34
35
  Flag ParallelDomainProblemBase::oneIteration(AdaptInfo *adaptInfo, Flag toDo)
  {
    return iterationIF->oneIteration(adaptInfo, toDo);
  }

36
37
38
39
40
41
42
43
44
45
46
47
48
  void ParallelDomainProblemBase::initParallelization(AdaptInfo *adaptInfo)
  {
    if (mpiSize <= 1)
      return;

    // create an initial partitioning of the mesh
    partitioner->createPartitionData();
    // set the element weights, which are 1 at the very first begin
    setElemWeights(adaptInfo);
    // and now partition the mesh
    partitionMesh(adaptInfo);   


Thomas Witkowski's avatar
Thomas Witkowski committed
49
50
51
    /// === Determine to each dof the set of partitions the dof belongs to. ===

    std::map<const DegreeOfFreedom*, std::set<int> > partitionDofs;
52
53
54
55
    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(mesh, -1, Mesh::CALL_LEAF_EL);
    while (elInfo) {
      Element *element = elInfo->getElement();
56
57
58

      // Determine to each dof the partition(s) it corresponds to.
      for (int i = 0; i < 3; i++) 
Thomas Witkowski's avatar
Thomas Witkowski committed
59
	partitionDofs[element->getDOF(i)].insert(partitionVec[element->getIndex()]);
60
          
61
62
63
      elInfo = stack.traverseNext(elInfo);
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
64
65
66
67
    /// === Determine the set of ranks dofs and the dofs ownership at the boundary. ===

    std::vector<const DegreeOfFreedom*> rankDofs;
    for (std::map<const DegreeOfFreedom*, std::set<int> >::iterator it = partitionDofs.begin();
68
69
70
71
72
73
74
75
76
	 it != partitionDofs.end();
	 ++it) {
      for (std::set<int>::iterator itpart1 = it->second.begin();
	   itpart1 != it->second.end();
	   ++itpart1) {
	if (*itpart1 == mpiRank) {
	  if (it->second.size() == 1) {
	    rankDofs.push_back(it->first);
	  } else {	    
Thomas Witkowski's avatar
Thomas Witkowski committed
77
78
79
	    // This dof is at the ranks boundary. It is owned by the rank only if
	    // the rank number is the highest of all ranks containing this dof.

80
	    bool insert = true;
Thomas Witkowski's avatar
Thomas Witkowski committed
81
	    int highestRank = mpiRank;
82
83
84
	    for (std::set<int>::iterator itpart2 = it->second.begin();
		 itpart2 != it->second.end();
		 ++itpart2) {
Thomas Witkowski's avatar
Thomas Witkowski committed
85
	      if (*itpart2 > mpiRank)
86
		insert = false;
Thomas Witkowski's avatar
Thomas Witkowski committed
87
88
89

	      if (*itpart2 > highestRank)
		highestRank = *itpart2;
90
	    }
Thomas Witkowski's avatar
Thomas Witkowski committed
91
92

	    if (insert)
93
	      rankDofs.push_back(it->first);
Thomas Witkowski's avatar
Thomas Witkowski committed
94
95

	    boundaryDofs[it->first] = highestRank;
96
97
98
99
100
	  }
	}
      }
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

    // === Create interior boundary information ===

    elInfo = stack.traverseFirst(mesh, -1, Mesh::CALL_LEAF_EL | Mesh::FILL_NEIGH);
    while (elInfo) {
      Element *element = elInfo->getElement();

      // Hidde elements which are not part of ranks partition.
      PartitionElementData *partitionData = 
	dynamic_cast<PartitionElementData*>(element->getElementData(PARTITION_ED));   
      if (partitionData->getPartitionStatus() == IN) {
	for (int i = 0; i < 3; i++) {
	  if (!elInfo->getNeighbour(i))
	    continue;

	  PartitionElementData *neighbourPartitionData =
	    dynamic_cast<PartitionElementData*>(elInfo->getNeighbour(i)->getElementData(PARTITION_ED));
 	  if (neighbourPartitionData->getPartitionStatus() == OUT) {
 	    AtomicBoundary& bound = interiorBoundary.
	      getNewAtomicBoundary(partitionVec[elInfo->getNeighbour(i)->getIndex()]);
 	    bound.rankObject.el = element;
 	    bound.rankObject.subObjAtBoundary = EDGE;
 	    bound.rankObject.ithObjAtBoundary = i;
 	    bound.neighbourObject.el = elInfo->getNeighbour(i);
 	    bound.neighbourObject.subObjAtBoundary = EDGE;
 	    bound.neighbourObject.ithObjAtBoundary = -1;
 	  }
	}
      }

      elInfo = stack.traverseNext(elInfo);
Thomas Witkowski's avatar
Thomas Witkowski committed
132
133
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
134

135
136
    // === Remove all macro elements that are not part of the rank partition. ===

137
138
139
140
141
142
143
144
145
    std::vector<MacroElement*> macrosToRemove;
    for (std::deque<MacroElement*>::iterator it = mesh->firstMacroElement();
	 it != mesh->endOfMacroElements();
	 ++it) {
      PartitionElementData *partitionData = 
	dynamic_cast<PartitionElementData*>
	((*it)->getElement()->getElementData(PARTITION_ED));
      if (partitionData->getPartitionStatus() != IN) {
	macrosToRemove.push_back(*it);
146
      }
147
148
149
150
    }

    mesh->removeMacroElements(macrosToRemove);

151
152
    // === Create local and global dofs ordering. ===

153
154
155
    int *gOrder = (int*)(malloc(sizeof(int) * rankDofs.size()));
    int *lOrder = (int*)(malloc(sizeof(int) * rankDofs.size()));

Thomas Witkowski's avatar
Thomas Witkowski committed
156
    for (std::vector<const DegreeOfFreedom*>::iterator it = rankDofs.begin();
157
	 it != rankDofs.end(); ++it) {
Thomas Witkowski's avatar
Thomas Witkowski committed
158
      gOrder[nRankDOFs++] = (*it)[0];
159
160
161
162
    }

    int rstart = 0;
    MPI_Scan(&nRankDOFs, &rstart, 1, MPI_INT, MPI_SUM, PETSC_COMM_WORLD);
163
    rstart -= nRankDOFs;
Thomas Witkowski's avatar
Thomas Witkowski committed
164
   
165
    for (int i = 0; i < nRankDOFs; i++) {
166
      lOrder[i] = rstart + i;
167
168
169
    }

    AOCreateBasic(PETSC_COMM_WORLD, nRankDOFs, gOrder, lOrder, &applicationOrdering);
Thomas Witkowski's avatar
Thomas Witkowski committed
170
    
171
172
    free(gOrder);
    free(lOrder);
Thomas Witkowski's avatar
Thomas Witkowski committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

    /// === Create information which dof indices must be send and which must be received. ===

    std::map<int, std::map<DegreeOfFreedom, DegreeOfFreedom> > sendNewDofs;
    std::map<int, std::vector<DegreeOfFreedom> > recvNewDofs;

    for (std::map<const DegreeOfFreedom*, int>::iterator it = boundaryDofs.begin();
	 it != boundaryDofs.end();
	 ++it) {
      if (it->second == mpiRank) {
	int oldDofIndex = (it->first)[0];
	int newDofIndex = 0;
	for (int i = 0; i < static_cast<int>(rankDofs.size()); i++) {
	  if (rankDofs[i] == it->first) {
	    newDofIndex = rstart + i;
	    break;
	  }
	}

	for (std::set<int>::iterator itRanks = partitionDofs[it->first].begin();
	     itRanks != partitionDofs[it->first].end();
	     ++itRanks) {
	  if (*itRanks != mpiRank) {
	    sendNewDofs[*itRanks][oldDofIndex] = newDofIndex;
	  }
	}
      } else {
	recvNewDofs[it->second].push_back((it->first)[0]);
      }
    }

    /// === Send and receive the dof indices at boundary. ===

    std::vector<int*> sendBuffers(sendNewDofs.size());
    std::vector<int*> recvBuffers(recvNewDofs.size());
    
    int i = 0;
    for (std::map<int, std::map<DegreeOfFreedom, DegreeOfFreedom> >::iterator sendIt = sendNewDofs.begin();
	 sendIt != sendNewDofs.end();
	 ++sendIt, i++) {
      sendBuffers[i] = new int[sendIt->second.size() * 2];
      int c = 0;
      for (std::map<DegreeOfFreedom, DegreeOfFreedom>::iterator dofIt = sendIt->second.begin();
	   dofIt != sendIt->second.end();
	   ++dofIt, c += 2) {
	sendBuffers[i][c] = dofIt->first;
	sendBuffers[i][c + 1] = dofIt->second;
      }

      mpiComm.Isend(sendBuffers[i], sendIt->second.size() * 2, MPI_INT, sendIt->first, 0);
    }

    i = 0;
    for (std::map<int, std::vector<DegreeOfFreedom> >::iterator recvIt = recvNewDofs.begin();
	 recvIt != recvNewDofs.end();
	 ++recvIt, i++) {
      recvBuffers[i] = new int[recvIt->second.size() * 2];
      
      mpiComm.Irecv(recvBuffers[i], recvIt->second.size() * 2, MPI_INT, recvIt->first, 0);
    }


    mpiComm.Barrier();

    /// === Change dof indices at boundary from other ranks. ===

    i = 0;
    for (std::map<int, std::vector<DegreeOfFreedom> >::iterator recvIt = recvNewDofs.begin();
	 recvIt != recvNewDofs.end();
	 ++recvIt, i++) {

      for (int j = 0; j < static_cast<int>(recvIt->second.size()); j++) {
	for (std::map<const DegreeOfFreedom*, int>::iterator dofIt = boundaryDofs.begin();
	     dofIt != boundaryDofs.end();
	     ++dofIt) {
	  if ((dofIt->first)[0] == recvBuffers[i][j * 2]) {
	    const_cast<DegreeOfFreedom*>(dofIt->first)[0] = recvBuffers[i][j * 2 + 1];
	    break;
	  }
	}
      }

      delete [] recvBuffers[i];
    }

    i = 0;
    for (std::map<int, std::map<DegreeOfFreedom, DegreeOfFreedom> >::iterator sendIt = sendNewDofs.begin();
	 sendIt != sendNewDofs.end();
	 ++sendIt, i++) {
      delete [] sendBuffers[i];
    }

    /// === Change dof indices for rank partition. ===

    for (int i = 0; i < static_cast<int>(rankDofs.size()); i++) {
      const_cast<DegreeOfFreedom*>(rankDofs[i])[0] = rstart + i;
    }
270
271
272
273
  }

  void ParallelDomainProblemBase::exitParallelization(AdaptInfo *adaptInfo)
  {
274
    AODestroy(applicationOrdering);
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
  }

  double ParallelDomainProblemBase::setElemWeights(AdaptInfo *adaptInfo) 
  {
    double localWeightSum = 0.0;
    int elNum = -1;

    elemWeights.clear();

    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(mesh, -1,
					 Mesh::CALL_EVERY_EL_PREORDER);
    while (elInfo) {
      Element *element = elInfo->getElement();

      // get partition data
      PartitionElementData *partitionData = dynamic_cast<PartitionElementData*>
	(element->getElementData(PARTITION_ED));

      if (partitionData && partitionData->getPartitionStatus() == IN) {
	if (partitionData->getLevel() == 0) {
	  elNum = element->getIndex();
	}
	TEST_EXIT(elNum != -1)("invalid element number\n");
	if (element->isLeaf()) {
	  elemWeights[elNum] += 1.0;
	  localWeightSum += 1.0;
	}
      }

      elInfo = stack.traverseNext(elInfo);
    }

    return localWeightSum;
  }

  void ParallelDomainProblemBase::partitionMesh(AdaptInfo *adaptInfo)
  {
    if (initialPartitionMesh) {
      initialPartitionMesh = false;
      partitioner->fillCoarsePartitionVec(&oldPartitionVec);
      partitioner->partition(&elemWeights, INITIAL);
    } else {
      oldPartitionVec = partitionVec;
      partitioner->partition(&elemWeights, ADAPTIVE_REPART, 100.0 /*0.000001*/);
    }    

    partitioner->fillCoarsePartitionVec(&partitionVec);
  }

  ParallelDomainProblemScal::ParallelDomainProblemScal(const std::string& name,
						       ProblemScal *problem,
						       ProblemInstatScal *problemInstat)
328
    : ParallelDomainProblemBase(name, problem, problemInstat, problem->getFESpace())
329
330
331
332
333
  {
  }


}