Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Backofen, Rainer
amdis
Commits
3064059b
Commit
3064059b
authored
Jan 21, 2013
by
Praetorius, Simon
Browse files
demo directory cleaned up
parent
bc2410a6
Changes
2
Hide whitespace changes
Inline
Side-by-side
demo/src/navierStokes.h
deleted
100644 → 0
View file @
bc2410a6
/** \file navierStokes.h */
#ifndef NAVIER_STOKES_H
#define NAVIER_STOKES_H
#include
"AMDiS.h"
#include
"GeometryTools.h"
struct
InflowBC
:
AbstractFunction
<
double
,
WorldVector
<
double
>
>
{
InflowBC
(
double
H_
=
4.1
,
double
Um_
=
1.5
)
:
H
(
H_
),
Um
(
Um_
)
{}
double
operator
()(
const
WorldVector
<
double
>
&
x
)
const
{
return
4.0
*
Um
*
x
[
1
]
*
(
H
-
x
[
1
])
/
sqr
(
H
);
}
protected:
double
H
;
double
Um
;
};
struct
MinWrapper
:
AbstractFunction
<
double
,
WorldVector
<
double
>
>
{
MinWrapper
(
AbstractFunction
<
double
,
WorldVector
<
double
>
>*
dist1_
,
AbstractFunction
<
double
,
WorldVector
<
double
>
>*
dist2_
)
:
dist1
(
dist1_
),
dist2
(
dist2_
)
{}
double
operator
()(
const
WorldVector
<
double
>&
x
)
const
{
return
std
::
min
((
*
dist1
)(
x
),
(
*
dist2
)(
x
));
}
private:
AbstractFunction
<
double
,
WorldVector
<
double
>
>*
dist1
;
AbstractFunction
<
double
,
WorldVector
<
double
>
>*
dist2
;
};
#endif
demo/src/navierStokes_diffuseDomain.cc
deleted
100644 → 0
View file @
bc2410a6
#include
"AMDiS.h"
#include
"NavierStokesPhase_TaylorHood.h"
#include
"navierStokes.h"
// #include "time/ExtendedRosenbrockAdaptInstationary.h"
#include
"Refinement.h"
#include
"MeshFunction_Level.h"
#include
"PhaseFieldConvert.h"
#include
"boost/date_time/posix_time/posix_time.hpp"
using
namespace
AMDiS
;
using
namespace
boost
::
posix_time
;
struct
BeamDisplacement1d
:
AbstractFunction
<
double
,
double
>
{
BeamDisplacement1d
(
double
P_
,
double
L_
,
double
EI_
,
double
*
time_
=
NULL
,
double
*
tau_
=
NULL
)
:
P
(
P_
),
L
(
L_
),
EI
(
EI_
),
time
(
time_
),
tau
(
tau_
)
{}
double
operator
()(
const
double
&
x
)
const
{
return
(
*
time
<
DBL_TOL
?
0.0
:
(
sin
(
*
time
)
-
sin
(
*
time
-
*
tau
))
*
P
*
sqr
(
x
)
*
(
3.0
*
L
-
x
)
/
(
6.0
*
EI
));
}
void
setTimePtr
(
double
*
time_
)
{
time
=
time_
;
}
void
setTauPtr
(
double
*
tau_
)
{
tau
=
tau_
;
}
private:
double
P
;
double
L
;
double
EI
;
double
*
time
;
double
*
tau
;
};
struct
BeamDisplacement
:
AbstractFunction
<
WorldVector
<
double
>
,
WorldVector
<
double
>
>
{
BeamDisplacement
(
double
P
,
double
L
,
double
EI
,
WorldVector
<
double
>
fixedPoint_
,
double
*
time
=
NULL
,
double
*
tau
=
NULL
)
:
fct
(
new
BeamDisplacement1d
(
P
,
L
,
EI
,
time
,
tau
)),
fixedPoint
(
fixedPoint_
)
{}
WorldVector
<
double
>
operator
()(
const
WorldVector
<
double
>&
x
)
const
{
WorldVector
<
double
>
displacement
;
displacement
[
0
]
=
0.0
;
displacement
[
1
]
=
(
x
[
0
]
>=
fixedPoint
[
0
]
?
(
*
fct
)(
x
[
0
]
-
fixedPoint
[
0
])
:
0.0
);
return
displacement
;
}
void
setTimePtr
(
double
*
time_
)
{
fct
->
setTimePtr
(
time_
);
}
void
setTauPtr
(
double
*
tau_
)
{
fct
->
setTauPtr
(
tau_
);
}
private:
BeamDisplacement1d
*
fct
;
WorldVector
<
double
>
fixedPoint
;
};
class
NS_Channel
:
public
NavierStokesPhase_TaylorHood
{
public:
typedef
NavierStokesPhase_TaylorHood
super
;
public:
NS_Channel
(
std
::
string
name_
)
:
super
(
name_
)
{}
~
NS_Channel
()
{
delete
phaseField
;
}
void
initData
()
{
FUNCNAME
(
"NS_Channel::initData()"
);
super
::
initData
();
phaseField
=
new
DOFVector
<
double
>
(
getFeSpace
(
0
),
"phaseField"
);
phaseField
->
set
(
1.0
);
super
::
setPhase
(
phaseField
);
}
void
solveInitialProblem
(
AdaptInfo
*
adaptInfo
)
{
FUNCNAME
(
"NS_Channel::solveInitialProblem()"
);
super
::
solveInitialProblem
(
adaptInfo
);
size_t
nVertices
=
0
;
WorldVector
<
double
>
x
;
Parameters
::
get
(
"obstacle->num vertices"
,
nVertices
);
std
::
vector
<
WorldVector
<
double
>
>
v
(
nVertices
,
x
);
for
(
size_t
i
=
0
;
i
<
nVertices
;
i
++
)
Parameters
::
get
(
"obstacle->vertex["
+
boost
::
lexical_cast
<
std
::
string
>
(
i
)
+
"]"
,
v
[
i
]);
v
.
push_back
(
v
[
0
]);
obstacle
=
new
Polygon
(
v
);
refFunction
=
new
SignedDistRefinement
(
getMesh
());
refinement
=
new
RefinementLevelCoords2
(
getFeSpace
(),
refFunction
,
obstacle
);
// initial refinement
refinement
->
refine
(
10
);
phaseField
->
interpol
(
new
SignedDistFctToPhaseField
(
getEpsilon
(),
obstacle
,
-
3.0
));
beamDisplacement
->
setTimePtr
(
adaptInfo
->
getTimePtr
());
beamDisplacement
->
setTauPtr
(
adaptInfo
->
getTimestepPtr
());
obstacle
->
refine
(
10
);
}
protected:
void
fillBoundaryConditions
()
{
FUNCNAME
(
"NS_Channel::fillBoundaryConditions()"
);
AbstractFunction
<
double
,
WorldVector
<
double
>
>
*
zero
=
new
AMDiS
::
Const
<
double
,
WorldVector
<
double
>
>
(
0.0
);
size_t
dow
=
Global
::
getGeo
(
WORLD
);
double
P
=
0.1
,
L
=
2.0
,
EI
=
1.0
;
WorldVector
<
double
>
fixedPoint
;
fixedPoint
[
0
]
=
2.5
;
fixedPoint
[
1
]
=
2.0
;
Parameters
::
get
(
"obstacle->P"
,
P
);
Parameters
::
get
(
"obstacle->L"
,
L
);
Parameters
::
get
(
"obstacle->EI"
,
EI
);
Parameters
::
get
(
"obstacle->fixed point"
,
fixedPoint
);
beamDisplacement
=
new
BeamDisplacement
(
P
,
L
,
EI
,
fixedPoint
);
super
::
setBcFct
(
beamDisplacement
);
super
::
fillBoundaryConditions
();
// +------ 5 ------+
// | |
// 2 # <--1 3
// | |
// +------ 4 ------+
/// at rigid wall: no-slip boundary condition
for
(
size_t
i
=
0
;
i
<
dow
;
i
++
)
{
getProblem
(
0
)
->
addDirichletBC
(
4
,
i
,
i
,
zero
);
getProblem
(
0
)
->
addDirichletBC
(
5
,
i
,
i
,
zero
);
}
/// dirichlet bc for pressure at one DOF
// getProblem(0)->addSingularDirichletBC(0, dow, dow, *zero);
double
H
=
4.1
;
double
Um
=
1.5
;
Parameters
::
get
(
"mesh->H"
,
H
);
Parameters
::
get
(
"ns->Um"
,
Um
);
/// at left wall: prescribed velocity
// getProblem(0)->addDirichletBC(2, 0, 0, new InflowBC(H,Um));
// getProblem(0)->addDirichletBC(2, 1, 1, zero);
}
void
initTimestep
(
AdaptInfo
*
adaptInfo
)
{
super
::
initTimestep
(
adaptInfo
);
obstacle
->
move
(
beamDisplacement
);
refinement
->
refine
(
5
);
phaseField
->
interpol
(
new
SignedDistFctToPhaseField
(
getEpsilon
(),
obstacle
,
-
3.0
));
}
private:
DOFVector
<
double
>*
phaseField
;
BeamDisplacement
*
beamDisplacement
;
Polygon
*
obstacle
;
SignedDistRefinement
*
refFunction
;
RefinementLevelCoords2
*
refinement
;
};
int
main
(
int
argc
,
char
**
argv
)
{
FUNCNAME
(
"main"
);
AMDiS
::
init
(
argc
,
argv
);
NS_Channel
nsProb
(
"ns"
);
nsProb
.
initialize
(
INIT_ALL
|
INIT_EXACT_SOLUTION
);
// Adapt-Infos
AdaptInfo
adaptInfo
(
"adapt"
,
nsProb
.
getNumComponents
());
// adaption loop - solve ch-prob and ns-prob
AdaptInstationary
adaptInstat
(
"adapt"
,
nsProb
,
adaptInfo
,
nsProb
,
adaptInfo
);
// ExtendedRosenbrockAdaptInstationary<NS_Channel> adaptInstat("adapt", nsProb, adaptInfo, nsProb, adaptInfo);
// scale Mesh
WorldVector
<
double
>
scale
;
scale
[
0
]
=
25.0
;
scale
[
1
]
=
4.1
;
Helpers
::
scaleMesh
(
nsProb
.
getMesh
(),
scale
);
ptime
start_time
=
microsec_clock
::
local_time
();
nsProb
.
initTimeInterface
();
int
error_code
=
adaptInstat
.
adapt
();
time_duration
td
=
microsec_clock
::
local_time
()
-
start_time
;
MSG
(
"elapsed time= %d sec
\n
"
,
td
.
total_seconds
());
AMDiS
::
finalize
();
return
error_code
;
};
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment