Commit 32af9a5a by Backofen, Rainer

### change Laplace_SOT to Simple_SOT in tutorial

parent 96082079
 ... ... @@ -189,7 +189,7 @@ The operators now are defined as follows: \begin{lstlisting}{} // ===== create matrix operator ===== Operator matrixOperator(ellipt.getFeSpace()); matrixOperator.addSecondOrderTerm(new Laplace_SOT); matrixOperator.addSecondOrderTerm(new Simple_SOT); ellipt.addMatrixOperator(matrixOperator, 0, 0); // ===== create rhs operator ===== ... ... @@ -201,7 +201,7 @@ The operators now are defined as follows: We define a matrix operator (left hand side operator) on the finite element space of the problem. The term $-\Delta u$ is added to it. Note that the minus sign isn't explicitly given, but implicitly contained in \verb+Laplace_SOT+. With \verb+addMatrixOperator+ we add contained in \verb+Simple_SOT+. With \verb+addMatrixOperator+ we add the operator to the stationary problem definition. The both zeros represent the position of the operator in the operator matrix. As we are about to define a scalar equation, there is only the 0/0 position ... ...
 ... ... @@ -307,7 +307,7 @@ Now, we define the operators: // create laplace Operator A(heatSpace.getFeSpace()); A.addSecondOrderTerm(new Laplace_SOT); A.addSecondOrderTerm(new Simple_SOT); A.setUhOld(heat.getOldSolution(0)); if (*(heat.getThetaPtr()) != 0.0) heatSpace.addMatrixOperator(A, 0, 0, heat.getThetaPtr(), &one); ... ...
No preview for this file type
 ... ... @@ -80,7 +80,7 @@ The operator definitions for the first equation are: \begin{lstlisting}{} // ===== create operators ===== Operator matrixOperator00(vecellipt.getFeSpace(0), vecellipt.getFeSpace(0)); matrixOperator00.addSecondOrderTerm(new Laplace_SOT); matrixOperator00.addSecondOrderTerm(new Simple_SOT); vecellipt.addMatrixOperator(&matrixOperator00, 0, 0); int degree = vecellipt.getFeSpace(0)->getBasisFcts()->getDegree(); ... ...
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!