Liebe Gitlab-Nutzer, lieber Gitlab-Nutzer, es ist nun möglich sich mittels des ZIH-Logins/LDAP an unserem Dienst anzumelden. Ein Anmelden über dieses erzeugt ein neues Konto. Das alte Konto ist über den Reiter "Standard" erreichbar. Die Administratoren

Dear Gitlab user, it is now possible to log in to our service using the ZIH login/LDAP. Logging in via this will create a new account. The old account can be accessed via the "Standard" tab. The administrators

Commit 32af9a5a authored by Backofen, Rainer's avatar Backofen, Rainer
Browse files

change Laplace_SOT to Simple_SOT in tutorial

parent 96082079
......@@ -189,7 +189,7 @@ The operators now are defined as follows:
\begin{lstlisting}{}
// ===== create matrix operator =====
Operator matrixOperator(ellipt.getFeSpace());
matrixOperator.addSecondOrderTerm(new Laplace_SOT);
matrixOperator.addSecondOrderTerm(new Simple_SOT);
ellipt.addMatrixOperator(matrixOperator, 0, 0);
// ===== create rhs operator =====
......@@ -201,7 +201,7 @@ The operators now are defined as follows:
We define a matrix operator (left hand side operator) on the finite
element space of the problem. The term $-\Delta u$ is added to
it. Note that the minus sign isn't explicitly given, but implicitly
contained in \verb+Laplace_SOT+. With \verb+addMatrixOperator+ we add
contained in \verb+Simple_SOT+. With \verb+addMatrixOperator+ we add
the operator to the stationary problem definition. The both zeros
represent the position of the operator in the operator matrix. As we
are about to define a scalar equation, there is only the 0/0 position
......
......@@ -307,7 +307,7 @@ Now, we define the operators:
// create laplace
Operator A(heatSpace.getFeSpace());
A.addSecondOrderTerm(new Laplace_SOT);
A.addSecondOrderTerm(new Simple_SOT);
A.setUhOld(heat.getOldSolution(0));
if (*(heat.getThetaPtr()) != 0.0)
heatSpace.addMatrixOperator(A, 0, 0, heat.getThetaPtr(), &one);
......
......@@ -80,7 +80,7 @@ The operator definitions for the first equation are:
\begin{lstlisting}{}
// ===== create operators =====
Operator matrixOperator00(vecellipt.getFeSpace(0), vecellipt.getFeSpace(0));
matrixOperator00.addSecondOrderTerm(new Laplace_SOT);
matrixOperator00.addSecondOrderTerm(new Simple_SOT);
vecellipt.addMatrixOperator(&matrixOperator00, 0, 0);
int degree = vecellipt.getFeSpace(0)->getBasisFcts()->getDegree();
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment