Commit 32af9a5a authored by Backofen, Rainer's avatar Backofen, Rainer
Browse files

change Laplace_SOT to Simple_SOT in tutorial

parent 96082079
......@@ -189,7 +189,7 @@ The operators now are defined as follows:
// ===== create matrix operator =====
Operator matrixOperator(ellipt.getFeSpace());
matrixOperator.addSecondOrderTerm(new Laplace_SOT);
matrixOperator.addSecondOrderTerm(new Simple_SOT);
ellipt.addMatrixOperator(matrixOperator, 0, 0);
// ===== create rhs operator =====
......@@ -201,7 +201,7 @@ The operators now are defined as follows:
We define a matrix operator (left hand side operator) on the finite
element space of the problem. The term $-\Delta u$ is added to
it. Note that the minus sign isn't explicitly given, but implicitly
contained in \verb+Laplace_SOT+. With \verb+addMatrixOperator+ we add
contained in \verb+Simple_SOT+. With \verb+addMatrixOperator+ we add
the operator to the stationary problem definition. The both zeros
represent the position of the operator in the operator matrix. As we
are about to define a scalar equation, there is only the 0/0 position
......@@ -307,7 +307,7 @@ Now, we define the operators:
// create laplace
Operator A(heatSpace.getFeSpace());
A.addSecondOrderTerm(new Laplace_SOT);
A.addSecondOrderTerm(new Simple_SOT);
if (*(heat.getThetaPtr()) != 0.0)
heatSpace.addMatrixOperator(A, 0, 0, heat.getThetaPtr(), &one);
......@@ -80,7 +80,7 @@ The operator definitions for the first equation are:
// ===== create operators =====
Operator matrixOperator00(vecellipt.getFeSpace(0), vecellipt.getFeSpace(0));
matrixOperator00.addSecondOrderTerm(new Laplace_SOT);
matrixOperator00.addSecondOrderTerm(new Simple_SOT);
vecellipt.addMatrixOperator(&matrixOperator00, 0, 0);
int degree = vecellipt.getFeSpace(0)->getBasisFcts()->getDegree();
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment