#include "ElInfo1d.h" #include "BasisFunction.h" #include "Element.h" #include "Line.h" #include "Triangle.h" #include "Tetrahedron.h" #include "FiniteElemSpace.h" #include "Flag.h" #include "MacroElement.h" #include "Mesh.h" #include "Global.h" #include "FixVec.h" #include "DOFVector.h" namespace AMDiS { double ElInfo1d::mat_d1_val[2][2] = {{1.0, 0.0}, {0.0, 1.0}}; mtl::dense2D<double> ElInfo1d::mat_d1(mat_d1_val); double ElInfo1d::mat_d1_left_val[2][2] = {{1.0, 0.5}, {0.0, 0.5}}; mtl::dense2D<double> ElInfo1d::mat_d1_left(mat_d1_left_val); double ElInfo1d::mat_d1_right_val[2][2] = {{0.5, 1.0}, {0.5, 0.0}}; mtl::dense2D<double> ElInfo1d::mat_d1_right(mat_d1_right_val); double ElInfo1d::mat_d2_val[3][3] = {{1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}}; mtl::dense2D<double> ElInfo1d::mat_d2(mat_d2_val); double ElInfo1d::mat_d2_left_val[3][3] = {{1.0, 0.375, 0.0}, {0.0, 0.75, 1.0}, {0.0, -0.125, 0.0}}; mtl::dense2D<double> ElInfo1d::mat_d2_left(mat_d2_left_val); double ElInfo1d::mat_d2_right_val[3][3] = {{0.0, -0.125, 0.0}, {1.0, 0.75, 0.0}, {0.0, 0.375, 1.0}}; mtl::dense2D<double> ElInfo1d::mat_d2_right(mat_d2_right_val); double ElInfo1d::test1_val[2][2] = {{1.0, 0.0}, {0.0, 1.0}}; mtl::dense2D<double> ElInfo1d::test2_val(test1_val); void ElInfo1d::fillMacroInfo(const MacroElement * mel) { FUNCNAME("ElInfo1d::fillMacroInfo()"); Element *nb; MacroElement *mnb; macroElement = const_cast<MacroElement*>( mel); element = const_cast<Element*>( mel->getElement()); parent = NULL; level = 0; int vertices = mesh->getGeo(VERTEX); if (fillFlag.isSet(Mesh::FILL_COORDS) || fillFlag.isSet(Mesh::FILL_DET) || fillFlag.isSet(Mesh::FILL_GRD_LAMBDA)) { for (int i = 0; i < vertices; i++) coord[i] = mel->coord[i]; } if (fillFlag.isSet(Mesh::FILL_NEIGH) || fillFlag.isSet(Mesh::FILL_OPP_COORDS)) { WorldVector<double> oppC; int neighbours = mesh->getGeo(NEIGH); for (int i = 0; i < neighbours; i++) { nb = NULL; if ((mnb = const_cast<MacroElement*>( mel->getNeighbour(i)))) { if (fillFlag.isSet(Mesh::FILL_OPP_COORDS)) { oppC = mnb->coord[i]; } nb = const_cast<Element*>( mnb->getElement()); while (!(nb->isLeaf())) { // make nb nearest element if (fillFlag.isSet(Mesh::FILL_OPP_COORDS)) { if (nb->isNewCoordSet()) { oppC = *(nb->getNewCoord()); } else { oppC = (mel->coord[i] + oppC) * 0.5; } } nb = const_cast<Element*>( nb->getChild(1-i)); } if (fillFlag.isSet(Mesh::FILL_OPP_COORDS)) { oppCoord[i] = oppC; } } neighbour[i] = nb; oppVertex[i] = nb ? i : -1; } } if (fillFlag.isSet(Mesh::FILL_BOUND) ) { for (int i = 0; i < vertices; i++) boundary[i] = mel->getBoundary(i); for (int i = 0; i < element->getGeo(PROJECTION); i++) projection[i] = mel->getProjection(i); } } /****************************************************************************/ /* compute gradients of basis functions on element; return the absulute */ /* value of the determinante from the transformation to the reference */ /* element */ /****************************************************************************/ double ElInfo1d::calcGrdLambda(DimVec<WorldVector<double> >& grd_lam) { FUNCNAME("ElInfo1d::calcGrdLambda()"); testFlag(Mesh::FILL_COORDS); WorldVector<double> e; e = coord[1]; e -= coord[0]; double adet2 = e * e; if (adet2 < 1.0E-15) { MSG("det*det = %lf\n", adet2); grd_lam[0] = grd_lam[1] = 0.0; } else { grd_lam[1] = e * (1.0 / adet2); grd_lam[0] = grd_lam[1] * -1.0; } return sqrt(adet2); } const int ElInfo1d::worldToCoord(const WorldVector<double>& x, DimVec<double>* lambda) const { FUNCNAME("ElInfo1d::worldToCoord()"); double lmin; double a = coord[0][0]; double length = (coord[1][0] - a); int dim = mesh->getDim(); static DimVec<double> vec(dim, NO_INIT); TEST_EXIT_DBG(lambda)("lambda must not be NULL\n"); TEST_EXIT_DBG(dim == 1)("dim!=1\n"); TEST_EXIT_DBG(dimOfWorld == dim)("not yet for DIM != DIM_OF_WORLD\n"); if (abs(length) < DBL_TOL) { ERROR_EXIT("length = %le; abort\n", length); return 0; } (*lambda)[1] = (x[0] - a) / length; (*lambda)[0] = 1.0 - (*lambda)[1]; int k = -1; lmin = 0.0; for (int i = 0; i <= dim; i++) { if ((*lambda)[i] < -1.E-5) { if ((*lambda)[i] < lmin) { k = i; lmin = (*lambda)[i]; } } } return k; } /****************************************************************************/ /* calculate a facenormal of edge side of a triangle with coordinates */ /* coord; return the absulute value of the determinant from the */ /* transformation to the reference element */ /****************************************************************************/ double ElInfo1d::getNormal(int side, WorldVector<double> &normal) { normal = coord[side] - coord[(side + 1) % 2]; double det = norm(&normal); TEST_EXIT_DBG(det > 1.e-30)("det = 0 on side %d\n", side); normal *= 1.0 / det; return det; } /****************************************************************************/ /* calculate the normal of the element for dim of world = 2 */ /* return the absulute value of the determinant from the */ /* transformation to the reference element */ /****************************************************************************/ double ElInfo1d::getElementNormal( WorldVector<double> &elementNormal) const { FUNCNAME("ElInfo::getElementNormal()"); TEST_EXIT_DBG(dimOfWorld == 2) (" element normal only well defined for DIM_OF_WORLD = DIM + 1 !!"); elementNormal[0] = coord[1][1] - coord[0][1]; elementNormal[1] = coord[0][0] - coord[1][0]; double det = norm(&elementNormal); TEST_EXIT_DBG(det > 1.e-30)("det = 0"); elementNormal *= 1.0 / det; return det; } void ElInfo1d::fillElInfo(int ichild, const ElInfo *elInfoOld) { FUNCNAME("ElInfo1d::fillElInfo()"); Element *nb; Element *elem = elInfoOld->element; TEST_EXIT_DBG(elem->getChild(0))("no children?\n"); element = const_cast<Element*>(elem->getChild(ichild)); TEST_EXIT_DBG(element)("missing child %d?\n", ichild); macroElement = elInfoOld->macroElement; fillFlag = elInfoOld->fillFlag; parent = elem; level = elInfoOld->level + 1; iChild = ichild; int neighbours = mesh->getGeo(NEIGH); if (fillFlag.isSet(Mesh::FILL_COORDS) || fillFlag.isSet(Mesh::FILL_DET) || fillFlag.isSet(Mesh::FILL_GRD_LAMBDA)) { const FixVec<WorldVector<double>, VERTEX> *old_coord = &(elInfoOld->coord); coord[ichild] = (*old_coord)[ichild]; if (elem->isNewCoordSet()) coord[1 - ichild] = *(elem->getNewCoord()); else coord[1 - ichild] = ((*old_coord)[0] + (*old_coord)[1]) * 0.5; } if (fillFlag.isSet(Mesh::FILL_NEIGH) || fillFlag.isSet(Mesh::FILL_OPP_COORDS)) { WorldVector<double> oppC; TEST_EXIT_DBG(fillFlag.isSet(Mesh::FILL_COORDS)) ("FILL_OPP_COORDS only with FILL_COORDS\n"); for (int i = 0; i < neighbours; i++) { if (i != ichild) { nb = const_cast<Element*>(elem->getChild(1-ichild)); if (fillFlag.isSet(Mesh::FILL_OPP_COORDS)) oppC = elInfoOld->coord[i]; } else { nb = const_cast<Element*>( elInfoOld->getNeighbour(i)); if (nb && fillFlag.isSet(Mesh::FILL_OPP_COORDS)) oppC = elInfoOld->oppCoord[i]; } if (nb) { while (nb->getChild(0)) { // make nb nearest element if (fillFlag.isSet(Mesh::FILL_OPP_COORDS)) { if (nb->isNewCoordSet()) oppC = *(nb->getNewCoord()); else oppC = (coord[i] + oppC) * 0.5; } nb = const_cast<Element*>( nb->getChild(1-i)); } if (fillFlag.isSet(Mesh::FILL_OPP_COORDS)) oppCoord[i] = oppC; } neighbour[i] = nb; oppVertex[i] = nb ? i : -1; } } if (fillFlag.isSet(Mesh::FILL_BOUND)) { boundary[ichild] = elInfoOld->getBoundary(ichild); boundary[1 - ichild] = INTERIOR; if (elInfoOld->getProjection(0) && elInfoOld->getProjection(0)->getType() == VOLUME_PROJECTION) { projection[0] = elInfoOld->getProjection(0); } } } void ElInfo1d::getSubElemCoordsMat(mtl::dense2D<double>& mat, int basisFctsDegree) const { switch (basisFctsDegree) { case 1: mat = mat_d1; for (int i = 0; i < refinementPathLength; i++) { if (refinementPath & (1 << i)) mat *= mat_d1_left; else mat *= mat_d1_right; } break; case 2: mat = mat_d2; for (int i = 0; i < refinementPathLength; i++) { if (refinementPath & (1 << i)) mat *= mat_d2_left; else mat *= mat_d2_right; } break; default: ERROR_EXIT("Not supported for basis function degree: %d\n", basisFctsDegree); } } void ElInfo1d::getSubElemCoordsMat_so(mtl::dense2D<double>& mat, int basisFctsDegree) const { switch (basisFctsDegree) { case 1: mat = test2_val; for (int i = 0; i < refinementPathLength; i++) mat *= 0.5; break; default: ERROR_EXIT("Not supported for basis function degree: %d\n", basisFctsDegree); } } }