// ============================================================================ // == == // == AMDiS - Adaptive multidimensional simulations == // == == // == http://www.amdis-fem.org == // == == // ============================================================================ // // Software License for AMDiS // // Copyright (c) 2010 Dresden University of Technology // All rights reserved. // Authors: Simon Vey, Thomas Witkowski et al. // // This file is part of AMDiS // // See also license.opensource.txt in the distribution. /** \file InteriorBoundary.h */ #ifndef AMDIS_INTERIORBOUNDARY_H #define AMDIS_INTERIORBOUNDARY_H #include #include #include "AMDiS_fwd.h" #include "MacroElement.h" #include "Element.h" #include "Boundary.h" #include "parallel/MeshLevelData.h" namespace AMDiS { using namespace std; typedef vector > ExcludeList; /// Defines the geometrical objects that forms the boundary; struct BoundaryObject { BoundaryObject(); BoundaryObject(Element *e, int eType, GeoIndex sObj, int iObj, bool rMode = false); static bool computeReverseMode(BoundaryObject &obj0, BoundaryObject &obj1, const FiniteElemSpace *feSpace, BoundaryType boundary); bool operator==(const BoundaryObject& other) const; bool operator!=(const BoundaryObject& other) const; /// The macro element to which the boundary element corresponds to. Element* el; /// Index of the macro element. int elIndex; /// Element type index, only used in 3d. int elType; /** \brief * Defines the geometrical object at the boundary. It must be "a part" of the * macro element \ref el, i.e., either 1 (a vertex), 2 (an edge) or 3 (a face). */ GeoIndex subObj; /** \brief * Defines which of vertex, edge or face of the macro element is part of the * boundary. * * Example: If the macro element is a triangle, than \ref subObj may be either * 1 (vertex) or 2 (edge). Assume its the last one. So this variable defines * which of the three possible edges of the triangle is at the interior * boundary. */ int ithObj; bool reverseMode; /** \brief * In many situations it may be necessary to exclude some parts of the * element to be part of the boundary. In 3d, when a face is part of the * boundary, an edge or an vertex may be exludeded. In 2d only vertices may * be exluded to be part of an edge boundary. This list contains pairs of * exludeded structures. The first component of every pair denotes if it is * a vertex or an edge, and the second component denotes the local index of * the structure. */ ExcludeList excludedSubstructures; }; /** \brief * Defines one atomic part of the boundary, i.e., two boundary objects where the * boundary goes through. */ struct AtomicBoundary { AtomicBoundary() : type(INTERIOR) {} bool operator==(const AtomicBoundary& other) const; /// The rank's part of the boundary. BoundaryObject rankObj; /// The object on the other side of the boundary. BoundaryObject neighObj; /// Integer flag that is used to distinguish between different types of /// boundaries. Till now it is used only for periodic boundaries, which are also /// handles as interior boundaries. BoundaryType type; }; /** \brief * Defines the interior boundary, i.e. a bound within the domain. It is used for * the classical domain decomposition parallelization. */ class InteriorBoundary { public: typedef map > RankToBoundMap; /// Iterator for the interior boundary object. class iterator { public: iterator(InteriorBoundary &b) : bound(b), levelData(NULL), level(0) { reset(); } iterator(InteriorBoundary &b, MeshLevelData &levelData, int level) : bound(b), levelData(&levelData), level(level) { reset(); } /// Set the iterator to the first position. void reset() { mapIt = bound.boundary.begin(); nextNonempty(); if (mapIt != bound.boundary.end()) vecIt = mapIt->second.begin(); } /// Test if iterator is at the final position. bool end() const { return (mapIt == bound.boundary.end()); } /// Move iterator to the next position. void operator++() { ++vecIt; if (vecIt == mapIt->second.end()) { ++mapIt; nextNonempty(); if (mapIt != bound.boundary.end()) vecIt = mapIt->second.begin(); } } inline AtomicBoundary& operator*() { return *vecIt; } inline AtomicBoundary* operator->() { return &(*vecIt); } void nextRank() { ++mapIt; nextNonempty(); if (mapIt != bound.boundary.end()) vecIt = mapIt->second.begin(); } int getRank() { return mapIt->first; } protected: inline void nextNonempty() { if (mapIt == bound.boundary.end()) return; while (mapIt->second.size() == 0) { ++mapIt; if (mapIt == bound.boundary.end()) return; } } protected: RankToBoundMap::iterator mapIt; vector::iterator vecIt; InteriorBoundary &bound; MeshLevelData *levelData; int level; }; public: InteriorBoundary() {} void clear() { boundary.clear(); } AtomicBoundary& getNewAtomic(int rank); /// Writes this object to a file. void serialize(ostream &out); /// Reads the state of an interior boundary from a file. void deserialize(istream &in, map &elIndexMap); /// Compares this interior boundaries with some other. The order of the /// boundary elements within the object does not play a role. bool operator==(const InteriorBoundary& other) const; protected: void serializeExcludeList(ostream &out, ExcludeList &list); void deserializeExcludeList(istream &in, ExcludeList &list); public: RankToBoundMap boundary; }; } #endif // AMDIS_INTERIORBOUNDARY_H