ElInfo2d.cc 18.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#include "ElInfo2d.h"
#include "BasisFunction.h"
#include "Element.h"
#include "Line.h"
#include "Triangle.h"
#include "Tetrahedron.h"
#include "FiniteElemSpace.h"
#include "Flag.h"
#include "MacroElement.h"
#include "Mesh.h"
#include "Global.h"
#include "FixVec.h"
#include "DOFVector.h"

namespace AMDiS {

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
  double ElInfo2d::mat_d1_val[3][3] = {{1.0, 0.0, 0.0}, 
				       {0.0, 1.0, 0.0}, 
				       {0.0, 0.0, 1.0}};
  mtl::dense2D<double> ElInfo2d::mat_d1(mat_d1_val);

  double ElInfo2d::mat_d1_left_val[3][3] = {{0.0, 1.0, 0.5}, 
					    {0.0, 0.0, 0.5},
					    {1.0, 0.0, 0.0}};
  mtl::dense2D<double> ElInfo2d::mat_d1_left(mat_d1_left_val);

  double ElInfo2d::mat_d1_right_val[3][3] = {{0.0, 0.0, 0.5}, 
					     {1.0, 0.0, 0.5},
					     {0.0, 1.0, 0.0}};
  mtl::dense2D<double> ElInfo2d::mat_d1_right(mat_d1_right_val);

32
33
34
  ElInfo2d::ElInfo2d(Mesh *aMesh) 
    : ElInfo(aMesh) 
  {
Thomas Witkowski's avatar
Thomas Witkowski committed
35
36
37
    e1 = new WorldVector<double>;
    e2 = new WorldVector<double>;
    normal = new WorldVector<double>;
38
39
40
41
  }

  ElInfo2d::~ElInfo2d()
  {
Thomas Witkowski's avatar
Thomas Witkowski committed
42
43
44
    delete e1;
    delete e2;
    delete normal;
45
46
  }

47
48
  void ElInfo2d::fillMacroInfo(const MacroElement * mel)
  {
49
50
    FUNCNAME("ElInfo::fillMacroInfo()");
 
51
    macroElement_ = const_cast<MacroElement*>(mel);
52
53
    element_ = const_cast<Element*>(mel->getElement());
    parent_ = NULL;
54
    level = 0;
55
56
57
58

    if (fillFlag_.isSet(Mesh::FILL_COORDS) || 
	fillFlag_.isSet(Mesh::FILL_DET)    ||
	fillFlag_.isSet(Mesh::FILL_GRD_LAMBDA)) {
59
60

      int vertices = mesh_->getGeo(VERTEX);
61
      for (int i = 0; i < vertices; i++)
62
63
64
65
66
	coord_[i] = mel->coord[i];
    }

    int neighbours = mesh_->getGeo(NEIGH);

67
68
69
70
    if (fillFlag_.isSet(Mesh::FILL_OPP_COORDS) || 
	fillFlag_.isSet(Mesh::FILL_NEIGH)) {

      bool fill_opp_coords = (fillFlag_.isSet(Mesh::FILL_OPP_COORDS));
71
    
72
73
74
75
      for (int i = 0; i < neighbours; i++) {
	MacroElement *macroNeighbour = mel->getNeighbour(i);

	if (macroNeighbour) {
Thomas Witkowski's avatar
Thomas Witkowski committed
76
	  neighbour_[i] = macroNeighbour->getElement();	  
77
78
79
	  Element *nb = const_cast<Element*>(neighbour_[i]);

	  int edgeNo = oppVertex_[i] = mel->getOppVertex(i);
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102


	  if (nb->getFirstChild() && (edgeNo != 2)) {  

	    // Search for the next neighbour. In many cases, the neighbour element 
	    // may be refinemed in a way, such that there is no new vertex on the 
	    // common edge. This situation is shown in the following picture: 
	    //
	    //               /|\
	    //              / | \
	    //             /  |  \
	    //            /\  |   \
	    //           /  \ |    \ 
	    //          /    \|     \
	    //          -------------
	    //
	    //            nb     el
	    //
	    // Note that we know (because of the last if statement), that the 
	    // neighbour element has children and the common edge is not the 
	    // refinement edge, which has always the number 2, of our element.


103
	    if (edgeNo == 0) {
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
	      // The situation is as follows:
	      //
	      //          -------
	      //          \    /|\
	      //           \  / | \
	      //            \/  |  \
	      //             \  |   \
	      //              \ |    \ 
	      //               \|     \
	      //                -------
	      //
	      //            nb     el
	      // That means, the edge 0 of the same level neighbour is the common
	      // edge, i.e., the direct neighbour is the second child of the same
	      // level neighbour.

120
121
	      nb = neighbour_[i] = nb->getSecondChild();
	    } else {
122
123
	      // The situation is as shown in the picture above. So the next
	      // neighbour is the first child of the same level neighbour element.
124
125
126
	      nb = neighbour_[i] = nb->getFirstChild();
	    }

127
128
	    // In both cases the opp vertex number is 2, as one can see in the 
	    // pictures above.
129
130
131
	    oppVertex_[i] = 2;

	    if (fill_opp_coords) {
132
	      if (nb->isNewCoordSet()) {
133
134
		oppCoord_[i] = *(nb->getNewCoord());
	      } else {
135
136
137
138
139
140
		// In both cases, that are shown in the pictures above, the opp
		// vertex of the neighbour edge is the midpoint of the vertex 0
		// and vertex 1 of the same level neighbour element.
		oppCoord_[i] = (macroNeighbour->coord[0] + 
				macroNeighbour->coord[1]) * 0.5;
	      }
141
142
143
	      
	      switch (i) {
	      case 0:
144
145
146
147
		// The common edge is the edge 0 of this element.

		switch (edgeNo) {
		case 1:
148
149
		  neighbourCoord_[i][0] = macroNeighbour->coord[2];
		  neighbourCoord_[i][1] = macroNeighbour->coord[0];
150
151
		  break;
		case 0:		  
152
153
		  neighbourCoord_[i][0] = macroNeighbour->coord[1];
		  neighbourCoord_[i][1] = macroNeighbour->coord[2];
154
155
		  break;
		default:
Thomas Witkowski's avatar
Thomas Witkowski committed
156
		  ERROR_EXIT("Should not happen!\n");
157
		}
158
159
160
161
162
	
		neighbourCoord_[i][2] = oppCoord_[i];
		break;
		
	      case 1:
163
164
165
		// The commonedge is the edge 1 of this element.
		switch (edgeNo) {
		case 0:
166
167
		  neighbourCoord_[i][0] = macroNeighbour->coord[1];
		  neighbourCoord_[i][1] = macroNeighbour->coord[2];
168
169
		  break;
		case 1:
170
171
		  neighbourCoord_[i][0] = macroNeighbour->coord[2];
		  neighbourCoord_[i][1] = macroNeighbour->coord[0];
172
173
		  break;
		default:
Thomas Witkowski's avatar
Thomas Witkowski committed
174
		  ERROR_EXIT("Should not happen!\n");
175
176
177
178
179
		}
		
		neighbourCoord_[i][2] = oppCoord_[i];
		break;
		
Thomas Witkowski's avatar
Thomas Witkowski committed
180
	      case 2:
181
182
183
184
		// I've deleted here some code, be I think that this case is not
		// possible. If an error occurs in this line, please check AMDiS
		// revision <= 476 at the same position.
		ERROR_EXIT("Should not happen!\n");
Thomas Witkowski's avatar
Thomas Witkowski committed
185
186
		break;

187
	      default:
Thomas Witkowski's avatar
Thomas Witkowski committed
188
		std::cout << "------------- Error --------------" << std::endl;
Thomas Witkowski's avatar
Thomas Witkowski committed
189
190
		std::cout << "  Neighbour counter = " << i << "\n";
		std::cout << "  Element index     = " << element_->getIndex() << "\n\n";
Thomas Witkowski's avatar
Thomas Witkowski committed
191
192
193
194
195
196
197
198
		for (int j = 0; j < neighbours; j++) {
		  if (mel->getNeighbour(j)) {
		    std::cout << "  Neighbour " << j << ": " 
			      << mel->getNeighbour(j)->getElement()->getIndex() 
			      << std::endl;
		  } else {
		    std::cout << "  Neighbour " << j << ": not existing" << std::endl;
		  }
199
200
201
		  std::cout << "  OppVertex " << j << ": " 
			    << static_cast<int>(mel->getOppVertex(j)) 
			    << std::endl << std::endl;
Thomas Witkowski's avatar
Thomas Witkowski committed
202
		}
203
204
		ERROR_EXIT("should not happen!\n");
		break;
205
206
207
	      }
	    }
	  } else {
208
209
210
211
212
213
214

	    // In this case, we know that the common edge is the refinement edge.
	    // This makes everything much more simpler, because we know that the
	    // next neighbour is equal to the samel level neighbour. If the same
	    // level neighbour would be refinement, also this element must to be 
	    // refinement, because they share the refinement edge.

215
216
217
218
	    if (fill_opp_coords) {
	      oppCoord_[i] = macroNeighbour->coord[edgeNo];
	      neighbourCoord_[i] = macroNeighbour->coord;	      
	    }
219
	  }
220
221
222
	} else {
	  neighbour_[i] = NULL;
        }
223
      }
224
    }
225
    
226
227
    if (fillFlag_.isSet(Mesh::FILL_BOUND)) {   
      for (int i = 0; i < element_->getGeo(BOUNDARY); i++) {
228
229
230
	boundary_[i] = mel->getBoundary(i);
      }

231
      for (int i = 0; i < element_->getGeo(PROJECTION); i++) {
232
233
234
235
236
237
238
239
240
241
	projection_[i] = mel->getProjection(i);
      }
    }
  }


  /****************************************************************************/
  /*   fill ElInfo structure for one child of an element   		    */
  /****************************************************************************/

242
  void ElInfo2d::fillElInfo(int ichild, const ElInfo *elInfoOld)
243
  {
244
    FUNCNAME("ElInfo::fillElInfo()");
245

246
    Element *elem = elInfoOld->element_;
247
248
    Element *nb;

249
    Flag fill_flag = elInfoOld->fillFlag_;
250

251
252
253
254
255
    TEST_EXIT_DBG(elem->getFirstChild())("no children?\n");
    element_ = const_cast<Element*>((ichild == 0) ? 
				    elem->getFirstChild() : 
				    elem->getSecondChild());
    TEST_EXIT_DBG(element_)("missing child %d?\n", ichild);
256

257
    macroElement_  = elInfoOld->macroElement_;
258
    fillFlag_ = fill_flag;
259
    parent_ = elem;
260
    level = elInfoOld->level + 1;
261
    iChild = ichild;
262
263
264

    if (fillFlag_.isSet(Mesh::FILL_COORDS) || 
	fillFlag_.isSet(Mesh::FILL_DET)    ||
265
266
	fillFlag_.isSet(Mesh::FILL_GRD_LAMBDA)) {
      
267
      if (elem->isNewCoordSet()) {
268
269
	coord_[2] = *(elem->getNewCoord());
      } else {
270
	coord_[2].setMidpoint(elInfoOld->coord_[0], elInfoOld->coord_[1]);
271
272
273
      }
      
      if (ichild == 0) {
274
275
	coord_[0] = elInfoOld->coord_[2];
	coord_[1] = elInfoOld->coord_[0];
276
      } else {
277
278
	coord_[0] = elInfoOld->coord_[1];
	coord_[1] = elInfoOld->coord_[2];
279
280
281
282
283
284
285
286
287
288
      }
    }

    bool fill_opp_coords = (fill_flag.isSet(Mesh::FILL_OPP_COORDS));

    if (fill_flag.isSet(Mesh::FILL_NEIGH) || fill_opp_coords) {     
      if (ichild == 0) {
	// Calculation of the neighbour 2, its oppCoords and the
	// cooresponding oppVertex.

289
290
	neighbour_[2] = elInfoOld->neighbour_[1];
	oppVertex_[2] = elInfoOld->oppVertex_[1];
291
292
	
	if (neighbour_[2] && fill_opp_coords) {
293
294
	  oppCoord_[2] = elInfoOld->oppCoord_[1];
	  neighbourCoord_[2] = elInfoOld->neighbourCoord_[1];
295
	}
296
297
298
299
300
301
302
303
304
305
306
307
308
	
	
	// Calculation of the neighbour 1, its oppCoords and the
	// cooresponding oppVertex.
	
	if (elem->getFirstChild()  &&  
	    elem->getSecondChild()->getFirstChild()  &&  
	    elem->getSecondChild()->getFirstChild()) {
	  
	  neighbour_[1] = elem->getSecondChild()->getSecondChild();
	  oppVertex_[1] = 2;
	  
	  if (fill_opp_coords) {
309
            if (elem->getSecondChild()->isNewCoordSet()) {
310
311
	      oppCoord_[1] = *(elem->getSecondChild()->getNewCoord());
	    } else {      
312
313
	      oppCoord_[1].setMidpoint(elInfoOld->coord_[1], 
				       elInfoOld->coord_[2]);
314
	    }
315

316
317
318
	    neighbourCoord_[1][0] = coord_[0];
	    neighbourCoord_[1][1] = coord_[2];
	    neighbourCoord_[1][2] = oppCoord_[1];  
319
320
	  }
	} else {
321
322
323
324
	  neighbour_[1] = elem->getSecondChild();
	  oppVertex_[1] = 0;

	  if (fill_opp_coords) {
325
	    oppCoord_[1] = elInfoOld->coord_[1];
326

327
328
	    neighbourCoord_[1][0] = elInfoOld->coord_[1];
	    neighbourCoord_[1][1] = elInfoOld->coord_[2];
329
	    neighbourCoord_[1][2] = coord_[2];
330
331
332
333
	  }
	}


334
335
336
	// Calculation of the neighbour 0, its oppCoords and the
	// cooresponding oppVertex.
	
337
	nb = elInfoOld->neighbour_[2];
338
	if (nb) {
339
	  TEST(elInfoOld->oppVertex_[2] == 2)("invalid neighbour\n"); 
340
341
	  TEST_EXIT_DBG(nb->getFirstChild())("missing first child?\n");
	  TEST_EXIT_DBG(nb->getSecondChild())("missing second child?\n");
342
343
344
345
346
347
	 
	  nb = nb->getSecondChild();

	  if (nb->getFirstChild()) {
	    oppVertex_[0] = 2;

348
	    if (fill_opp_coords) {
349
	      if (nb->isNewCoordSet()) {
350
351
		oppCoord_[0] = *(nb->getNewCoord());
	      } else {
352
353
		oppCoord_[0].setMidpoint(elInfoOld->neighbourCoord_[2][1],
					 elInfoOld->neighbourCoord_[2][2]);
354
	      }
355

356
357
358
	      neighbourCoord_[0][0].setMidpoint(elInfoOld->neighbourCoord_[2][0],
						elInfoOld->neighbourCoord_[2][1]);
	      neighbourCoord_[0][1] = elInfoOld->neighbourCoord_[2][1];
359
360
361
362
363
364
365
	      neighbourCoord_[0][2] = oppCoord_[0];
	    }	   
 
	    nb = nb->getFirstChild();
	  } else {
	    oppVertex_[0] = 1;

366
	    if (fill_opp_coords) {
367
	      oppCoord_[0] = elInfoOld->oppCoord_[2];    
368

369
370
371
372
	      neighbourCoord_[0][0] = elInfoOld->neighbourCoord_[2][0];
	      neighbourCoord_[0][1] = elInfoOld->neighbourCoord_[2][2];
	      neighbourCoord_[0][2].setMidpoint(elInfoOld->neighbourCoord_[2][0],
						elInfoOld->neighbourCoord_[2][1]);
373
374
	    }
	  }
375
376
377
378
379
380
381
	}
	
	neighbour_[0] = nb;
      } else {   /* ichild == 1 */
	// Calculation of the neighbour 2, its oppCoords and the
	// cooresponding oppVertex.

382
383
	neighbour_[2] = elInfoOld->neighbour_[0];
	oppVertex_[2] = elInfoOld->oppVertex_[0];
384
385

	if (neighbour_[2] && fill_opp_coords) {
386
387
	  oppCoord_[2] = elInfoOld->oppCoord_[0];
	  neighbourCoord_[2] = elInfoOld->neighbourCoord_[0];
388
389
390
391
392
393
394
395
396
397
398
	}
	

	// Calculation of the neighbour 0, its oppCoords and the
	// cooresponding oppVertex.

	if (elem->getFirstChild()->getFirstChild()) {
	  neighbour_[0] = elem->getFirstChild()->getFirstChild();
	  oppVertex_[0] = 2;

	  if (fill_opp_coords) {
399
            if (elem->getFirstChild()->isNewCoordSet()) {
400
	      oppCoord_[0] = *(elem->getFirstChild()->getNewCoord());
401
	    } else {
402
403
	      oppCoord_[0].setMidpoint(elInfoOld->coord_[0], 
				       elInfoOld->coord_[2]);
404
	    }
405
406
407
408

	    neighbourCoord_[0][0] = coord_[2];
	    neighbourCoord_[0][1] = coord_[1];
	    neighbourCoord_[0][2] = oppCoord_[0];
409
	  }
410
411
412
413
414
	} else {
	  neighbour_[0] = elem->getFirstChild();
	  oppVertex_[0] = 1;

	  if (fill_opp_coords) {
415
	    oppCoord_[0] = elInfoOld->coord_[0];
416

417
418
	    neighbourCoord_[0][0] = elInfoOld->coord_[2];
	    neighbourCoord_[0][1] = elInfoOld->coord_[0];
419
	    neighbourCoord_[0][2] = coord_[2];
420
	  }
421
422
423
424
425
	}

	// Calculation of the neighbour 1, its oppCoords and the
	// cooresponding oppVertex.

426
	nb = elInfoOld->neighbour_[2];
427
	if (nb) {
428
	  TEST(elInfoOld->oppVertex_[2] == 2)("invalid neighbour\n"); 
429
430
431
432
433
	  TEST((nb = nb->getFirstChild()))("missing child?\n");

	  if (nb->getFirstChild()) {
	    oppVertex_[1] = 2;

434
	    if (fill_opp_coords) {
435
	      if (nb->isNewCoordSet()) {
436
		oppCoord_[1] = *(nb->getNewCoord());
437
	      } else {
438
439
		oppCoord_[1].setMidpoint(elInfoOld->neighbourCoord_[2][0],
					 elInfoOld->neighbourCoord_[2][2]);
440
	      }
441

442
443
444
	      neighbourCoord_[1][0] = elInfoOld->neighbourCoord_[2][0];
	      neighbourCoord_[1][1].setMidpoint(elInfoOld->neighbourCoord_[2][0],
						elInfoOld->neighbourCoord_[2][1]);
445
	      neighbourCoord_[1][2] = oppCoord_[1];
446
	    }
447
448
	    nb = nb->getSecondChild();

449
	  } else {
450
451
	    oppVertex_[1] = 0;

452
	    if (fill_opp_coords) {
453
	      oppCoord_[1] = elInfoOld->oppCoord_[2];
454

455
456
457
458
	      neighbourCoord_[1][0] = elInfoOld->neighbourCoord_[2][2];	      
	      neighbourCoord_[1][1] = elInfoOld->neighbourCoord_[2][0];
	      neighbourCoord_[1][2].setMidpoint(elInfoOld->neighbourCoord_[2][0],
						elInfoOld->neighbourCoord_[2][1]);
459
460
461
	    }
	  }
	}
462
463
464
465
466
	neighbour_[1] = nb;
      } // if (ichild == 0) {} else
    } // if (fill_flag.isSet(Mesh::FILL_NEIGH) || fillFlag_.isSet(Mesh::FILL_OPP_COORDS))
    

467
    if (fill_flag.isSet(Mesh::FILL_BOUND)) {
468
469
      if (elInfoOld->getBoundary(2)) {
	boundary_[5] = elInfoOld->getBoundary(2);
470
      } else {
471
	boundary_[5] = INTERIOR;
472
      }
473

474
      if (ichild == 0) {
475
476
477
	boundary_[3] = elInfoOld->getBoundary(5);
	boundary_[4] = elInfoOld->getBoundary(3);
	boundary_[0] = elInfoOld->getBoundary(2);
478
	boundary_[1] = INTERIOR;
479
	boundary_[2] = elInfoOld->getBoundary(1);
480
      } else {
481
482
	boundary_[3] = elInfoOld->getBoundary(4);
	boundary_[4] = elInfoOld->getBoundary(5);
483
	boundary_[0] = INTERIOR;
484
485
	boundary_[1] = elInfoOld->getBoundary(2);
	boundary_[2] = elInfoOld->getBoundary(0);
486
487
      }

488
489
      if (elInfoOld->getProjection(0) && 
	  elInfoOld->getProjection(0)->getType() == VOLUME_PROJECTION) {
490
	
491
	projection_[0] = elInfoOld->getProjection(0);
492
493
      } else { // boundary projection
	if (ichild == 0) {
494
	  projection_[0] = elInfoOld->getProjection(2);
495
	  projection_[1] = NULL;
496
	  projection_[2] = elInfoOld->getProjection(1);
497
498
	} else {
	  projection_[0] = NULL;
499
500
	  projection_[1] = elInfoOld->getProjection(2);
	  projection_[2] = elInfoOld->getProjection(0);
501
502
503
504
505
	}
      }
    }
  }

Thomas Witkowski's avatar
Thomas Witkowski committed
506
  double ElInfo2d::calcGrdLambda(DimVec<WorldVector<double> >& grd_lam)
507
  {
508
    FUNCNAME("ElInfo2d::calcGrdLambda()");
509
510

    testFlag(Mesh::FILL_COORDS);
511
512
  
    double adet = 0.0;
513
514
    int dim = mesh_->getDim();

Thomas Witkowski's avatar
Thomas Witkowski committed
515
    for (int i = 0; i < dimOfWorld; i++) {
516
517
      (*e1)[i] = coord_[1][i] - coord_[0][i];
      (*e2)[i] = coord_[2][i] - coord_[0][i];
518
519
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
520
    if (dimOfWorld == 2) {
521
      double sdet = (*e1)[0] * (*e2)[1] - (*e1)[1] * (*e2)[0];
522
523
524
525
      adet = abs(sdet);

      if (adet < 1.0E-25) {
	MSG("abs(det) = %f\n", adet);
526
	for (int i = 0; i <= dim; i++)
Thomas Witkowski's avatar
Thomas Witkowski committed
527
	  for (int j = 0; j < dimOfWorld; j++)
528
	    grd_lam[i][j] = 0.0;
529
530
      } else {
	double det1 = 1.0 / sdet;
531
532
533
534
535

	grd_lam[1][0] = (*e2)[1] * det1;  // a11: (a_ij) = A^{-T}
	grd_lam[1][1] = -(*e2)[0] * det1; // a21
	grd_lam[2][0] = -(*e1)[1] * det1; // a12
	grd_lam[2][1] = (*e1)[0] * det1;  // a22
536
537
	grd_lam[0][0] = - grd_lam[1][0] - grd_lam[2][0];
	grd_lam[0][1] = - grd_lam[1][1] - grd_lam[2][1];
538
      }
539
540
    } else {  
      vectorProduct(*e1, *e2, *normal);
541

542
      adet = norm(normal);
543
544
545

      if (adet < 1.0E-15) {
	MSG("abs(det) = %lf\n", adet);
546
	for (int i = 0; i <= dim; i++)
Thomas Witkowski's avatar
Thomas Witkowski committed
547
	  for (int j = 0; j < dimOfWorld; j++)
548
549
	    grd_lam[i][j] = 0.0;
      } else {
550
551
	vectorProduct(*e2, *normal, grd_lam[1]);
	vectorProduct(*normal, *e1, grd_lam[2]);
552
      
553
	double adet2 = 1.0 / (adet * adet);
554

Thomas Witkowski's avatar
Thomas Witkowski committed
555
	for (int i = 0; i < dimOfWorld; i++) {
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
	  grd_lam[1][i] *= adet2;
	  grd_lam[2][i] *= adet2;
	}

	grd_lam[0][0] = - grd_lam[1][0] - grd_lam[2][0];
	grd_lam[0][1] = - grd_lam[1][1] - grd_lam[2][1];
	grd_lam[0][2] = - grd_lam[1][2] - grd_lam[2][2];
      }
    }

    return adet;
  }

  const int ElInfo2d::worldToCoord(const WorldVector<double>& xy,
				   DimVec<double>* lambda) const
  {
572
    FUNCNAME("ElInfo::worldToCoord()");
573

574
    TEST_EXIT_DBG(lambda)("lambda must not be NULL\n");
575

576
577
578
579
    DimVec<WorldVector<double> > edge(mesh_->getDim(), NO_INIT);
    WorldVector<double> x; 
    static DimVec<double> vec(mesh_->getDim(), NO_INIT);

580
581
    int dim = mesh_->getDim();

582
583
    for (int j = 0; j < dimOfWorld; j++) {
      double x0 = coord_[dim][j];
584
      x[j] = xy[j] - x0;
585
      for (int i = 0; i < dim; i++)
586
587
588
	edge[i][j] = coord_[i][j] - x0;
    }
  
589
590
591
    double det  = edge[0][0] * edge[1][1] - edge[0][1] * edge[1][0]; 
    double det0 =       x[0] * edge[1][1] -       x[1] * edge[1][0]; 
    double det1 = edge[0][0] * x[1]       - edge[0][1] * x[0]; 
592
593
594

    if (abs(det) < DBL_TOL) {
      ERROR("det = %le; abort\n", det);
595
596
      for (int i = 0; i <= dim; i++) 
	(*lambda)[i] = 1.0/dim;
597
598
599
600
601
602
603
604
605
      return 0;
    }

    (*lambda)[0] = det0 / det;
    (*lambda)[1] = det1 / det;
    (*lambda)[2] = 1.0 - (*lambda)[0] - (*lambda)[1];

    int k = -1;
    double lmin = 0.0;
606
    for (int i = 0; i <= dim; i++) {
607
608
609
610
611
612
613
614
615
616
617
618
      if ((*lambda)[i] < -1.E-5) {
	if ((*lambda)[i] < lmin) {
	  k = i;
	  lmin = (*lambda)[i];
	}
      }
    }

    return k;
  }


Thomas Witkowski's avatar
Thomas Witkowski committed
619
  double ElInfo2d::getNormal(int side, WorldVector<double> &normal)
620
  {
621
    FUNCNAME("ElInfo::getNormal()");
622

623
624
    int i0 = (side + 1) % 3;
    int i1 = (side + 2) % 3;
625

Thomas Witkowski's avatar
Thomas Witkowski committed
626
    if (dimOfWorld == 2){
627
628
629
630
631
      normal[0] = coord_[i1][1] - coord_[i0][1];
      normal[1] = coord_[i0][0] - coord_[i1][0];
    } else { // dow == 3
      WorldVector<double> e0, e1,e2, elementNormal;

632
633
634
635
636
637
      e0 = coord_[i1]; 
      e0 -= coord_[i0];
      e1 = coord_[i1]; 
      e1 -= coord_[side];
      e2 = coord_[i0]; 
      e2 -= coord_[side];
638
639
640
641
642

      vectorProduct(e1, e2, elementNormal);
      vectorProduct(elementNormal, e0, normal);
    }

643
    double det = norm(&normal);
644

645
    TEST_EXIT_DBG(det > 1.e-30)("det = 0 on face %d\n", side);
646
647
648

    normal *= 1.0 / det;
    
Thomas Witkowski's avatar
Thomas Witkowski committed
649
    return det;
650
651
652
653
654
655
656
  }

  /****************************************************************************/
  /*  calculate the normal of the element for dim of world = dim + 1          */
  /*  return the absulute value of the determinant from the                   */
  /*  transformation to the reference element                                 */
  /****************************************************************************/
Thomas Witkowski's avatar
Thomas Witkowski committed
657
  double ElInfo2d::getElementNormal(WorldVector<double> &elementNormal) const
658
  {
659
    FUNCNAME("ElInfo::getElementNormal()");
660

Thomas Witkowski's avatar
Thomas Witkowski committed
661
662
    TEST_EXIT_DBG(dimOfWorld == 3)
      (" element normal only well defined for  DIM_OF_WORLD = DIM + 1 !!");
663

664
665
    WorldVector<double> e0 = coord_[1] - coord_[0];
    WorldVector<double> e1 = coord_[2] - coord_[0];
666
667
668

    vectorProduct(e0, e1, elementNormal);

669
    double det = norm(&elementNormal);
670

671
    TEST_EXIT_DBG(det > 1.e-30)("det = 0");
672
673
674

    elementNormal *= 1.0 / det;
    
Thomas Witkowski's avatar
Thomas Witkowski committed
675
    return det;
676
  }
677

678
}