MacroReader.cc 62.3 KB
Newer Older
1
2
3
4
5
6
#include "MacroReader.h"
#include "MacroWriter.h"
#include "MacroElement.h"
#include "Boundary.h"
#include "FiniteElemSpace.h"
#include "Mesh.h"
7
#include <string.h>
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include "FixVec.h"
#include "FixVecConvert.h"
#include "PeriodicMap.h"
#include "ElInfo.h"
#include "Parameters.h"
#include "DOFIterator.h"
#include "SurfaceRegion_ED.h"
#include "ElementRegion_ED.h"
#include "LeafData.h"
#include "VertexVector.h"
#include <map>
#include <iostream>
#include <fstream>

namespace AMDiS {

  MacroInfo* MacroReader::readMacro(const char *filename, 
				    Mesh* mesh,
				    const char *periodicFile,
				    int check)
  {
    FUNCNAME("Mesh::readMacro()");

    TEST_EXIT(filename)("no file specified; filename NULL pointer\n");
32
   
Thomas Witkowski's avatar
Thomas Witkowski committed
33
    MacroInfo *macroInfo = new MacroInfo();
34
35
    macroInfo->readAMDiSMacro(filename, mesh);

36
    std::deque<MacroElement*>::iterator mel = macroInfo->mel.begin();
37
38
39
    int **melVertex = macroInfo->mel_vertex;
    WorldVector<double> *coords = macroInfo->coords;
    DegreeOfFreedom **dof = macroInfo->dof;
40
41

    // === read periodic data =================================
42
    if (periodicFile && (strcmp(periodicFile, "") != 0)) {
43
44
45
46
47
48
49
50
51
      WARNING("periodic boundaries may lead to errors in small meshes if element neighbours not set\n");
    
      FILE *file = fopen(periodicFile, "r");
      TEST_EXIT(file)("can't open file %s\n", periodicFile);

      int n;
      int dim = mesh->getDim();

      int el1, el2;
Thomas Witkowski's avatar
Thomas Witkowski committed
52
53
      int *verticesEl1 = new int[dim];
      int *verticesEl2 = new int[dim];
54
      int mode = -1; // 0: drop dofs, 1: associate dofs
55
      int result;
56
57
58
59
60
61
62
63
      BoundaryType boundaryType;

      fscanf(file, "%*s %d", &n);

      fscanf(file, "%*s %*s %*s %*s %*s %*s %*s %*s %*s %*s %*s");

      PeriodicMap periodicMap;
    
64
      for (int i = 0; i < n; i++) {
65
66
	std::map<int, int> vertexMapEl1;
	std::map<int, int> vertexMapEl2;
67

68
69
	result = fscanf(file, "%d", &mode);
	TEST_EXIT(result == 1)("mode?\n");
70
      
71
72
	result = fscanf(file, "%d", &boundaryType);
	TEST_EXIT(result == 1)("boundaryType?\n");
73
      
74
75
76
	result = fscanf(file, "%d", &el1);
	TEST_EXIT(result == 1)("el1?\n");

77
	for (int j = 0; j < dim; j++) {
78
79
	  result = fscanf(file, "%d", &verticesEl1[j]);
	  TEST_EXIT(result == 1)("vertEl1[%d]\n", j);
80
	}
81
82
	result = fscanf(file, "%d", &el2);
	TEST_EXIT(result == 1)("el2?\n");
83
	for (int j = 0; j < dim; j++) {
84
85
	  result = fscanf(file, "%d", &verticesEl2[j]);
	  TEST_EXIT(result == 1)("vertEl2[%d]\n", j);
86
	}
87
88
	for (int j = 0; j < dim; j++) {
	  if (mode == 0) {
89
90
91
92
93
94
95
96
97
	    periodicMap.setEntry(melVertex[el1][verticesEl1[j]], 
				 melVertex[el2][verticesEl2[j]]);
	  }
	  vertexMapEl1[verticesEl1[j]] = verticesEl2[j];
	  vertexMapEl2[verticesEl2[j]] = verticesEl1[j];
	}

	// calculate sides of periodic vertices
	int sideEl1 = 0, sideEl2 = 0;
98
	if (dim == 1) {
99
100
101
	  sideEl1 = verticesEl1[0];
	  sideEl2 = verticesEl2[0];
	} else {
102
	  for (int j = 0; j < dim + 1; j++) {
103
104
105
	    sideEl1 += j;
	    sideEl2 += j;
	  }
106
	  for (int j = 0; j < dim; j++) {
107
108
109
110
111
112
	    sideEl1 -= verticesEl1[j];
	    sideEl2 -= verticesEl2[j];
	  }
	}
	
	// create periodic info
113
114
	DimVec<WorldVector<double> > periodicCoordsEl1(dim - 1, NO_INIT);
	DimVec<WorldVector<double> > periodicCoordsEl2(dim - 1, NO_INIT);
115

116
117
	Element *element1 = const_cast<Element*>((*(mel + el1))->getElement());
	Element *element2 = const_cast<Element*>((*(mel + el2))->getElement());
118
119
      
	// for all vertices of this side
120
	for (int j = 0; j < dim; j++) {
121
122
123
124
125
126
127
128
129
130
131
132
133
134
	  periodicCoordsEl1[element1->getPositionOfVertex(sideEl1, verticesEl1[j])] = 
	    coords[melVertex[el2][vertexMapEl1[verticesEl1[j]]]];
	  periodicCoordsEl2[element2->getPositionOfVertex(sideEl2, verticesEl2[j])] =
	    coords[melVertex[el1][vertexMapEl2[verticesEl2[j]]]];
	}
      
	// decorate leaf data
	ElementData *ld1 = element1->getElementData();
	ElementData *ld2 = element2->getElementData();

	LeafDataPeriodic *ldp1 = dynamic_cast<LeafDataPeriodic*>(ld1->getElementData(PERIODIC));
	LeafDataPeriodic *ldp2 = dynamic_cast<LeafDataPeriodic*>(ld2->getElementData(PERIODIC));

	if (!ldp1) {
Thomas Witkowski's avatar
Thomas Witkowski committed
135
	  ldp1 = new LeafDataPeriodic(ld1);
136
137
138
139
	  element1->setElementData(ldp1);
	}

	if (!ldp2) {
Thomas Witkowski's avatar
Thomas Witkowski committed
140
	  ldp2 = new LeafDataPeriodic(ld2);
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
	  element2->setElementData(ldp2);
	}

	ldp1->addPeriodicInfo(mode,
			      boundaryType, 
			      sideEl1, 
			      &periodicCoordsEl1);

	ldp2->addPeriodicInfo(mode,
			      boundaryType, 
			      sideEl2, 
			      &periodicCoordsEl2);

	if (mode != 0) {
	  VertexVector *associated = mesh->periodicAssociations[boundaryType];
156

157
	  if (!associated) {
Thomas Witkowski's avatar
Thomas Witkowski committed
158
	    associated = new VertexVector(mesh->getVertexAdmin(), "vertex vector");
159
160
	    mesh->periodicAssociations[boundaryType] = associated;
	    VertexVector::Iterator it(associated, ALL_DOFS);
161
	    for (it.reset2(); !it.end(); ++it)
162
163
164
	      *it = it.getDOFIndex();
	  }

165
	  for (int j = 0; j < dim; j++) {
166
167
168
169
170
171
172
173
	    (*associated)[melVertex[el1][verticesEl1[j]]] =
	      melVertex[el2][vertexMapEl1[verticesEl1[j]]];
	    (*associated)[melVertex[el2][verticesEl2[j]]] =
	      melVertex[el1][vertexMapEl2[verticesEl2[j]]];
	  }
	}
      }    

Thomas Witkowski's avatar
Thomas Witkowski committed
174
175
      delete [] verticesEl1;
      delete [] verticesEl2;
176
177

      // change periodic vertex dofs
178
      for (int i = 0; i < mesh->getNumberOfVertices(); i++) {
179
180
181
182
	if (periodicMap.getEntry(i) != -1) {
	  mesh->freeDOF(dof[i], VERTEX);
	  dof[i] = dof[periodicMap.getEntry(i)];

183
184
	  std::map<BoundaryType, VertexVector*>::iterator assoc;
	  std::map<BoundaryType, VertexVector*>::iterator assocEnd =
185
	    mesh->periodicAssociations.end();
186
187
188
189
190
191
192
193
194

	  for (assoc = mesh->periodicAssociations.begin(); 
	       assoc != assocEnd; 
	       ++assoc) {

	    DegreeOfFreedom a = (*(assoc->second))[i];
	    if (a != i) {
	      (*(assoc->second))[i] = i;
	      (*(assoc->second))[a] = periodicMap.getEntry(i);
195
	    }
196
197
	  }

198
199
200
	}
      }

201
202
      std::map<BoundaryType, VertexVector*>::iterator assoc;
      std::map<BoundaryType, VertexVector*>::iterator assocEnd =
203
	mesh->periodicAssociations.end();
204
205
      for (assoc = mesh->periodicAssociations.begin(); 
	   assoc != assocEnd; 
206
207
208
209
210
	   ++assoc) {

	for (int i = 0; i < mesh->getNumberOfVertices(); i++) {
	  if (i != (*(assoc->second))[i])
	    MSG("association %d: vertex %d -> vertex %d\n", 
211
		assoc->first, i, (*(assoc->second))[i]);
212
	}
213
214
      }

215
216
217
218
      for (int i = 0; i < mesh->getNumberOfVertices(); i++)
	if (periodicMap.getEntry(i) != -1)
	  MSG("identification : vertex %d is now vertex %d\n", 
	      i, periodicMap.getEntry(i));
219
    }
220

221
222
    // =========================================================

223
224
225
    for (int i = 0; i < mesh->getNumberOfMacros(); i++) {
      for (int k = 0; k < mesh->getGeo(VERTEX); k++) {
	(*(mel + i))->setCoord(k, coords[melVertex[i][k]]);
226

227
	const_cast<Element*>((*(mel + i))->getElement())->
228
	  setDOF(k, dof[melVertex[i][k]]);
229
      }
230
    }
231

232
233
234
    if (!macroInfo->neigh_set) {
      TEST_EXIT(!periodicFile)
	("periodic boundary condition => element neighbours must be set\n");
235
      computeNeighbours(mesh);
236
    } else {
237
238
239
      /****************************************************************************/
      /* fill MEL oppVertex values when reading neighbour information form file  */
      /****************************************************************************/
240

241
242
243
244
245
      for (int i = 0; i < mesh->getNumberOfMacros(); i++) {
	for (int k = 0; k < mesh->getGeo(NEIGH); k++) {
	  MacroElement *neigh = const_cast<MacroElement*>(mel[i]->getNeighbour(k));

	  if (neigh) {
246
247
	    int j = 0;
	    for (; j < mesh->getGeo(NEIGH); j++)
248
249
	      if (neigh->getNeighbour(j) == *(mel + i))  
		break;
250
	
251
252
253
254
255
	    TEST_EXIT(j < mesh->getGeo(NEIGH))("el %d no neighbour of neighbour %d\n", 
					       mel[i]->getIndex(), neigh->getIndex());
	    mel[i]->setOppVertex(k, j);
	  } else {
	    mel[i]->setOppVertex(k, -1);
256
	  }
257
	}
258
      }
259
    }
260
261
262
263
264

    if (!macroInfo->bound_set) {
      macroInfo->dirichletBoundary();
    }
  
265
    if (mesh->getDim() > 1)
266
267
268
269
270
271
      boundaryDOFs(mesh);

    // initial boundary projections
    int numFaces = mesh->getGeo(FACE);
    int dim = mesh->getDim();
    mel = mesh->firstMacroElement();
272
    for (int i = 0; i < mesh->getNumberOfLeaves(); i++) {
273
274
      MacroElement *macroEl = *(mel+i);
      Projection *projector = macroEl->getProjection(0);
275
276
      if (projector && projector->getType() == VOLUME_PROJECTION) {
	for (int j = 0; j <= dim; j++) {
277
278
279
	  projector->project(macroEl->getCoord(j));
	}
      } else {
280
	for (int j = 0; j < mesh->getGeo(EDGE); j++) {
281
	  projector = macroEl->getProjection(numFaces + j);
282
	  if (projector) {
283
284
285
286
287
288
289
290
291
292
293
294
	    int vertex0 = Global::getReferenceElement(dim)->getVertexOfEdge(j, 0);
	    int vertex1 = Global::getReferenceElement(dim)->getVertexOfEdge(j, 1);
	    projector->project(macroEl->getCoord(vertex0));
	    projector->project(macroEl->getCoord(vertex1));
	  }
	}
      }
    }

    macroInfo->fillBoundaryInfo(mesh);

    if (mesh->getNumberOfDOFs(CENTER)) {
295
296
      for (int i = 0; i < mesh->getNumberOfMacros(); i++) {
	const_cast<Element*>(mel[i]->getElement())->
297
	  setDOF(mesh->getNode(CENTER), mesh->getDOF(CENTER));
298
      }
299
300
301
302
303
304
    }

    /****************************************************************************/
    /* domain size                                                              */
    /****************************************************************************/

305
    WorldVector<double> x_min, x_max;
306

307
308
309
310
311
312
313
    for (int j = 0; j < Global::getGeo(WORLD); j++) {
      x_min[j] =  1.E30;
      x_max[j] = -1.E30;
    }

    for (int i = 0; i < mesh->getNumberOfVertices(); i++) {
      for (int j = 0; j < Global::getGeo(WORLD); j++) {
314
315
	x_min[j] = std::min(x_min[j], coords[i][j]);
	x_max[j] = std::max(x_max[j], coords[i][j]);
316
317
      }
    }
318

319
    for (int j = 0; j < Global::getGeo(WORLD); j++)
320
321
322
323
324
325
      mesh->setDiameter(j, x_max[j] - x_min[j]);

    if (check) {
      checkMesh(mesh);

      if (mesh->getDim() > 1) {
326
327
328
329
330
	char filenew[128];
	strncpy(filenew, filename, 128); 
	filenew[127] = 0;
	strncat(filenew, ".new", 128);   
	filenew[127] = 0;
331
332
333
334
	macroTest(mesh, filenew);
      }
    }

335
    return macroInfo;
336
337
338
339
340
341
342
343
  }

  /****************************************************************************/
  /*  fill macro info structure and some pointers in mesh ...                 */
  /****************************************************************************/

  void MacroInfo::fill(Mesh *pmesh, int ne, int nv)
  {
344
345
    FUNCNAME("MacroInfo::fill()");

346
347
    TEST_EXIT(pmesh)("no mesh\n");

348
    int dim = pmesh->getDim(); 
349
    mesh = pmesh;
350
351
352
353
354

    mesh->setNumberOfElements(ne);
    mesh->setNumberOfLeaves(ne);
    mesh->setNumberOfVertices(nv);

355
    for (int i = 0; i < ne; i++) {
Thomas Witkowski's avatar
Thomas Witkowski committed
356
      MacroElement *newMacro = new MacroElement(mesh->getDim());
357
358
359
360
      mel.push_back(newMacro);
      mesh->addMacroElement(mel[i]);
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
361
362
363
    dof = new DegreeOfFreedom*[nv];
    coords = new WorldVector<double>[nv];
    mel_vertex = new int*[ne];
364

Thomas Witkowski's avatar
Thomas Witkowski committed
365
366
    for (int i = 0; i < ne; i++)
      mel_vertex[i] = new int[mesh->getGeo(VERTEX)];
367

Thomas Witkowski's avatar
Thomas Witkowski committed
368
    for (int i = 0; i < nv; i++)
369
370
      dof[i] = mesh->getDOF(VERTEX);

371
    for (int i = 0; i < ne; i++) {
372
      mel[i]->element = mesh->createNewElement();
Thomas Witkowski's avatar
Thomas Witkowski committed
373
      mel[i]->index = i;
374

Thomas Witkowski's avatar
Thomas Witkowski committed
375
      if (dim == 3)
Thomas Witkowski's avatar
Thomas Witkowski committed
376
	mel[i]->elType = 0;
377
378
379
380
381
    }
    neigh_set = false;
    bound_set = false;
  }

Thomas Witkowski's avatar
Thomas Witkowski committed
382
  void MacroInfo::clear()
383
384
  {
    for (int i = 0; i < mesh->getNumberOfMacros(); i++)
Thomas Witkowski's avatar
Thomas Witkowski committed
385
      delete [] mel_vertex[i];
386

Thomas Witkowski's avatar
Thomas Witkowski committed
387
388
    delete [] mel_vertex;
    delete [] coords;
389
    coords = NULL;  
Thomas Witkowski's avatar
Thomas Witkowski committed
390
    delete [] dof;
391
    dof = NULL;
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

    mesh = NULL;
    neigh_set = false;
  }

  /****************************************************************************/
  /****************************************************************************/
  /*  tool for reading macro triangulations in ALBERT-format                  */
  /****************************************************************************/
  /****************************************************************************/

  /****************************************************************************/
  /*  read_indices()  reads dim+1 indices from  file  into  id[0-dim],        */
  /*    returns true if dim+1 inputs arguments could be read successfully by  */
  /*    fscanf(), else false                                                  */
  /****************************************************************************/

  int  MacroInfo::read_indices(FILE *file, DimVec<int> &id)
  {
    int dim = mesh->getDim();

Thomas Witkowski's avatar
Thomas Witkowski committed
413
    for (int i = 0; i <= dim; i++)
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
      if (fscanf(file, "%d", &id[i]) != 1)
	return(false);

    return(true);
  }

#define N_KEYS      14
#define N_MIN_KEYS  7
  static const char *keys[N_KEYS] = {
    "DIM",                   //  0 
    "DIM_OF_WORLD",          //  1
    "number of vertices",    //  2
    "number of elements",    //  3
    "vertex coordinates",    //  4
    "element vertices",      //  5
    "element boundaries",    //  6
    "element neighbours",    //  7
    "element type",          //  8
    "projections",           //  9
    "element region",        // 10
    "surface region",        // 11
    "mesh name",             // 12
    "time"                   // 13
  };

  static int get_key_no(const char *key)
  {
441
442
    for (int i = 0; i < N_KEYS; i++)
      if (!strcmp(keys[i], key))  
443
	return i;
444

445
    return -1;
446
447
448
449
450
451
  }

#include <ctype.h>

  static const char *read_key(const char *line)
  {
452
453
    static char key[100];
    char *k = key;
454
455

    while (isspace(*line)) 
456
      line++;
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
    while ((*k++ = *line++) != ':');
    *--k = '\0';
  
    return(const_cast<const char *>( key));
  }

  /****************************************************************************/
  /*  read_albert_macro():                                                    */
  /*    read macro triangulation from ascii file in ALBERT format             */
  /*    fills macro_info structure                                            */
  /*    called by read_macro(), fills missing information                     */
  /****************************************************************************/


  void MacroInfo::readAMDiSMacro(const char *filename, Mesh* mesh)
  {
473
474
475
476
477
478
    FUNCNAME("MacroInfo::readAMDiSMacro()");

    FILE *file;
    int dim;
    int dow, nv, ne, j, k;
    double dbl;
479
480
    char line[256];
    int line_no, n_keys, sort_key[N_KEYS], nv_key, ne_key;
481
    int key_def[N_KEYS] = {0,0,0,0,0,0,0,0,0,0,0,0};
482
483
484
485
486
487
488
    const char *key;
    DimVec<int> *ind = NULL;

    TEST_EXIT(filename)("no file specified; filename NULL pointer\n");
    TEST_EXIT(strlen(filename) < static_cast<unsigned int>(127))
      ("can only handle filenames up to 127 characters\n");

489
490
    file = fopen(filename, "r");
    TEST_EXIT(file)("cannot open file %s\n", filename);
491
492
493
494
495
496
497

    /****************************************************************************/
    /*  looking for all keys in the macro file ...                              */
    /****************************************************************************/

    line_no = n_keys = 0;
    while (fgets(line, 255, file)) {
498
499
500
501
502
503
504
505
506
507
508
      line_no++;
      if (!strchr(line, ':'))  continue;
      key = read_key(line);
      int i_key = get_key_no(key);
      TEST_EXIT(i_key >= 0)
	("macro file %s must not contain key %s on line %d\n",
	 filename, key, line_no);
      TEST_EXIT(!key_def[i_key])("key %s defined second time on line %d in file %s\n");

      sort_key[n_keys++] = i_key;
      key_def[i_key] = true;
509
510
    }
    fclose(file);
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528


    /*******************************************************************************/
    /*  Test, if there is data for every key and if all is defined in right order. */
    /*******************************************************************************/

    for (int i_key = 0; i_key < N_MIN_KEYS; i_key++) {
      for (j = 0; j < n_keys; j++)
	if (sort_key[j] == i_key)  break;
      TEST_EXIT(j < n_keys)("You do not have specified data for %s in %s\n",
			    keys[i_key], filename);

      for (j = 0; j < n_keys; j++)
	if (sort_key[j] == 2)  break;
      nv_key = j;
      for (j = 0; j < n_keys; j++)
	if (sort_key[j] == 3)  break;
      ne_key = j;
529
    
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
      switch (i_key) {
      case 0:
      case 1:
	TEST_EXIT(sort_key[i_key] < 2)
	  ("You have to specify DIM or mesh->getGeo(WORLD) before all other data\n");
	break;
      case 4: 
	TEST_EXIT(nv_key < i_key)
	  ("Before reading data for %s, you have to specify the %s in file\n",
	   keys[4], keys[2], filename);
	break;
      case 5: 
	TEST_EXIT(nv_key < i_key  &&  ne_key < i_key)
	  ("Before reading data for %s, you have to specify the %s and %s in file %s\n",
	   keys[5], keys[3], keys[2], filename);
      case 6:
      case 7:
      case 8:
	TEST_EXIT(ne_key < i_key)
	  ("Before reading data for %s, you have to specify the %s in file %s\n",
	   keys[i_key], keys[3], filename);
      }
552
553
    }

554
    for (int i_key = 0; i_key < N_KEYS; i_key++)
555
556
557
558
559
560
      key_def[i_key] = false;

    /****************************************************************************/
    /*  and now, reading data ...                                               */
    /****************************************************************************/
	
561
562
    file = fopen(filename, "r");
    TEST_EXIT(file)("cannot open file %s\n", filename);
563
564

    int result;
565

566
    for (int i_key = 0; i_key < n_keys; i_key++) {
567

568
569
570
571
572
573
      switch (sort_key[i_key]) {
	
      case 0:
	// line "DIM"
	result = fscanf(file, "%*s %d", &dim);
	TEST_EXIT(result == 1)("cannot read DIM correctly in file %s\n", filename);
574

575
	ind = new DimVec<int>(dim, NO_INIT);
576

577
578
	key_def[0] = true;
	break;
579

580
581
582
583
584
585
586
587
      case 1:
	// line "DIM_OF_WORLD"
	result = fscanf(file, "%*s %d", &dow);
	TEST_EXIT(result == 1)
	  ("cannot read Global::getGeo(WORLD) correctly in file %s\n", filename);
	TEST_EXIT(dow == Global::getGeo(WORLD))
	  ("dimension of world = %d != Global::getGeo(WORLD) = %d\n", 
	   dow, Global::getGeo(WORLD));
588

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
	key_def[1] = true;
	break;

      case 2:
	// line "number of vertices"
	result = fscanf(file, "%*s %*s %*s %d", &nv);
	TEST_EXIT(result == 1)
	  ("cannot read number of vertices correctly in file %s\n", filename);
	TEST_EXIT(nv > 0)
	  ("number of vertices = %d must be bigger than 0\n", nv);

	key_def[2] = true;
	if (key_def[3])
	  fill(mesh, ne, nv);
	break;

      case 3:
	// line "number of elements"
	result = fscanf(file, "%*s %*s %*s %d", &ne);
	TEST_EXIT(result == 1)
	  ("cannot read number of elements correctly in file %s\n", filename);
	TEST_EXIT(ne > 0)
	  ("number of elements = %d must be bigger than 0\n", ne);

	key_def[3] = true;
	if (key_def[2])
	  fill(mesh, ne, nv);
	break;

      case 4:
	// block "vertex coordinates"
	fscanf(file, "%*s %*s");
	for (int i = 0; i < nv; i++) {
	  for (j = 0; j <Global::getGeo(WORLD) ; j++) {
	    result = fscanf(file, "%lf", &dbl);
624
	    TEST_EXIT(result == 1)
625
626
627
628
629
630
	      ("error while reading coordinates, check file %s\n", filename);
	    coords[i][j] = dbl;
	  }
	}
	key_def[4] = true;
	break;
631

632
633
634
      case 5:
	// block "element vertices"
	fscanf(file, "%*s %*s");
635

636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
	/****************************************************************************/
	/* global number of vertices on a single element                            */
	/****************************************************************************/

	for (int i = 0; i < ne; i++) {
	  result = read_indices(file, *ind);
	  TEST_EXIT(result)
	    ("cannot read vertex indices of element %d in file %s\n",  i, filename);

	  for (k = 0; k < mesh->getGeo(VERTEX); k++)
	    mel_vertex[i][k] = (*ind)[k];
	}

	key_def[5] = true;
	break;

      case 6:
	// block "element boundaries"
	fscanf(file, "%*s %*s");

	/****************************************************************************/
	/* MEL boundary pointers                                                    */
	/****************************************************************************/
	for (int i = 0; i < ne; i++) {  
	  // boundary information of ith element 
661

662
663
664
665
666
667
668
669
670
671
672
	  result = read_indices(file, *ind);
	  TEST_EXIT(result)
	    ("cannot read boundary type of element %d in file %s\n", i, filename);

	  // fill boundary of macro-element
	  MacroReader::fillMelBoundary(mesh, 
				       mel[i], 
				       VecConv<int,NEIGH,PARTS>::convertVec((*ind), mesh));
	}

	this->fillBoundaryInfo(mesh);
673
                   
674
675
676
	bound_set = true;
	key_def[6] = true;
	break;
677

678
679
680
      case 7:
	// block "element neighbours"
	fscanf(file, "%*s %*s");
681

682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
	/****************************************************************************/
	/* fill MEL neighbour pointers:                                             */
	/*   if they are specified in the file: read them from file,                */
	/*   else init them by a call of fill_mel_neighbour()                       */
	/****************************************************************************/
	neigh_set = true;
	for (int i = 0; i < ne; i++) {
	  //  neighbour information about ith element

	  if (read_indices(file, *ind)) {
	    MacroReader::fillMelNeigh(mel[i], mel, 
				      VecConv<int,NEIGH,PARTS>::convertVec((*ind), 
									   mesh));
	  } else {
	    neigh_set = false; /* setting of neighbours fails :-( */
697
	    break;
698
699
	  }
	}
700

701
702
	key_def[7] = true;
	break;
703

704
705
706
707
708
709
      case 8:
	// block "element type"
	fscanf(file, "%*s %*s");
	/****************************************************************************/
	/* MEL elType                                                               */
	/****************************************************************************/
710

711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
	if (dim == 2 || dim == 1)
	  ERROR("there is no element type in 2d and 2d; ignoring data for elType\n");

	for (int i = 0; i < ne; i++) {
	  result = fscanf(file, "%d", &j);
	  TEST_EXIT(result == 1)
	    ("cannot read elType of element %d in file %s\n", i, filename);
	  if (dim == 3)
	    (mel)[i]->elType = j;
	}

	key_def[8] = true;
	break;

      case 9:
	// block "projections"
	{
	  fscanf(file, "%*s");

	  int numFaces = mesh->getGeo(FACE);
	  int numEdgesAtBoundary = 0;

	  for (k = 1; k < dim; k++)
	    numEdgesAtBoundary += k;

	  for (int i = 0; i < ne; i++) {
	    result = read_indices(file, *ind);
	    TEST_EXIT(result)
	      ("cannot read boundary projector of element %d in file %s\n", i, filename);
740
	
741
742
743
744
745
746
747
748
749
750
751
752
753
	    Projection *projector = Projection::getProjection((*ind)[0]);

	    if (projector && projector->getType() == VOLUME_PROJECTION) {
	      mel[i]->setProjection(0, projector);
	    } else { // boundary projection
	      for(j = 0; j < mesh->getGeo(NEIGH); j++) {
		projector = Projection::getProjection((*ind)[j]);
		if(projector) {
		  mel[i]->setProjection(j, projector);
		  if(dim > 2) {
		    for(k = 0; k < numEdgesAtBoundary; k++) {
		      int edgeNr = Global::getReferenceElement(dim)->getEdgeOfFace(j, k);
		      mel[i]->setProjection(numFaces + edgeNr, projector);
754
755
756
757
758
		    }
		  }
		}
	      }
	    }
759
760
761
762
	  }
	}
	key_def[9] = true;
	break;
763

764
765
766
767
768
769
      case 10:
	// block "element region"
	fscanf(file, "%*s %*s");
	/****************************************************************************/
	/* MEL regions                                                              */
	/****************************************************************************/
770

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
	for (int i = 0; i < ne; i++) {
	  result = fscanf(file, "%d", &j);
	  TEST_EXIT(result == 1)
	    ("cannot read region of element %d in file %s\n", i, filename);
	  if (j >= 0) {
	    Element *el = mel[i]->getElement();
	    ElementRegion_ED *elementRegion = 
	      new ElementRegion_ED(el->getElementData());
	    elementRegion->setRegion(j);
	    el->setElementData(elementRegion);
	  }
	}
	key_def[10] = true;
	break;

      case 11:
	// block "surface region"
	fscanf(file, "%*s %*s");
	for (int i = 0; i < ne; i++) {
	  result = read_indices(file, *ind);
	  TEST_EXIT(result)
	    ("cannot read surface regions of element %d in file %s\n", i, filename);

	  Element *el = mel[i]->getElement();

	  for (j = 0; j < mesh->getGeo(NEIGH); j++) {
	    if ((*ind)[j] >= 0) {
	      SurfaceRegion_ED *surfaceRegion = 
		new SurfaceRegion_ED(el->getElementData());
	      surfaceRegion->setSide(j);
	      surfaceRegion->setRegion((*ind)[j]);
	      el->setElementData(surfaceRegion);
803
804
	    }
	  }
805
806
807
808
809
810
811
812
813
814
815
816
817
	}
	key_def[11] = true;
	break;

      case 12:
	// line "mesh name"
	fscanf(file, "%*s %*s %*s");
	break;

      case 13:
	// line "time"
	fscanf(file, "%*s %*s");
	break;
818
      }
819
    }
820

821
    if (ind)
Thomas Witkowski's avatar
Thomas Witkowski committed
822
      delete ind;
823

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
    fclose(file);
  }


  int macro_type(const char *filename, const char *type)
  {
    const char *fn, *t;
  
    if (strlen(filename) <= strlen(type))
      return(false);
  
    fn = filename;
    while (*fn) fn++;
    t = type;
    while (*t) t++;
  
    while (t != type  &&  *t == *fn) t--;
  
    return(t == type);
  }


  /****************************************************************************/
  /*  sets the boundary of all edges/faces with no neigbour to a straight     */
  /*  line/face with Dirichlet boundary type                                  */
  /****************************************************************************/

  void MacroInfo::dirichletBoundary()
  {
853
854
    for (int i = 0; i < static_cast<int>( mel.size()); i++) {
      for (int k = 0; k < mesh->getGeo(NEIGH); k++) {
855
856
857
858
859
860
861
862
863
864
865
866
867
	if (mel[i]->neighbour[k])
	  mel[i]->boundary[k] = INTERIOR;
	else
	  mel[i]->boundary[k] = DIRICHLET;
      }
    }
  }


  void MacroInfo::fillBoundaryInfo(Mesh *mesh)
  {
    int i,j,k, nv = mesh->getNumberOfVertices();

868
    std::deque<MacroElement*>::iterator melIt;
869

Thomas Witkowski's avatar
Thomas Witkowski committed
870
    BoundaryType *bound = new BoundaryType[nv];
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954

    int dim = mesh->getDim();

    switch(dim) {
    case 1:
      break;
    case 2:
      for (i = 0; i < nv; i++)
	bound[i] = INTERIOR;

      for (i=0, melIt = mesh->firstMacroElement(); 
	   melIt != mesh->endOfMacroElements(); 
	   ++melIt, ++i) 
	{
	  for (j = 0; j < mesh->getGeo(NEIGH); j++) {
	    if ((*melIt)->getBoundary(j) != INTERIOR) {
	      if ((*melIt)->getBoundary(j) >= DIRICHLET) {
		int j1 = mel_vertex[i][(j+1)%3];
		int j2 = mel_vertex[i][(j+2)%3];

		bound[j1] = 
		  max(bound[j1], (*melIt)->getBoundary(j));
		bound[j2] = 
		  max(bound[j2], (*melIt)->getBoundary(j));
	      } 
	      else if ((*melIt)->getBoundary(j) <= NEUMANN) {
		int j1 = mel_vertex[i][(j+1)%3];
		int j2 = mel_vertex[i][(j+2)%3];

		if (bound[j1] != INTERIOR)
		  bound[j1] = 
		    max(bound[j1], (*melIt)->getBoundary(j));
		else
		  bound[j1] = (*melIt)->getBoundary(j);

		if (bound[j2] != INTERIOR)
		  bound[j2] = 
		    max(bound[j2], (*melIt)->getBoundary(j));
		else
		  bound[j2] = (*melIt)->getBoundary(j);
	      }
	    }
	  }
	}

      for (i=0, melIt = mesh->firstMacroElement(); 
	   melIt != mesh->endOfMacroElements(); 
	   ++melIt, i++) 
	{
	  for (j = 0; j < mesh->getGeo(VERTEX); j++)
	    (*melIt)->setBoundary(3 + j, bound[mel_vertex[i][j]]);
	}
      break;
    case 3:
      for (i = 0; i < nv; i++)
	bound[i] = INTERIOR;

      for (i=0, melIt = mesh->firstMacroElement(); 
	   melIt != mesh->endOfMacroElements(); 
	   ++melIt, i++) 
	{
	  for (j = 0; j < mesh->getGeo(NEIGH); j++) {
	    for (k = 1; k < 4; k++)
	      bound[mel_vertex[i][(j+k)%4]] =
		((*melIt)->getBoundary(j) != INTERIOR) ?
		newBound((*melIt)->getBoundary(j),
			 bound[mel_vertex[i][(j+k)%4]]) :
		//(*melIt)->getBoundary(j)->
		//newVal(bound[data->mel_vertex[i][(j+k)%4]]) :
		bound[mel_vertex[i][(j+k)%4]];
	  }
	}

      for (i = 0, melIt = mesh->firstMacroElement(); 
	   melIt != mesh->endOfMacroElements(); 
	   ++melIt, i++) 
	{
	  for (j = 0; j < mesh->getGeo(VERTEX); j++)
	    (*melIt)->setBoundary(10 + j, bound[mel_vertex[i][j]]);
	}
      break;
    default: ERROR_EXIT("invalid dim\n");
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
955
    delete [] bound;
956
957
958
959
  }

  void MacroReader::computeNeighbours(Mesh *mesh)
  {
960
    FUNCNAME("MacroReader::computeNeighbours()");
961

962
    int dim = mesh->getDim();
963
    FixVec<DegreeOfFreedom*, DIMEN> dof(dim, NO_INIT);
964

965
966
967
968
    for (int i = 0; i < mesh->getNumberOfLeaves(); i++) {
      for (int k = 0; k < mesh->getGeo(NEIGH); k++) {
	mesh->getMacroElement(i)->setOppVertex(k, AMDIS_UNDEFINED);
	mesh->getMacroElement(i)->setNeighbour(k, NULL);
969
      }
970
    }
971

972
973
974
975
976
977
978
    for (int i = 0; i < mesh->getNumberOfLeaves(); i++) {
      for (int k = 0; k < mesh->getGeo(NEIGH); k++) {
	if (mesh->getMacroElement(i)->getBoundary(k) != INTERIOR) {
	  mesh->getMacroElement(i)->setNeighbour(k, NULL);
	  mesh->getMacroElement(i)->setOppVertex(k, -1);
	  continue;
	}
979

980
981
982
983
984
985
986
987
	if (mesh->getMacroElement(i)->getOppVertex(k) == AMDIS_UNDEFINED) {
	  if (dim == 1) {
	    dof[0] = const_cast<DegreeOfFreedom*>(mesh->getMacroElement(i)->
						  getElement()->getDOF(k));
	  } else {
	    for (int l = 0; l < dim; l++)
	      dof[l] = const_cast<DegreeOfFreedom*>(mesh->getMacroElement(i)->
						    getElement()->
988
						    getDOF((k + l + 1) % (dim + 1)));
989
	  }
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
	  
	  int j = 0;
	  for (j = i + 1; j < mesh->getNumberOfLeaves(); j++) {
	    int m = mesh->getMacroElement(j)->getElement()->oppVertex(dof);
	    if (m != -1) {
	      mesh->getMacroElement(i)->setNeighbour(k, mesh->getMacroElement(j));
	      mesh->getMacroElement(j)->setNeighbour(m, mesh->getMacroElement(i));
	      mesh->getMacroElement(i)->setOppVertex(k, m);
	      mesh->getMacroElement(j)->setOppVertex(m, k);
	      break;
	    }
	  }

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
	  if (j >= mesh->getNumberOfLeaves()) {
	    std::cout << "----------- ERROR ------------" << std::endl;
	    std::cout << "Cannot find neighbour " << k << " of element " << i << std::endl;
	    std::cout << "  dim = " << dim << std::endl;
	    std::cout << "  coords of element = ";
	    for (int l = 0; l <= dim; l++) {
	      std::cout << mesh->getMacroElement(i)->getCoord(l);
	      if (l < dim) {
		std::cout << " / ";
	      }
	    }
	    std::cout << std::endl;
	    std::cout << "  dofs = ";
	    for (int l = 0; l < dim; l++) {
	      std::cout << *(dof[l]) << " ";
	    }
	    std::cout << std::endl;

	    ERROR_EXIT("\n");
	  }    
1023
	}
1024
      }
1025
    }
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
  }


  /****************************************************************************/
  /*  boundaryDOFs:                                                           */
  /*  adds dof's at the edges of a given macro triangulation and calculates   */
  /*  the number of edges                                                     */
  /****************************************************************************/

  void MacroReader::boundaryDOFs(Mesh *mesh)
  {
1037
1038
1039
1040
1041
    FUNCNAME("Mesh::boundaryDOFs()");

    int lnode = mesh->getNode(EDGE);
    int k, lne = mesh->getNumberOfLeaves();
    int max_n_neigh = 0, n_neigh, ov;
1042
    std::deque<MacroElement*>::iterator mel;
1043
    const MacroElement* neigh;
1044
    DegreeOfFreedom *dof;
1045
1046
1047
1048
1049
1050
1051
1052

    mesh->setNumberOfEdges(0);
    mesh->setNumberOfFaces(0);

    int dim = mesh->getDim();

    switch(dim) {
    case 2:
1053
      for (mel = mesh->firstMacroElement(); mel != mesh->endOfMacroElements(); mel++) {
1054
1055
1056
1057
1058
1059
	// check for periodic boundary
	Element *el = const_cast<Element*>((*mel)->getElement());
	ElementData *ed = el->getElementData(PERIODIC);

	DimVec<bool> periodic(dim, DEFAULT_VALUE, false);

1060
	if (ed) {
1061
	  std::list<LeafDataPeriodic::PeriodicInfo> &periodicInfos = 
1062
	    dynamic_cast<LeafDataPeriodic*>(ed)->getInfoList();
1063
1064
	  std::list<LeafDataPeriodic::PeriodicInfo>::iterator it;
	  std::list<LeafDataPeriodic::PeriodicInfo>::iterator end = periodicInfos.end();
1065
1066
	  for (it = periodicInfos.begin(); it != end; ++it) {
	    if (it->type != 0) {
1067
1068
1069
1070
1071
	      periodic[it->elementSide] = true;
	    }
	  }
	}

1072
	for (int i = 0; i < mesh->getGeo(NEIGH); i++) {
1073
	  if (!(*mel)->getNeighbour(i) || 
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
	      ((*mel)->getNeighbour(i)->getIndex() < (*mel)->getIndex())) {

	    mesh->incrementNumberOfEdges(1);

	    if (mesh->getNumberOfDOFs(EDGE)) {
	      dof = el->setDOF(lnode + i, mesh->getDOF(EDGE));
      
	      if ((*mel)->getNeighbour(i)) {
		Element *neigh = const_cast<Element*>((*mel)->getNeighbour(i)->getElement());

		if (periodic[i]) {
		  neigh->setDOF(lnode + (*mel)->getOppVertex(i), mesh->getDOF(EDGE));
		} else {
		  neigh->setDOF(lnode + (*mel)->getOppVertex(i), dof);
1088
1089
		}
	      }
1090
1091
	    }
	  }  
1092
1093
1094
1095
1096
1097
	}
      }
      break;
    case 3:
      lnode = mesh->getNode(FACE);
      mel = mesh->firstMacroElement();
1098
      for (int i = 0; i < lne; i++) {
1099
1100
1101
1102
1103
1104
1105
1106

	// check for periodic boundary
	Element *el = const_cast<Element*>((*(mel+i))->getElement());
	ElementData *ed = el->getElementData(PERIODIC);

	DimVec<bool> periodic(dim, DEFAULT_VALUE, false);
      
	if(ed) {
1107
	  std::list<LeafDataPeriodic::PeriodicInfo> &periodicInfos = 
1108
	    dynamic_cast<LeafDataPeriodic*>(ed)->getInfoList();
1109
1110
	  std::list<LeafDataPeriodic::PeriodicInfo>::iterator it;
	  std::list<LeafDataPeriodic::PeriodicInfo>::iterator end = periodicInfos.end();
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
	  for(it = periodicInfos.begin(); it != end; ++it) {
	    if(it->type != 0) {
	      periodic[it->elementSide] = true;
	    }
	  }
	}

	for (k = 0; k < mesh->getGeo(EDGE); k++) {      
	  /*********************************************************************/
	  /* check for not counted edges                                       */
	  /*********************************************************************/
	  n_neigh = 1;

	  if (newEdge(mesh, (*(mel+i)), k, &n_neigh/*, periodicEdge*/)) {
	    mesh->incrementNumberOfEdges(1);
	    max_n_neigh = max(max_n_neigh, n_neigh);
	  }
	}
      
	for (k = 0; k < mesh->getGeo(NEIGH); k++) {
	  neigh = (*(mel+i))->getNeighbour(k);
	  /*********************************************************************/
	  /* face is counted and dof is added by the element with bigger index */
	  /*********************************************************************/
	  if (neigh  &&  (neigh->getIndex() > (*(mel+i))->getIndex()))  continue;
	
	  mesh->incrementNumberOfFaces(1);
	
	  if (mesh->getNumberOfDOFs(FACE)) {
	    TEST_EXIT(!(*(mel+i))->getElement()->getDOF(lnode+k))
	      ("dof %d on element %d already set\n", 
	       lnode+k, (*(mel+i))->getIndex());
	  
	    const_cast<Element*>((*(mel+i))->getElement())->setDOF(lnode+k, 
								   mesh->getDOF(FACE));

	    if (neigh) {
	      ov = (*(mel+i))->getOppVertex(k);
	      TEST_EXIT(!neigh->getElement()->getDOF(lnode+ov))
		("dof %d on neighbour %d already set\n", 
		 lnode+ov, neigh->getIndex());
	    
	      Element *neighEl = 
		const_cast<Element*>((*(mel+i))->getNeighbour(k)->getElement());

	      if (periodic[k]) {
		neighEl->setDOF(lnode+ov, mesh->getDOF(FACE));
	      } else {
		neighEl->setDOF(lnode+ov, const_cast<int*>((*(mel+i))->getElement()->
							   getDOF(lnode+k)));
	      }
	    }
	  }
	}
      }
      break;
    default: ERROR_EXIT("invalid dim\n");
    }
    
1170
    if (3 == dim) {
Thomas Witkowski's avatar
Thomas Witkowski committed
1171
      mesh->setMaxEdgeNeigh(std::max(8, 2 * max_n_neigh));
1172
    } else {
Thomas Witkowski's avatar
Thomas Witkowski committed
1173
      mesh->setMaxEdgeNeigh(dim - 1);    
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
    }
  }

  /* 
     testet mesh auf auftretende Zyklen
  
     wenn Zyklus auftritt:
     ordnet Eintraege in MacroElement-Struktur um, so dass kein Zyklus auftritt
     erzeugt neue Macro-Datei nameneu mit umgeordnetem Netz 
     (wenn nameneu=NULL wird keine MAcro-Datei erzeugt)
  */      

  void MacroReader::macroTest(Mesh *mesh, const char *nameneu)
  {
1188
    FUNCNAME("MacroReader::macroTest()");
1189
   
1190
1191
1192
1193
1194
1195
1196
    int i = macrotest(mesh);

    if (i >= 0) {
      ERROR("There is a cycle beginning in macro element %d\n", i);
      ERROR("Entries in MacroElement structures get reordered\n");
      umb(NULL, mesh, umbVkantMacro);

Thomas Witkowski's avatar
Thomas Witkowski committed
1197
      if (nameneu)
1198
1199
	ERROR_EXIT("mesh->feSpace\n");
    }
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
  }
  
  /****************************************************************************/
  /*  macro_test():                              Author: Thomas Kastl (1998)  */
  /****************************************************************************/
  /*
    testet mesh auf auftretende Zyklen
  
    wenn mesh zyklenfrei -> -1
    sonst ->  globaler Index des Macroelementes bei dem ein Zyklus beginnt 
  */

  int MacroReader::macrotest(Mesh *mesh)
  {
1214
    FUNCNAME("MacroReader::macrotest()");
1215
1216
1217

    int *test;
    int *zykl;
1218
    std::deque<MacroElement*>::const_iterator macro,mac;
1219
    int flg;
1220
    std::deque<MacroElement*>::const_iterator macrolfd;
1221
1222
1223
    int zykstart;
    int dim = mesh->getDim();

Thomas Witkowski's avatar
Thomas Witkowski committed
1224
1225
    test = new int[mesh->getNumberOfMacros()];
    zykl = new int[mesh->getNumberOfMacros()];
1226
 
Thomas Witkowski's avatar
Thomas Witkowski committed
1227
    for (int i = 0; i < mesh->getNumberOfMacros(); i++)
1228
      test[i] = 0;
1229

1230
1231
    zykstart = -1;
    macrolfd = mesh->firstMacroElement();
1232

1233
1234
1235
1236
1237
1238
1239
    while (macrolfd != mesh->endOfMacroElements()) {
      if (test[(*macrolfd)->getIndex()] == 1) {
	macrolfd++;
      } else {
	for (int i = 0; i < mesh->getNumberOfMacros(); i++) {
	  zykl[i] = 0;
	}
1240
    
1241
1242
1243
1244
1245
1246
1247
1248
	macro = macrolfd;
	flg = 2;
	do {
	  if (zykl[(*macro)->getIndex()] == 1) {
	    flg = 0;
	    zykstart = (*macro)->getIndex();
	  } else {
	    zykl[(*macro)->getIndex()] = 1;
1249
      
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
	    if (test[(*macro)->getIndex()] == 1) {
	      flg = 1;
	    } else if ((*macro)->getNeighbour(dim) == NULL) {
	      flg = 1;
	      test[(*macro)->getIndex()] = 1;
	    }
	    else if ((*macro) == (*macro)->getNeighbour(dim)->getNeighbour(dim)) {
	      flg = 1;
	      test[(*macro)->getIndex()] = 1;
	      test[(*macro)->getNeighbour(dim)->getIndex()] = 1;
	    } else {
	      for (mac = mesh->firstMacroElement();
		   (*mac)!=(*macro)->getNeighbour(dim);
		   mac++);
	      macro = mac;
	    } 
	  }	  
	} while(flg == 2);
1268
 
1269
1270
1271
1272
1273
	if (flg == 1) {
	  macrolfd++;
	} else  { 
	  macrolfd=mesh->endOfMacroElements();
	}
1274
      }
1275
    }
1276
  
Thomas Witkowski's avatar
Thomas Witkowski committed
1277
1278
    delete [] zykl;
    delete [] test;
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
 
    return zykstart;
  }

  //   waehlt geeignete Verfeinerungskanten, so dass kein Zyklus auftritt (recumb)

  //   ele     Integer-Vektor der Dimension Anzahl der Macro-Elemente
  //           zur Speicherung der neuen Verfeinerungskanten
  //           (wird nur benoetigt, wenn umbvk=umb_vkant_macrodat) 
  
  //   umbvk   Fkt. zur Neuordnung der Verfeinerungskanten
  //           = umb_vkant_macro :
  //               Eintraege in MacroElement-Struktur und Eintraege in macro->el
  //               werden tatsaechlich umgeordnet
  //               -> ALBERT-Routine write_macro kann zum erzeugen einer
  //                  neuen Macro-Datei angewendet werden 
  //           = umb_vkant_macrodat :
  //               Eintraege werden nicht veraendert, es werden nur die lokalen
  //               Indices der Kanten, die zu Verfeinerungskanten werden im
  //               Integer-Vektor ele abgespeichert
  //               -> print_Macrodat zur Erzeugung einer zyklenfreien neuen
  //                  Macro-Datei kann angewendet werden

  void MacroReader::umb(int *ele, Mesh *mesh,
			void (*umbvk)(Mesh*,MacroElement*,int,int*))
  {
    FUNCNAME("MacroReader::umb");

Thomas Witkowski's avatar
Thomas Witkowski committed
1307
    int *test = new int[mesh->getNumberOfMacros()];
1308
  
Thomas Witkowski's avatar
Thomas Witkowski committed
1309
1310
    for (int i = 0; i < static_cast<int>(mesh->getNumberOfMacros()); i++)
      test[i] = 0;
1311

Thomas Witkowski's avatar
Thomas Witkowski committed
1312
    recumb(mesh, (*mesh->firstMacroElement()), NULL, test, 0, 0, ele, umbvk);
1313

Thomas Witkowski's avatar
Thomas Witkowski committed
1314
    delete [] test;
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
  }

  bool MacroReader::newEdge(Mesh *mesh, MacroElement *mel,
			    int mel_edge_no, int *n_neigh)
  {
    FUNCNAME("MacroElement::newEdge"); 
    MacroElement    *nei;
    const DegreeOfFreedom *dof[2];
    DegreeOfFreedom *edge_dof = NULL;
    int             j, k, opp_v, mel_index, node=0;
    BoundaryType    lbound = INTERIOR;
    Projection *lproject = NULL;
    const int       max_no_list_el = 100;
    BoundaryType *list_bound[100];
    Projection **list_project[100];
    Element *el = const_cast<Element*>(mel->getElement());
    int edge_no = mel_edge_no;

    static int  next_el[6][2] = {{3,2},{1,3},{1,2},{0,3},{0,2},{0,1}};

    int vertices = mesh->getGeo(VERTEX);

    mel_index = mel->getIndex();

    list_bound[0] = &(mel->boundary[mesh->getGeo(FACE)+edge_no]);
    list_project[0] = &(mel->projection[mesh->getGeo(FACE)+edge_no]);

    if (mesh->getNumberOfDOFs(EDGE)) {
      node = mesh->getNode(EDGE);
      if (el->getDOF(node+edge_no)) {
	/****************************************************************************/
	/*  edge was counted by another macro element and dof was added on the      */
	/*  complete patch                                                          */
	/****************************************************************************/
	return false;
      } else {
	edge_dof = el->setDOF(node+edge_no,mesh->getDOF(EDGE));
      }
    }

    for (j = 0; j < 2; j++) {
      dof[j] = el->getDOF(el->getVertexOfEdge(edge_no, j));
    }


    /****************************************************************************/
    /*  first look for all neighbours in one direction until a boundary is      */
    /*  reached :-( or we are back to mel :-)                                   */
    /*  if the index of a neighbour is smaller than the element index, the edge */
    /*  is counted by this neighbour, return 0.                                 */
    /*  If we are back to element, return 1, to count the edge                  */
    /****************************************************************************/

    nei = mel->getNeighbour(next_el[edge_no][0]);
    opp_v = mel->getOppVertex(next_el[edge_no][0]);


    if(mel->getBoundary(next_el[edge_no][0])) {
      lbound = newBound(mel->getBoundary(next_el[edge_no][0]), lbound);
      lproject = mel->getProjection(next_el[edge_no][0]);
    }

    while (nei  &&  nei != mel) {
      for (j = 0; j < vertices; j++)
	if (nei->getElement()->getDOF(j) == dof[0])  break;
      for (k = 0; k < vertices; k++)
	if (nei->getElement()->getDOF(k) == dof[1])  break;

      // check for periodic boundary
      if(j == 4 || k == 4) {
	nei = NULL;
	break;
      }

      if (mesh->getNumberOfDOFs(EDGE))
	TEST_EXIT(nei->index > mel_index)
	  ("neighbour index %d < element index %d\n", nei->getIndex(), mel_index);

      if (!mesh->getNumberOfDOFs(EDGE) &&  nei->getIndex() < mel_index)  return false;

    
      edge_no = Tetrahedron::edgeOfDOFs[j][k];

      TEST_EXIT(*n_neigh < max_no_list_el)
	("too many neigbours for local list\n");

      list_bound[(*n_neigh)] = 
	&(nei->boundary[mesh->getGeo(FACE)+edge_no]);

      list_project[(*n_neigh)++] = 
	&(nei->projection[mesh->getGeo