GlobalMatrixSolver.cc 16.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#include "GlobalMatrixSolver.h"
#include "DOFVector.h"
#include "Debug.h"
#include "SystemVector.h"
#include "parallel/StdMpi.h"

#include "petscksp.h"

namespace AMDiS {

  PetscErrorCode myKSPMonitor(KSP ksp, PetscInt iter, PetscReal rnorm, void *)
  {    
    if (iter % 10 == 0 && MPI::COMM_WORLD.Get_rank() == 0)
      std::cout << "[0]  Petsc-Iteration " << iter << ": " << rnorm << std::endl;

    return 0;
  }
 
  void GlobalMatrixSolver::solve()
  {
    FUNCNAME("GlobalMatrixSolver::solve()");

#ifdef _OPENMP
    double wtime = omp_get_wtime();
#endif
    clock_t first = clock();

    fillPetscMatrix(probStat->getSystemMatrix(), probStat->getRHS());
    solvePetscMatrix(*(probStat->getSolution()));

#ifdef _OPENMP
    INFO(info, 8)("solution of discrete system needed %.5f seconds system time / %.5f seconds wallclock time\n",
		   TIME_USED(first, clock()),
		   omp_get_wtime() - wtime);
#else
    INFO(info, 8)("solution of discrete system needed %.5f seconds\n",
		   TIME_USED(first, clock()));
#endif    
  }


  void GlobalMatrixSolver::setDofMatrix(DOFMatrix* mat, int dispMult, 
					int dispAddRow, int dispAddCol)
  {
    FUNCNAME("GlobalMatrixSolver::setDofMatrix()");

    TEST_EXIT(mat)("No DOFMatrix!\n");

    using mtl::tag::row; using mtl::tag::nz; using mtl::begin; using mtl::end;
    namespace traits= mtl::traits;
    typedef DOFMatrix::base_matrix_type Matrix;

    traits::col<Matrix>::type col(mat->getBaseMatrix());
    traits::const_value<Matrix>::type value(mat->getBaseMatrix());

    typedef traits::range_generator<row, Matrix>::type cursor_type;
    typedef traits::range_generator<nz, cursor_type>::type icursor_type;

    std::vector<int> cols;
    std::vector<double> values;
    cols.reserve(300);
    values.reserve(300);

    // === Traverse all rows of the dof matrix and insert row wise the values ===
    // === to the petsc matrix.                                               ===

    for (cursor_type cursor = begin<row>(mat->getBaseMatrix()), 
	   cend = end<row>(mat->getBaseMatrix()); cursor != cend; ++cursor) {

      cols.clear();
      values.clear();

      // Global index of the current row dof.
      int globalRowDof = mapLocalGlobalDofs[*cursor];
      // Test if the current row dof is a periodic dof.
      bool periodicRow = (periodicDof.count(globalRowDof) > 0);


      // === Traverse all non zero entries of the row and produce vector cols ===
      // === with the column indices of all row entries and vector values     ===
      // === with the corresponding values.                                   ===

      for (icursor_type icursor = begin<nz>(cursor), icend = end<nz>(cursor); 
	   icursor != icend; ++icursor) {

	// Set only non null values.
	if (value(*icursor) != 0.0) {
	  // Global index of the current column index.
	  int globalColDof = mapLocalGlobalDofs[col(*icursor)];
	  // Calculate the exact position of the column index in the petsc matrix.
	  int colIndex = globalColDof * dispMult + dispAddCol;

	  // If the current row is not periodic, but the current dof index is periodic,
	  // we have to duplicate the value to the other corresponding periodic columns.
 	  if (periodicRow == false && periodicDof.count(globalColDof) > 0) {
	    // The value is assign to n matrix entries, therefore, every entry 
	    // has only 1/n value of the original entry.
	    double scalFactor = 1.0 / (periodicDof[globalColDof].size() + 1.0);

	    // Insert original entry.
 	    cols.push_back(colIndex);
 	    values.push_back(value(*icursor) * scalFactor);

	    // Insert the periodic entries.
 	    for (std::set<DegreeOfFreedom>::iterator it = 
		   periodicDof[globalColDof].begin();
 		 it != periodicDof[globalColDof].end(); ++it) {
 	      cols.push_back(*it * dispMult + dispAddCol);
 	      values.push_back(value(*icursor) * scalFactor);
	    }
 	  } else {
	    // Neigher row nor column dof index is periodic, simple add entry.
	    cols.push_back(colIndex);
	    values.push_back(value(*icursor));
	  }
	}
      }


      // === Up to now we have assembled on row. Now, the row must be send to the ===
      // === corresponding rows to the petsc matrix.                              ===

      // Calculate petsc row index.
      int rowIndex = globalRowDof * dispMult + dispAddRow;
      
      if (periodicRow) {
	// The row dof is periodic, so send dof to all the corresponding rows.

	double scalFactor = 1.0 / (periodicDof[globalRowDof].size() + 1.0);
	
	int diagIndex = -1;
	for (int i = 0; i < static_cast<int>(values.size()); i++) {
	  // Change only the non diagonal values in the col. For the diagonal test
	  // we compare the global dof indices of the dof matrix (not of the petsc
	  // matrix!).
	  if ((cols[i] - dispAddCol) / dispMult != globalRowDof)
	    values[i] *= scalFactor;
	  else
	    diagIndex = i;
	}
	
	// Send the main row to the petsc matrix.
	MatSetValues(petscMatrix, 1, &rowIndex, cols.size(), 
		     &(cols[0]), &(values[0]), ADD_VALUES);	
 
	// Set diagonal element to zero, i.e., the diagonal element of the current
	// row is not send to the periodic row indices.
	if (diagIndex != -1)
	  values[diagIndex] = 0.0;

	// Send the row to all periodic row indices.
	for (std::set<DegreeOfFreedom>::iterator it = periodicDof[globalRowDof].begin();
	     it != periodicDof[globalRowDof].end(); ++it) {
	  int perRowIndex = *it * dispMult + dispAddRow;
	  MatSetValues(petscMatrix, 1, &perRowIndex, cols.size(), 
		       &(cols[0]), &(values[0]), ADD_VALUES);
	}

      } else {
	// The row dof is not periodic, simply send the row to the petsc matrix.
	MatSetValues(petscMatrix, 1, &rowIndex, cols.size(), 
		     &(cols[0]), &(values[0]), ADD_VALUES);
      }    
    }
  }


  void GlobalMatrixSolver::setDofVector(Vec& petscVec, DOFVector<double>* vec, 
					int dispMult, int dispAdd)
  {
    // Traverse all used dofs in the dof vector.
    DOFVector<double>::Iterator dofIt(vec, USED_DOFS);
    for (dofIt.reset(); !dofIt.end(); ++dofIt) {
      // Calculate global row index of the dof.
      int globalRow = mapLocalGlobalDofs[dofIt.getDOFIndex()];
      // Calculate petsc index of the row dof.
      int index = globalRow * dispMult + dispAdd;

      if (periodicDof.count(globalRow) > 0) {
	// The dof index is periodic, so devide the value to all dof entries.

	double value = *dofIt / (periodicDof[globalRow].size() + 1.0);
	VecSetValues(petscVec, 1, &index, &value, ADD_VALUES);

	for (std::set<DegreeOfFreedom>::iterator it = periodicDof[globalRow].begin();
	     it != periodicDof[globalRow].end(); ++it) {
	  index = *it * dispMult + dispAdd;
	  VecSetValues(petscVec, 1, &index, &value, ADD_VALUES);
	}

      } else {
	// The dof index is not periodic.
	double value = *dofIt;
	VecSetValues(petscVec, 1, &index, &value, ADD_VALUES);
      }
    }    
  }


  void GlobalMatrixSolver::createPetscNnzStructure(Matrix<DOFMatrix*> *mat)
  {
    FUNCNAME("GlobalMatrixSolver::createPetscNnzStructure()");

    TEST_EXIT_DBG(!d_nnz)("There is something wrong!\n");
    TEST_EXIT_DBG(!o_nnz)("There is something wrong!\n");

    d_nnz = new int[nRankRows];
    o_nnz = new int[nRankRows];
    for (int i = 0; i < nRankRows; i++) {
      d_nnz[i] = 0;
      o_nnz[i] = 0;
    }

    using mtl::tag::row; using mtl::tag::nz; using mtl::begin; using mtl::end;
    namespace traits = mtl::traits;
    typedef DOFMatrix::base_matrix_type Matrix;
    typedef std::vector<std::pair<int, int> > MatrixNnzEntry;

    // Stores to each rank a list of nnz entries (i.e. pairs of row and column index)
    // that this rank will send to. This nnz entries will be assembled on this rank,
    // but because the row DOFs are not DOFs of this rank they will be send to the
    // owner of the row DOFs.
    std::map<int, MatrixNnzEntry> sendMatrixEntry;

    for (int i = 0; i < nComponents; i++) {
      for (int j = 0; j < nComponents; j++) {
 	if ((*mat)[i][j]) {
	  Matrix bmat = (*mat)[i][j]->getBaseMatrix();

	  traits::col<Matrix>::type col(bmat);
	  traits::const_value<Matrix>::type value(bmat);
	  
	  typedef traits::range_generator<row, Matrix>::type cursor_type;
	  typedef traits::range_generator<nz, cursor_type>::type icursor_type;
	  
	  for (cursor_type cursor = begin<row>(bmat), 
		 cend = end<row>(bmat); cursor != cend; ++cursor) {

	    // Map the local row number to the global DOF index and create from it
	    // the global PETSc row index of this DOF.
	    int petscRowIdx = mapLocalGlobalDofs[*cursor] * nComponents + i;

	    if (isRankDof[*cursor]) {

	      // === The current row DOF is a rank dof, so create the corresponding ===
	      // === nnz values directly on rank's nnz data.                        ===

	      // This is the local row index of the local PETSc matrix.
	      int localPetscRowIdx = petscRowIdx - rstart * nComponents;

#if (DEBUG != 0)    
	      if (localPetscRowIdx < 0 || localPetscRowIdx >= nRankRows) {
		std::cout << "ERROR in rank: " << mpiRank << std::endl;
		std::cout << "  Wrong r = " << localPetscRowIdx << " " << *cursor 
			  << " " << mapLocalGlobalDofs[*cursor] << " " 
			  << nRankRows << std::endl;
		ERROR_EXIT("Should not happen!\n");
	      }
#endif
	      
	      // Traverse all non zero entries in this row.
	      for (icursor_type icursor = begin<nz>(cursor), 
		     icend = end<nz>(cursor); icursor != icend; ++icursor) {
		if (value(*icursor) != 0.0) {
		  int petscColIdx = mapLocalGlobalDofs[col(*icursor)] * nComponents + j;

		  // The row DOF is a rank DOF, if also the column is a rank DOF, 
		  // increment the d_nnz values for this row, otherwise the o_nnz value.
		  if (petscColIdx >= rstart * nComponents && 
		      petscColIdx < rstart * nComponents + nRankRows)
		    d_nnz[localPetscRowIdx]++;
		  else
		    o_nnz[localPetscRowIdx]++;
		}    
	      }
	    } else {
	      
	      // === The current row DOF is not a rank dof, i.e., it will be created ===
	      // === on this rank, but after this it will be send to another rank    ===
	      // === matrix. So we need to send also the corresponding nnz structure ===
	      // === of this row to the corresponding rank.                          ===

	      // Find out who is the member of this DOF.
	      int sendToRank = -1;
	      for (RankToDofContainer::iterator it = recvDofs.begin();
		   it != recvDofs.end(); ++it) {
		for (DofContainer::iterator dofIt = it->second.begin();
		     dofIt != it->second.end(); ++dofIt) {
		  if (**dofIt == *cursor) {

		    if (petscRowIdx == 6717) {
		      debug::writeDofMesh(mpiRank, *cursor, feSpace);
		      MSG("SEND DOF TO: %d/%d\n", it->first, *cursor);
		    }

		    sendToRank = it->first;
		    break;
		  }
		}

		if (sendToRank != -1)
		  break;
	      }

	      TEST_EXIT_DBG(sendToRank != -1)("Should not happen!\n");

	      // Send all non zero entries to the member of the row DOF.
	      for (icursor_type icursor = begin<nz>(cursor), 
		     icend = end<nz>(cursor); icursor != icend; ++icursor) {
		if (value(*icursor) != 0.0) {
		  int petscColIdx = mapLocalGlobalDofs[col(*icursor)] * nComponents + j;
		  
		  sendMatrixEntry[sendToRank].
		    push_back(std::make_pair(petscRowIdx, petscColIdx));
		}
	      }

	    } // if (isRankDof[*cursor]) ... else ...
	  } // for each row in mat[i][j]
	} // if mat[i][j]
      } 
    }

    // === Send and recv the nnz row structure to/from other ranks. ===

    StdMpi<MatrixNnzEntry> stdMpi(mpiComm, true);
    stdMpi.send(sendMatrixEntry);
    stdMpi.recv(sendDofs);
    stdMpi.startCommunication<int>(MPI_INT);

    // === Evaluate the nnz structure this rank got from other ranks and add it to ===
    // === the PETSc nnz data structure.                                           ===

    for (std::map<int, MatrixNnzEntry>::iterator it = stdMpi.getRecvData().begin();
	 it != stdMpi.getRecvData().end(); ++it) {
      if (it->second.size() > 0) {
	for (unsigned int i = 0; i < it->second.size(); i++) {
	  int r = it->second[i].first;
	  int c = it->second[i].second;

	  int localRowIdx = r - rstart * nComponents;

	  TEST_EXIT_DBG(localRowIdx >= 0 && localRowIdx < nRankRows)
	    ("Got row index %d/%d (nRankRows = %d) from rank %d. Should not happen!\n",
	     r, localRowIdx, nRankRows, it->first);
	  
	  if (c < rstart * nComponents || c >= rstart * nComponents + nRankRows)
	    o_nnz[localRowIdx]++;
	  else
	    d_nnz[localRowIdx]++;
	}
      }
    }  
  }


  void GlobalMatrixSolver::fillPetscMatrix(Matrix<DOFMatrix*> *mat, SystemVector *vec)
  {
    FUNCNAME("GlobalMatrixSolver::fillPetscMatrix()");

    clock_t first = clock();

    // === Create PETSc vector (rhs, solution and a temporary vector). ===

    VecCreate(PETSC_COMM_WORLD, &petscRhsVec);
    VecSetSizes(petscRhsVec, nRankRows, nOverallRows);
    VecSetType(petscRhsVec, VECMPI);

    VecCreate(PETSC_COMM_WORLD, &petscSolVec);
    VecSetSizes(petscSolVec, nRankRows, nOverallRows);
    VecSetType(petscSolVec, VECMPI);

    VecCreate(PETSC_COMM_WORLD, &petscTmpVec);
    VecSetSizes(petscTmpVec, nRankRows, nOverallRows);
    VecSetType(petscTmpVec, VECMPI);

377
378
379
380
381
382
    if (!d_nnz || lastMeshChangeIndex != lastMeshNnz) {
      if (d_nnz) {
	delete [] d_nnz;
	delete [] o_nnz;
      }

383
      createPetscNnzStructure(mat);
384
385
      lastMeshNnz = lastMeshChangeIndex;
    }
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

    // === Create PETSc matrix with the computed nnz data structure. ===

    MatCreateMPIAIJ(PETSC_COMM_WORLD, nRankRows, nRankRows, nOverallRows, nOverallRows,
		    0, d_nnz, 0, o_nnz, &petscMatrix);

    INFO(info, 8)("Fill petsc matrix 1 needed %.5f seconds\n", TIME_USED(first, clock()));

#if (DEBUG != 0)
    int a, b;
    MatGetOwnershipRange(petscMatrix, &a, &b);
    TEST_EXIT(a == rstart * nComponents)("Wrong matrix ownership range!\n");
    TEST_EXIT(b == rstart * nComponents + nRankRows)("Wrong matrix ownership range!\n");
#endif

    // === Transfer values from DOF matrices to the PETSc matrix. === 

    for (int i = 0; i < nComponents; i++)
      for (int j = 0; j < nComponents; j++)
	if ((*mat)[i][j])
	  setDofMatrix((*mat)[i][j], nComponents, i, j);

    INFO(info, 8)("Fill petsc matrix 2 needed %.5f seconds\n", TIME_USED(first, clock()));

    MatAssemblyBegin(petscMatrix, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(petscMatrix, MAT_FINAL_ASSEMBLY);

    // === Transfer values from DOF vector to the PETSc vector. === 

    for (int i = 0; i < nComponents; i++)
      setDofVector(petscRhsVec, vec->getDOFVector(i), nComponents, i);

    VecAssemblyBegin(petscRhsVec);
    VecAssemblyEnd(petscRhsVec);

    INFO(info, 8)("Fill petsc matrix needed %.5f seconds\n", TIME_USED(first, clock()));
  }


  void GlobalMatrixSolver::solvePetscMatrix(SystemVector &vec)
  {
    FUNCNAME("GlobalMatrixSolver::solvePetscMatrix()");

#if 0
    // Set old solution to be initiual guess for petsc solver.
    for (int i = 0; i < nComponents; i++)
      setDofVector(petscSolVec, vec->getDOFVector(i), nComponents, i);

    VecAssemblyBegin(petscSolVec);
    VecAssemblyEnd(petscSolVec);
#endif

    // === Init Petsc solver. ===

    KSP solver;
    KSPCreate(PETSC_COMM_WORLD, &solver);
    KSPSetOperators(solver, petscMatrix, petscMatrix, SAME_NONZERO_PATTERN); 
    KSPSetTolerances(solver, 0.0, 1e-8, PETSC_DEFAULT, PETSC_DEFAULT);
    KSPSetType(solver, KSPBCGS);
    KSPMonitorSet(solver, myKSPMonitor, PETSC_NULL, 0);
    KSPSetFromOptions(solver);
    // Do not delete the solution vector, use it for the initial guess.
    //    KSPSetInitialGuessNonzero(solver, PETSC_TRUE);


    // === Run Petsc. ===

    KSPSolve(solver, petscRhsVec, petscSolVec);

    // === Transfere values from Petsc's solution vectors to the dof vectors.
    PetscScalar *vecPointer;
    VecGetArray(petscSolVec, &vecPointer);

    for (int i = 0; i < nComponents; i++) {
      DOFVector<double> *dofvec = vec.getDOFVector(i);
      for (int j = 0; j < nRankDofs; j++)
	(*dofvec)[mapLocalToDofIndex[j]] = vecPointer[j * nComponents + i];      
    }

    VecRestoreArray(petscSolVec, &vecPointer);


    // === Synchronize dofs at common dofs, i.e., dofs that correspond to more ===
    // === than one partition.                                                 ===
    synchVector(vec);


    // === Print information about solution process. ===

    int iterations = 0;
    KSPGetIterationNumber(solver, &iterations);
    MSG("  Number of iterations: %d\n", iterations);
    
    double norm = 0.0;
    MatMult(petscMatrix, petscSolVec, petscTmpVec);
    VecAXPY(petscTmpVec, -1.0, petscRhsVec);
    VecNorm(petscTmpVec, NORM_2, &norm);
    MSG("  Residual norm: %e\n", norm);


    // === Destroy Petsc's variables. ===

    MatDestroy(petscMatrix);
    VecDestroy(petscRhsVec);
    VecDestroy(petscSolVec);
    VecDestroy(petscTmpVec);
    KSPDestroy(solver);
  }

}