ElementObjectData.h 16.6 KB
Newer Older
Thomas Witkowski's avatar
Thomas Witkowski committed
1
2
3
4
// ============================================================================
// ==                                                                        ==
// == AMDiS - Adaptive multidimensional simulations                          ==
// ==                                                                        ==
5
// ==  http://www.amdis-fem.org                                              ==
Thomas Witkowski's avatar
Thomas Witkowski committed
6
7
// ==                                                                        ==
// ============================================================================
8
9
10
11
12
13
14
15
16
17
18
19
//
// Software License for AMDiS
//
// Copyright (c) 2010 Dresden University of Technology 
// All rights reserved.
// Authors: Simon Vey, Thomas Witkowski et al.
//
// This file is part of AMDiS
//
// See also license.opensource.txt in the distribution.


Thomas Witkowski's avatar
Thomas Witkowski committed
20
21
22
23
24
25
26
27
28
29
30
31
32

/** \file ElementObjectData.h */

#ifndef AMDIS_ELEMENTOBJECTDATA_H
#define AMDIS_ELEMENTOBJECTDATA_H

#include <map>
#include <vector>
#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_comparison.hpp>

#include "Global.h"
#include "Boundary.h"
33
#include "Serializer.h"
34
#include "FiniteElemSpace.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
35
36
37

namespace AMDiS {

38
39
  using namespace std;

40
  /// Just to templatize the typedef.
41
  template<typename T>
42
  struct PerBoundMap {
43
44
45
46
    typedef map<pair<T, T>, BoundaryType> type;
    typedef typename type::iterator iterator;
  };

47
48

  /// Defines one element object. This may be either a vertex, edge or face.
Thomas Witkowski's avatar
Thomas Witkowski committed
49
  struct ElementObjectData {
50
    ElementObjectData(int a = -1, int b = 0)
Thomas Witkowski's avatar
Thomas Witkowski committed
51
      : elIndex(a),
52
	ithObject(b)
Thomas Witkowski's avatar
Thomas Witkowski committed
53
    {}
54
55

    /// Index of the element this object is part of.
Thomas Witkowski's avatar
Thomas Witkowski committed
56
57
    int elIndex;
    
58
    /// Index of the object within the element.
Thomas Witkowski's avatar
Thomas Witkowski committed
59
60
    int ithObject;
    
61
    /// Write this element object to disk.
62
    void serialize(ostream &out) const
63
64
65
66
67
    {
      SerUtil::serialize(out, elIndex);
      SerUtil::serialize(out, ithObject);
    }

68
    /// Read this element object from disk.
69
    void deserialize(istream &in)
70
71
72
73
74
    {
      SerUtil::deserialize(in, elIndex);
      SerUtil::deserialize(in, ithObject);
    }

75
    /// Compare this element object with another one.
76
77
    bool operator==(ElementObjectData& cmp) const
    {
78
      return (elIndex == cmp.elIndex && ithObject == cmp.ithObject);
79
80
    }

81
    /// Define a strict order on element objects.
82
83
    bool operator<(const ElementObjectData& rhs) const
    {
84
85
      return (elIndex < rhs.elIndex || 
	      (elIndex == rhs.elIndex && ithObject < rhs.ithObject));
86
    }
Thomas Witkowski's avatar
Thomas Witkowski committed
87
88
89
90
  };



91
92
93
94
95
96
97
98
99
100
  /** \brief
   * This class is a database of element objects. An element object is either a
   * vertex, edge or the face of a specific element. This database is used to store
   * all objects of all elements of a mesh. The information is stored in a way that
   * makes it possible to identify all elements, which have a given vertex, edge or
   * face in common. If is is known which element is owned by which rank in parallel
   * computations, it is thus possible to get all interior boundaries on object 
   * level. This is required, because two elements may share a common vertex without
   * beging neighbours in the definition of AMDiS.
   */
Thomas Witkowski's avatar
Thomas Witkowski committed
101
102
  class ElementObjects {
  public:
Thomas Witkowski's avatar
Thomas Witkowski committed
103
    ElementObjects()
104
105
106
      : feSpace(NULL),
	mesh(NULL),
	iterGeoPos(CENTER)
Thomas Witkowski's avatar
Thomas Witkowski committed
107
108
    {}

109

110
111
112
    /// Set the finite element space that should be used for the database (especially
    /// the mesh is of interest).
    void setFeSpace(FiniteElemSpace *fe)
Thomas Witkowski's avatar
Thomas Witkowski committed
113
    {
114
115
      feSpace = fe;
      mesh = feSpace->getMesh();
116
117
118
    }


119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    /** \brief
     * Adds an element to the object database. If the element is part of a periodic
     * boundary, all information about subobjects of the element on this boundary
     * are collected.
     *
     * \param[in]  elInfo    ElInfo object of the element. 
     */
    void addElement(ElInfo *elInfo);


    /** \brief
     * Creates final data of the periodic boundaries. Must be called after all
     * elements of the mesh are added to the object database. Then this functions
     * search for interectly connected vertices in periodic boundaries. This is only
     * the case, if there are more than one boundary conditions. Then, e.g., in 2D, 
     * all edges of a square are iterectly connected. In 3D, if the macro mesh is a
     * box, all eight vertex nodes and always four of the 12 edges are iterectly 
     * connected.
     */
    void createPeriodicData();


    /** \brief
     * Create for a filled object database the membership information for all element
     * objects. An object is owned by a rank, if the rank has the heighest rank
     * number of all ranks where the object is part of.
     *
     * \param[in]  macroElementRankMap   Maps to each macro element of the mesh the
     *                                   rank that owns this macro element.
     */
149
    void createRankData(map<int, int>& macroElementRankMap);
Thomas Witkowski's avatar
Thomas Witkowski committed
150

151
152
153
    void createReverseModeData(map<int, Element*> &elIndexMap,
			       map<int, int> &elIndexTypeMap);

154

155
156
157
158
159
160
161
162
    /** \brief
     * Iterates over all elements for one geometrical index, i.e., over all vertices,
     * edges or faces in the mesh. The function returns true, if the result is valid.
     * Otherwise the iterator is at the end position.
     *
     * \param[in]  pos   Must be either VERTEX, EDGE or FACE and defines the elements
     *                   that should be traversed.
     */
Thomas Witkowski's avatar
Thomas Witkowski committed
163
164
    bool iterate(GeoIndex pos)
    {
165
166
167
      // CENTER marks the variable "iterGeoPos" to be in an undefined state. I.e.,
      // there is no iteration that is actually running.

Thomas Witkowski's avatar
Thomas Witkowski committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
      if (iterGeoPos == CENTER) {
	iterGeoPos = pos;
	switch (iterGeoPos) {
	case VERTEX:
	  vertexIter = vertexInRank.begin();
	  break;
	case EDGE:
	  edgeIter = edgeInRank.begin();
	  break;
	case FACE:
	  faceIter = faceInRank.begin();
	  break;
	default:
	  ERROR_EXIT("Not GeoIndex %d!\n", iterGeoPos);
	}
      } else {
	switch (iterGeoPos) {
	case VERTEX:
	  ++vertexIter;
	  break;
	case EDGE:
	  ++edgeIter;
	  break;
	case FACE:
	  ++faceIter;
	  break;
	default:
	  ERROR_EXIT("Not GeoIndex %d!\n", iterGeoPos);
	}
      }

      switch (iterGeoPos) {
      case VERTEX:
	if (vertexIter == vertexInRank.end()) {
	  iterGeoPos = CENTER;
	  return false;
	}
	break;
      case EDGE:
	if (edgeIter == edgeInRank.end()) {
	  iterGeoPos = CENTER;
	  return false;
	}
	break;
      case FACE:
	if (faceIter == faceInRank.end()) {
	  iterGeoPos = CENTER;
	  return false;
	}
	break;
      default:
	ERROR_EXIT("Should not happen!\n");	
      }

      return true;
    }


226
    /// Returns the data of the current iterator position.
227
    map<int, ElementObjectData>& getIterateData()
Thomas Witkowski's avatar
Thomas Witkowski committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    {
      switch (iterGeoPos) {
      case VERTEX:
	return vertexIter->second;
	break;
      case EDGE:
	return edgeIter->second;
	break;
      case FACE:
	return faceIter->second;
	break;
      default:
	ERROR_EXIT("Should not happen!\n");

	// Will never be reached, just to avoid compiler warnings.
	return faceIter->second;
      }
    }


248
    /// Returns the rank owner of the current iterator position.
Thomas Witkowski's avatar
Thomas Witkowski committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    int getIterateOwner()
    {
      switch (iterGeoPos) {
      case VERTEX:
	return vertexOwner[vertexIter->first];
	break;
      case EDGE:
	return edgeOwner[edgeIter->first];
	break;
      case FACE:
	return faceOwner[faceIter->first];
	break;
      default:
	ERROR_EXIT("Should not happen!\n");

	// Will never be reached, just to avoid compiler warnings.
	return -1;
      }
    }

269

270
    /// Returns the rank owner of a vertex DOF.
Thomas Witkowski's avatar
Thomas Witkowski committed
271
272
273
274
275
    int getOwner(DegreeOfFreedom vertex)
    {
      return vertexOwner[vertex];
    }

276
    /// Returns the rank owner of an edge.
Thomas Witkowski's avatar
Thomas Witkowski committed
277
278
279
280
281
    int getOwner(DofEdge edge)
    {
      return edgeOwner[edge];
    }

282
    /// Returns the rank owner of an face.
Thomas Witkowski's avatar
Thomas Witkowski committed
283
284
285
286
287
    int getOwner(DofFace face)
    {
      return faceOwner[face];
    }

288

289
    /// Checks if a given vertex DOF is in a given rank.
290
291
292
293
294
    int isInRank(DegreeOfFreedom vertex, int rank)
    {
      return (vertexInRank[vertex].count(rank));
    }

295
    /// Checks if a given edge is in a given rank.
296
297
298
299
300
    int isInRank(DofEdge edge, int rank)
    {
      return (edgeInRank[edge].count(rank));
    }

301
    /// Checks if a given face is in a given rank.
302
303
304
305
306
307
    int isInRank(DofFace face, int rank)
    {
      return (faceInRank[face].count(rank));
    }


308
    /// Returns a vector with all macro elements that have a given vertex DOF in common.
309
    vector<ElementObjectData>& getElements(DegreeOfFreedom vertex)
Thomas Witkowski's avatar
Thomas Witkowski committed
310
311
312
313
    {
      return vertexElements[vertex];
    }

314
    /// Returns a vector with all macro elements that have a given edge in common.
315
    vector<ElementObjectData>& getElements(DofEdge edge)
Thomas Witkowski's avatar
Thomas Witkowski committed
316
317
318
319
    {
      return edgeElements[edge];
    }

320
    /// Returns a vector with all macro elements that have a given face in common.
321
    vector<ElementObjectData>& getElements(DofFace face)
Thomas Witkowski's avatar
Thomas Witkowski committed
322
323
324
325
    {
      return faceElements[face];
    }

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

    /// Returns a vector with all macro elements that have a given vertex DOF in common.
    vector<ElementObjectData>& getElementsVertex(int elIndex, int ithVertex)
    {
      ElementObjectData elObj(elIndex, ithVertex);
      DegreeOfFreedom vertex = vertexLocalMap[elObj];
      return vertexElements[vertex];
    }
    
    /// Returns a vector with all macro elements that have a given edge in common.
    vector<ElementObjectData>& getElementsEdge(int elIndex, int ithEdge)
    {
      ElementObjectData elObj(elIndex, ithEdge);
      DofEdge edge = edgeLocalMap[elObj];
      return edgeElements[edge];
    }

    /// Returns a vector with all macro elements that have a given face in common.
    vector<ElementObjectData>& getElementsFace(int elIndex, int ithFace)
    {
      ElementObjectData elObj(elIndex, ithFace);
      DofFace face = faceLocalMap[elObj];
      return faceElements[face];
    }


352
353
354
    
    /// Returns a map that maps to each rank all macro elements in this rank that
    /// have a given vertex DOF in common.
355
    map<int, ElementObjectData>& getElementsInRank(DegreeOfFreedom vertex)
356
357
358
359
    {
      return vertexInRank[vertex];
    }

360
361
    /// Returns a map that maps to each rank all macro elements in this rank that
    /// have a given edge in common.
362
    map<int, ElementObjectData>& getElementsInRank(DofEdge edge)
363
364
365
366
    {
      return edgeInRank[edge];
    }

367
368
    /// Returns a map that maps to each rank all macro elements in this rank that
    /// have a given face in common.
369
    map<int, ElementObjectData>& getElementsInRank(DofFace face)
370
371
372
373
    {
      return faceInRank[face];
    }

374
    /// Returns to an element object data the appropriate vertex DOF.
375
376
    DegreeOfFreedom getVertexLocalMap(ElementObjectData &data)
    {
377
378
      TEST_EXIT_DBG(vertexLocalMap.count(data))("Should not happen!\n");

379
380
381
      return vertexLocalMap[data];
    }

382
    /// Returns to an element object data the appropriate edge.
383
384
    DofEdge getEdgeLocalMap(ElementObjectData &data)
    {
385
386
      TEST_EXIT_DBG(edgeLocalMap.count(data))("Should not happen!\n");

387
388
389
      return edgeLocalMap[data];
    }

390
    /// Returns to an element object data the appropriate face.
391
392
    DofFace getFaceLocalMap(ElementObjectData &data)
    {
393
394
      TEST_EXIT_DBG(faceLocalMap.count(data))("Should not happen!\n");

395
396
397
      return faceLocalMap[data];
    }

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    PerBoundMap<DegreeOfFreedom>::type& getPeriodicVertices()
    {
      return periodicVertices;
    }

    PerBoundMap<DofEdge>::type& getPeriodicEdges()
    {
      return periodicEdges;
    }

    PerBoundMap<DofFace>::type& getPeriodicFaces()
    {
      return periodicFaces;
    }

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    bool getEdgeReverseMode(ElementObjectData &obj0, ElementObjectData &obj1)
    {
      TEST_EXIT_DBG(edgeReverseMode.count(make_pair(obj0, obj1)))
	("Should not happen!\n");

      return edgeReverseMode[make_pair(obj0, obj1)];
    }

    bool getFaceReverseMode(ElementObjectData &obj0, ElementObjectData &obj1)
    {
      TEST_EXIT_DBG(faceReverseMode.count(make_pair(obj0, obj1)))
	("Should not happen!\n");

      return faceReverseMode[make_pair(obj0, obj1)];
    }

429
    /// Write the element database to disk.
430
    void serialize(ostream &out);
431
432
    
    /// Read the element database from disk.
433
    void deserialize(istream &in);
434

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
  protected:
    /// Adds the i-th DOF vertex of an element to the object database.
    void addVertex(Element *el, int ith)
    {
      DegreeOfFreedom vertex = el->getDof(ith, 0);
      int elIndex = el->getIndex();
      ElementObjectData elObj(elIndex, ith);

      vertexElements[vertex].push_back(elObj);
      vertexLocalMap[elObj] = vertex;
    }

    /// Adds the i-th edge of an element to the object database.
    void addEdge(Element *el, int ith)
    {
      DofEdge edge = el->getEdge(ith);
      int elIndex = el->getIndex();
      ElementObjectData elObj(elIndex, ith);

      edgeElements[edge].push_back(elObj);
      edgeLocalMap[elObj] = edge;
    }

    /// Adds the i-th face of an element to the object database.
    void addFace(Element *el, int ith)
    {
      DofFace face = el->getFace(ith);
      int elIndex = el->getIndex();
      ElementObjectData elObj(elIndex, ith);

      faceElements[face].push_back(elObj);
      faceLocalMap[elObj] = face;
    }

469
470
471
472
    BoundaryType provideConnectedPeriodicBoundary(BoundaryType b0, 
						  BoundaryType b1);

    BoundaryType getNewBoundaryType();
473
474

    /// Some auxiliary function to write the element object database to disk.
475
    void serialize(ostream &out, vector<ElementObjectData>& elVec);
476

477
    /// Some auxiliary function to read the element object database from disk.
478
    void deserialize(istream &in, vector<ElementObjectData>& elVec);
479

480
    /// Some auxiliary function to write the element object database to disk.
481
    void serialize(ostream &out, map<int, ElementObjectData>& data);
482

483
    /// Some auxiliary function to read the element object database from disk.
484
    void deserialize(istream &in, map<int, ElementObjectData>& data);
485

Thomas Witkowski's avatar
Thomas Witkowski committed
486
  private:
487
488
489
490
491
492
493
494
    /// The used FE space.
    FiniteElemSpace *feSpace;

    /// The mesh that is used to store all its element information in the database.
    Mesh *mesh;


    /// Maps to each vertex DOF all element objects that represent this vertex.
495
    map<DegreeOfFreedom, vector<ElementObjectData> > vertexElements;
496
497

    /// Maps to each edge all element objects that represent this edge.
498
    map<DofEdge, vector<ElementObjectData> > edgeElements;
Thomas Witkowski's avatar
Thomas Witkowski committed
499

500
501
    /// Maps to each face all element objects that represent this edge.
    map<DofFace, vector<ElementObjectData> > faceElements;
502

503
504
    
    /// Maps to an element object the corresponding vertex DOF.
505
    map<ElementObjectData, DegreeOfFreedom> vertexLocalMap;
506
507

    /// Maps to an element object the corresponding edge.
508
    map<ElementObjectData, DofEdge> edgeLocalMap;
509
510

    /// Maps to an element object the corresponding face.
511
    map<ElementObjectData, DofFace> faceLocalMap;
512
513


514
    /// Defines for all vertex DOFs the rank that ownes this vertex DOF.
515
    map<DegreeOfFreedom, int> vertexOwner;
516
517

    /// Defines for all edges the rank that ownes this edge.
518
    map<DofEdge, int> edgeOwner;
519
520

    /// Defines for all faces the rank that ownes this face.
521
    map<DofFace, int> faceOwner;
Thomas Witkowski's avatar
Thomas Witkowski committed
522

523

524
525
    /// Defines to each vertex DOF a map that maps to each rank number the element
    /// objects that have this vertex DOF in common.
526
    map<DegreeOfFreedom, map<int, ElementObjectData> > vertexInRank;
527
528
529

    /// Defines to each edge a map that maps to each rank number the element objects
    /// that have this edge in common.
530
    map<DofEdge, map<int, ElementObjectData> > edgeInRank;
531
532
533

    /// Defines to each face a map that maps to each rank number the element objects
    /// that have this face in common.
534
    map<DofFace, map<int, ElementObjectData> > faceInRank;
Thomas Witkowski's avatar
Thomas Witkowski committed
535

536
537

    /// Vertex iterator to iterate over \ref vertexInRank
538
    map<DegreeOfFreedom, map<int, ElementObjectData> >::iterator vertexIter;
539
540

    /// Edge iterator to iterate over \ref edgeInRank
541
    map<DofEdge, map<int, ElementObjectData> >::iterator edgeIter;
542
543

    /// Face iterator to iterate over \ref faceInRank
544
    map<DofFace, map<int, ElementObjectData> >::iterator faceIter;
Thomas Witkowski's avatar
Thomas Witkowski committed
545

546
547
548
549
550

    /// Defines the geometrical iteration index of the iterators. I.e., the value
    /// is either VERTEX, EDGE or FACE and the corresponding element objects are
    /// traversed. The value CENTER is used to define a not defined states of the
    /// iterators, i.e., if no iteration is running.
Thomas Witkowski's avatar
Thomas Witkowski committed
551
    GeoIndex iterGeoPos;
552

553
    map<pair<BoundaryType, BoundaryType>, BoundaryType> bConnMap;
554

555
556
557
558
    // The following three data structures store periodic DOFs, edges and faces.
    PerBoundMap<DegreeOfFreedom>::type periodicVertices;
    PerBoundMap<DofEdge>::type periodicEdges;
    PerBoundMap<DofFace>::type periodicFaces;
559
560

    // Stores to each vertex all its periodic associations.
561
    map<DegreeOfFreedom, std::set<BoundaryType> > periodicDofAssoc;
562
563

    // Stores to each edge all its periodic associations.
564
565
566
567
568
    map<DofEdge, std::set<DofEdge> > periodicEdgeAssoc;

    map<pair<ElementObjectData, ElementObjectData>, bool> edgeReverseMode;

    map<pair<ElementObjectData, ElementObjectData>, bool> faceReverseMode;
Thomas Witkowski's avatar
Thomas Witkowski committed
569
570
571
572
573
  };

}

#endif