MacroReader.cc 63.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include "MacroReader.h"
#include "MacroWriter.h"
#include "MacroElement.h"
#include "Boundary.h"
#include "FiniteElemSpace.h"
#include "Mesh.h"
#include <string>
#include "FixVec.h"
#include "FixVecConvert.h"
#include "PeriodicMap.h"
#include "ElInfo.h"
#include "Parameters.h"
#include "DOFIterator.h"
#include "SurfaceRegion_ED.h"
#include "ElementRegion_ED.h"
#include "LeafData.h"
#include "VertexVector.h"
#include <map>
#include <iostream>
#include <fstream>

namespace AMDiS {

  MacroInfo* MacroReader::readMacro(const char *filename, 
				    Mesh* mesh,
				    const char *periodicFile,
				    int check)
  {
    FUNCNAME("Mesh::readMacro()");

    TEST_EXIT(filename)("no file specified; filename NULL pointer\n");
32
33
   
    MacroInfo *macroInfo = NEW MacroInfo();
34
35
    macroInfo->readAMDiSMacro(filename, mesh);

36
    std::deque<MacroElement*>::iterator mel = macroInfo->mel.begin();
37
38
39
    int **melVertex = macroInfo->mel_vertex;
    WorldVector<double> *coords = macroInfo->coords;
    DegreeOfFreedom **dof = macroInfo->dof;
40
41

    // === read periodic data =================================
42
    if (periodicFile && (strcmp(periodicFile, "") != 0)) {
43
44
45
46
47
48
49
50
51
52
53
54
      WARNING("periodic boundaries may lead to errors in small meshes if element neighbours not set\n");
    
      FILE *file = fopen(periodicFile, "r");
      TEST_EXIT(file)("can't open file %s\n", periodicFile);

      int n;
      int dim = mesh->getDim();

      int el1, el2;
      int *verticesEl1 = GET_MEMORY(int, dim);
      int *verticesEl2 = GET_MEMORY(int, dim);
      int mode = -1; // 0: drop dofs, 1: associate dofs
55
      int result;
56
57
58
59
60
61
62
63
      BoundaryType boundaryType;

      fscanf(file, "%*s %d", &n);

      fscanf(file, "%*s %*s %*s %*s %*s %*s %*s %*s %*s %*s %*s");

      PeriodicMap periodicMap;
    
64
      for (int i = 0; i < n; i++) {
65
66
	std::map<int, int> vertexMapEl1;
	std::map<int, int> vertexMapEl2;
67

68
69
	result = fscanf(file, "%d", &mode);
	TEST_EXIT(result == 1)("mode?\n");
70
      
71
72
	result = fscanf(file, "%d", &boundaryType);
	TEST_EXIT(result == 1)("boundaryType?\n");
73
      
74
75
76
	result = fscanf(file, "%d", &el1);
	TEST_EXIT(result == 1)("el1?\n");

77
	for (int j = 0; j < dim; j++) {
78
79
	  result = fscanf(file, "%d", &verticesEl1[j]);
	  TEST_EXIT(result == 1)("vertEl1[%d]\n", j);
80
	}
81
82
	result = fscanf(file, "%d", &el2);
	TEST_EXIT(result == 1)("el2?\n");
83
	for (int j = 0; j < dim; j++) {
84
85
	  result = fscanf(file, "%d", &verticesEl2[j]);
	  TEST_EXIT(result == 1)("vertEl2[%d]\n", j);
86
	}
87
88
	for (int j = 0; j < dim; j++) {
	  if (mode == 0) {
89
90
91
92
93
94
95
96
97
	    periodicMap.setEntry(melVertex[el1][verticesEl1[j]], 
				 melVertex[el2][verticesEl2[j]]);
	  }
	  vertexMapEl1[verticesEl1[j]] = verticesEl2[j];
	  vertexMapEl2[verticesEl2[j]] = verticesEl1[j];
	}

	// calculate sides of periodic vertices
	int sideEl1 = 0, sideEl2 = 0;
98
	if (dim == 1) {
99
100
101
	  sideEl1 = verticesEl1[0];
	  sideEl2 = verticesEl2[0];
	} else {
102
	  for (int j = 0; j < dim + 1; j++) {
103
104
105
	    sideEl1 += j;
	    sideEl2 += j;
	  }
106
	  for (int j = 0; j < dim; j++) {
107
108
109
110
111
112
	    sideEl1 -= verticesEl1[j];
	    sideEl2 -= verticesEl2[j];
	  }
	}
	
	// create periodic info
113
114
	DimVec<WorldVector<double> > periodicCoordsEl1(dim - 1, NO_INIT);
	DimVec<WorldVector<double> > periodicCoordsEl2(dim - 1, NO_INIT);
115

116
117
	Element *element1 = const_cast<Element*>((*(mel + el1))->getElement());
	Element *element2 = const_cast<Element*>((*(mel + el2))->getElement());
118
119
      
	// for all vertices of this side
120
	for (int j = 0; j < dim; j++) {
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
	  periodicCoordsEl1[element1->getPositionOfVertex(sideEl1, verticesEl1[j])] = 
	    coords[melVertex[el2][vertexMapEl1[verticesEl1[j]]]];
	  periodicCoordsEl2[element2->getPositionOfVertex(sideEl2, verticesEl2[j])] =
	    coords[melVertex[el1][vertexMapEl2[verticesEl2[j]]]];
	}
      
	// decorate leaf data
	ElementData *ld1 = element1->getElementData();
	ElementData *ld2 = element2->getElementData();

	LeafDataPeriodic *ldp1 = dynamic_cast<LeafDataPeriodic*>(ld1->getElementData(PERIODIC));
	LeafDataPeriodic *ldp2 = dynamic_cast<LeafDataPeriodic*>(ld2->getElementData(PERIODIC));

	if (!ldp1) {
	  ldp1 = NEW LeafDataPeriodic(ld1);
	  element1->setElementData(ldp1);
	}

	if (!ldp2) {
	  ldp2 = NEW LeafDataPeriodic(ld2);
	  element2->setElementData(ldp2);
	}

	ldp1->addPeriodicInfo(mode,
			      boundaryType, 
			      sideEl1, 
			      &periodicCoordsEl1);

	ldp2->addPeriodicInfo(mode,
			      boundaryType, 
			      sideEl2, 
			      &periodicCoordsEl2);

	if (mode != 0) {
	  VertexVector *associated = mesh->periodicAssociations[boundaryType];
156

157
158
159
160
161
162
163
164
165
	  if (!associated) {
	    associated = NEW VertexVector(mesh->getVertexAdmin(), "vertex vector");
	    mesh->periodicAssociations[boundaryType] = associated;
	    VertexVector::Iterator it(associated, ALL_DOFS);
	    for (it.reset2(); !it.end(); ++it) {
	      *it = it.getDOFIndex();
	    }
	  }

166
	  for (int j = 0; j < dim; j++) {
167
168
169
170
171
172
173
174
175
176
177
178
	    (*associated)[melVertex[el1][verticesEl1[j]]] =
	      melVertex[el2][vertexMapEl1[verticesEl1[j]]];
	    (*associated)[melVertex[el2][verticesEl2[j]]] =
	      melVertex[el1][vertexMapEl2[verticesEl2[j]]];
	  }
	}
      }    

      FREE_MEMORY(verticesEl1, int, dim);
      FREE_MEMORY(verticesEl2, int, dim);

      // change periodic vertex dofs
179
      for (int i = 0; i < mesh->getNumberOfVertices(); i++) {
180
181
182
183
	if (periodicMap.getEntry(i) != -1) {
	  mesh->freeDOF(dof[i], VERTEX);
	  dof[i] = dof[periodicMap.getEntry(i)];

184
185
	  std::map<BoundaryType, VertexVector*>::iterator assoc;
	  std::map<BoundaryType, VertexVector*>::iterator assocEnd =
186
	      mesh->periodicAssociations.end();
187
188
189
190
191
192
193
194
195

	  for (assoc = mesh->periodicAssociations.begin(); 
	       assoc != assocEnd; 
	       ++assoc) {

	    DegreeOfFreedom a = (*(assoc->second))[i];
	    if (a != i) {
	      (*(assoc->second))[i] = i;
	      (*(assoc->second))[a] = periodicMap.getEntry(i);
196
	    }
197
198
	  }

199
200
201
	}
      }

202
203
      std::map<BoundaryType, VertexVector*>::iterator assoc;
      std::map<BoundaryType, VertexVector*>::iterator assocEnd =
204
205
206
	  mesh->periodicAssociations.end();
      for (assoc = mesh->periodicAssociations.begin(); 
	   assoc != assocEnd; 
207
208
209
210
211
	   ++assoc) {

	for (int i = 0; i < mesh->getNumberOfVertices(); i++) {
	  if (i != (*(assoc->second))[i])
	    MSG("association %d: vertex %d -> vertex %d\n", 
212
		assoc->first, i, (*(assoc->second))[i]);
213
	}
214
215
216
      }

      for (int i = 0; i < mesh->getNumberOfVertices(); i++) {
217
218
219
220
221
	if (periodicMap.getEntry(i) != -1) {
	  MSG("identification : vertex %d is now vertex %d\n", i, periodicMap.getEntry(i));
	}
      }
    }
222

223
224
    // =========================================================

225
226
227
    for (int i = 0; i < mesh->getNumberOfMacros(); i++) {
      for (int k = 0; k < mesh->getGeo(VERTEX); k++) {
	(*(mel + i))->setCoord(k, coords[melVertex[i][k]]);
228

229
	const_cast<Element*>((*(mel+i))->getElement())->
230
	  setDOF(k, dof[melVertex[i][k]]);
231
      }
232
    }
233

234
235
236
    if (!macroInfo->neigh_set) {
      TEST_EXIT(!periodicFile)
	("periodic boundary condition => element neighbours must be set\n");
237
	computeNeighbours(mesh);
238
    } else {
239
240
241
242
	/****************************************************************************/
	/* fill MEL oppVertex values when reading neighbour information form file  */
	/****************************************************************************/

243
244
245
246
247
248
249
250
251
      for (int i = 0; i < mesh->getNumberOfMacros(); i++) {
	for (int k = 0; k < mesh->getGeo(NEIGH); k++) {
	  MacroElement *neigh = const_cast<MacroElement*>(mel[i]->getNeighbour(k));

	  if (neigh) {
	    int j;
	    for (j = 0; j < mesh->getGeo(NEIGH); j++)
	      if (neigh->getNeighbour(j) == *(mel + i))  
		break;
252
	
253
254
255
256
257
	    TEST_EXIT(j < mesh->getGeo(NEIGH))("el %d no neighbour of neighbour %d\n", 
					       mel[i]->getIndex(), neigh->getIndex());
	    mel[i]->setOppVertex(k, j);
	  } else {
	    mel[i]->setOppVertex(k, -1);
258
	  }
259
	}
260
      }
261
    }
262
263
264
265
266

    if (!macroInfo->bound_set) {
      macroInfo->dirichletBoundary();
    }
  
267
    if (mesh->getDim() > 1)
268
269
270
271
272
273
274
      boundaryDOFs(mesh);

    // initial boundary projections
    //if(dim > 1) {
    int numFaces = mesh->getGeo(FACE);
    int dim = mesh->getDim();
    mel = mesh->firstMacroElement();
275
    for (int i = 0; i < mesh->getNumberOfLeaves(); i++) {
276
277
      MacroElement *macroEl = *(mel+i);
      Projection *projector = macroEl->getProjection(0);
278
279
      if (projector && projector->getType() == VOLUME_PROJECTION) {
	for (int j = 0; j <= dim; j++) {
280
281
282
	  projector->project(macroEl->getCoord(j));
	}
      } else {
283
	for (int j = 0; j < mesh->getGeo(EDGE); j++) {
284
	  projector = macroEl->getProjection(numFaces + j);
285
	  if (projector) {
286
287
288
289
290
291
292
293
294
295
296
297
298
	    int vertex0 = Global::getReferenceElement(dim)->getVertexOfEdge(j, 0);
	    int vertex1 = Global::getReferenceElement(dim)->getVertexOfEdge(j, 1);
	    projector->project(macroEl->getCoord(vertex0));
	    projector->project(macroEl->getCoord(vertex1));
	  }
	}
      }
    }
    //}

    macroInfo->fillBoundaryInfo(mesh);

    if (mesh->getNumberOfDOFs(CENTER)) {
299
300
301
302
      for (int i = 0; i < mesh->getNumberOfMacros(); i++) {
	const_cast<Element*>(mel[i]->getElement())->
	  setDOF(mesh->getNode(CENTER),mesh->getDOF(CENTER));
      }
303
304
305
306
307
308
    }

    /****************************************************************************/
    /* domain size                                                              */
    /****************************************************************************/

309
    WorldVector<double> x_min, x_max;
310

311
312
313
314
315
316
317
    for (int j = 0; j < Global::getGeo(WORLD); j++) {
      x_min[j] =  1.E30;
      x_max[j] = -1.E30;
    }

    for (int i = 0; i < mesh->getNumberOfVertices(); i++) {
      for (int j = 0; j < Global::getGeo(WORLD); j++) {
318
319
	x_min[j] = std::min(x_min[j], coords[i][j]);
	x_max[j] = std::max(x_max[j], coords[i][j]);
320
321
      }
    }
322

323
    for (int j = 0; j < Global::getGeo(WORLD); j++)
324
325
326
327
328
329
      mesh->setDiameter(j, x_max[j] - x_min[j]);

    if (check) {
      checkMesh(mesh);

      if (mesh->getDim() > 1) {
330
331
332
333
334
	char filenew[128];
	strncpy(filenew, filename, 128); 
	filenew[127] = 0;
	strncat(filenew, ".new", 128);   
	filenew[127] = 0;
335
336
337
338
339
340
341
342
343
344
345
346
347
	macroTest(mesh, filenew);
      }
    }

    return(macroInfo);
  }

  /****************************************************************************/
  /*  fill macro info structure and some pointers in mesh ...                 */
  /****************************************************************************/

  void MacroInfo::fill(Mesh *pmesh, int ne, int nv)
  {
348
349
    FUNCNAME("MacroInfo::fill()");

350
351
    TEST_EXIT(pmesh)("no mesh\n");

352
    int dim = pmesh->getDim(); 
353
    mesh = pmesh;
354
355
356
357
358

    mesh->setNumberOfElements(ne);
    mesh->setNumberOfLeaves(ne);
    mesh->setNumberOfVertices(nv);

359
    for (int i = 0; i < ne; i++) {
360
361
362
363
364
365
      MacroElement *newMacro = NEW MacroElement(mesh->getDim());
      mel.push_back(newMacro);
      mesh->addMacroElement(mel[i]);
    }

    dof = GET_MEMORY(DegreeOfFreedom*, nv);
366
    coords = NEW WorldVector<double>[nv];
367
    mel_vertex = GET_MEMORY(int*, ne);
368
369

    for (int i = 0; i < ne; i++) {
370
371
372
      mel_vertex[i]=GET_MEMORY(int, mesh->getGeo(VERTEX));
    }

373
    for (int i = 0; i < nv; i++)
374
375
      dof[i] = mesh->getDOF(VERTEX);

376
    for (int i = 0; i < ne; i++) {
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
      mel[i]->element = mesh->createNewElement();
      (mel)[i]->index = i;

      if (dim == 3) {
	(mel)[i]->elType = 0;
      }
    }
    neigh_set = false;
    bound_set = false;
  }

  void MacroInfo::clear(int ne, int nv)
  {
    for (int i = 0; i < mesh->getNumberOfMacros(); i++)
      FREE_MEMORY(mel_vertex[i], int, mesh->getGeo(VERTEX));

    FREE_MEMORY(mel_vertex, int*, ne);

    coords = NULL;  /* must no be freed!!! still used in the mesh!!!     */
    mesh = NULL;
    neigh_set = false;
  }

  /****************************************************************************/
  /****************************************************************************/
  /*  tool for reading macro triangulations in ALBERT-format                  */
  /****************************************************************************/
  /****************************************************************************/

  /****************************************************************************/
  /*  read_indices()  reads dim+1 indices from  file  into  id[0-dim],        */
  /*    returns true if dim+1 inputs arguments could be read successfully by  */
  /*    fscanf(), else false                                                  */
  /****************************************************************************/

  int  MacroInfo::read_indices(FILE *file, DimVec<int> &id)
  {
    int dim = mesh->getDim();

    for (int i = 0; i <= dim; i++) {
      if (fscanf(file, "%d", &id[i]) != 1)
	return(false);
    }

    return(true);
  }

#define N_KEYS      14
#define N_MIN_KEYS  7
  static const char *keys[N_KEYS] = {
    "DIM",                   //  0 
    "DIM_OF_WORLD",          //  1
    "number of vertices",    //  2
    "number of elements",    //  3
    "vertex coordinates",    //  4
    "element vertices",      //  5
    "element boundaries",    //  6
    "element neighbours",    //  7
    "element type",          //  8
    "projections",           //  9
    "element region",        // 10
    "surface region",        // 11
    "mesh name",             // 12
    "time"                   // 13
  };

  static int get_key_no(const char *key)
  {
445
446
447
    for (int i = 0; i < N_KEYS; i++)
      if (!strcmp(keys[i], key))  
	return(i);
448
449
450
451
452
453
454
455

    return(-1);
  }

#include <ctype.h>

  static const char *read_key(const char *line)
  {
456
457
    static char key[100];
    char *k = key;
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

    while (isspace(*line)) 
	line++;
    while ((*k++ = *line++) != ':');
    *--k = '\0';
  
    return(const_cast<const char *>( key));
  }

  /****************************************************************************/
  /*  read_albert_macro():                                                    */
  /*    read macro triangulation from ascii file in ALBERT format             */
  /*    fills macro_info structure                                            */
  /*    called by read_macro(), fills missing information                     */
  /****************************************************************************/


  void MacroInfo::readAMDiSMacro(const char *filename, Mesh* mesh)
  {
    FUNCNAME("MacroInfo::readAMDiSMacro");
    FILE       *file;
    int        dim;
480
    int        dow, nv, ne, j, k;
481
482
483
484
485
486
487
488
489
490
491
    double     dbl;
    char       name[128], line[256];
    int        line_no, n_keys, i_key, sort_key[N_KEYS], nv_key, ne_key;
    int        key_def[N_KEYS] = {0,0,0,0,0,0,0,0,0,0,0,0};
    const char *key;
    DimVec<int> *ind = NULL;

    TEST_EXIT(filename)("no file specified; filename NULL pointer\n");
    TEST_EXIT(strlen(filename) < static_cast<unsigned int>(127))
      ("can only handle filenames up to 127 characters\n");

492
493
    file = fopen(filename, "r");
    TEST_EXIT(file)("cannot open file %s\n", filename);
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
    strncpy(name, filename, 127);

    /****************************************************************************/
    /*  looking for all keys in the macro file ...                              */
    /****************************************************************************/

    line_no = n_keys = 0;
    while (fgets(line, 255, file)) {
	line_no++;
	if (!strchr(line, ':'))  continue;
	key = read_key(line);
	i_key = get_key_no(key);
	TEST_EXIT(i_key >= 0)
	  ("macro file %s must not contain key %s on line %d\n",
	   name, key, line_no);
	TEST_EXIT(!key_def[i_key])
	  ("key %s defined second time on line %d in file %s\n");

	sort_key[n_keys++] = i_key;
	key_def[i_key] = true;
    }

    fclose(file);
    for (i_key = 0; i_key < N_MIN_KEYS; i_key++) {
	for (j = 0; j < n_keys; j++)
	    if (sort_key[j] == i_key)  break;
	TEST_EXIT(j < n_keys)("You do not have specified data for %s in %s\n",
			      keys[i_key], name);

	for (j = 0; j < n_keys; j++)
	  if (sort_key[j] == 2)  break;
	nv_key = j;
	for (j = 0; j < n_keys; j++)
	  if (sort_key[j] == 3)  break;
	ne_key = j;
    
	switch(i_key) {
	    case 0:
	    case 1:
		TEST_EXIT(sort_key[i_key] < 2)
		    ("You have to specify DIM or mesh->getGeo(WORLD) before all other data\n");
		break;
	    case 4: 
		TEST_EXIT(nv_key < i_key)
		    ("Before reading data for %s, you have to specify the %s in file\n",
		     keys[4], keys[2], name);
		break;
	    case 5: 
		TEST_EXIT(nv_key < i_key  &&  ne_key < i_key)
		    ("Before reading data for %s, you have to specify the %s and %s in file %s\n",
		     keys[5], keys[3], keys[2], name);
	    case 6:
	    case 7:
	    case 8:
		TEST_EXIT(ne_key < i_key)
		    ("Before reading data for %s, you have to specify the %s in file %s\n",
		     keys[i_key], keys[3], name);
	}
    }

    for (i_key = 0; i_key < N_KEYS; i_key++)
      key_def[i_key] = false;

    /****************************************************************************/
    /*  and now, reading data ...                                               */
    /****************************************************************************/
	
561
562
563
564
    file = fopen(name, "r");
    TEST_EXIT(file)("cannot open file %s\n",name);

    int result;
565
566
567
568
569

    for (i_key = 0; i_key < n_keys; i_key++) {

	switch(sort_key[i_key]) {
	  case 0:
570
571
	    result = fscanf(file, "%*s %d", &dim);
	    TEST_EXIT(result == 1)
572
573
574
575
576
577
578
	      ("cannot read DIM correctly in file %s\n", name);

	    ind = NEW DimVec<int>(dim, NO_INIT);

	    key_def[0] = true;
	    break;
	  case 1:
579
580
	    result = fscanf(file, "%*s %d", &dow);
	    TEST_EXIT(result == 1)
581
582
583
584
585
586
587
588
	      ("cannot read Global::getGeo(WORLD) correctly in file %s\n", name);
	    TEST_EXIT(dow == Global::getGeo(WORLD))
	      ("dimension of world = %d != Global::getGeo(WORLD) = %d\n", 
	       dow, Global::getGeo(WORLD));

	    key_def[1] = true;
	    break;
	  case 2:
589
590
	    result = fscanf(file, "%*s %*s %*s %d", &nv);
	    TEST_EXIT(result == 1)
591
592
593
594
595
596
597
598
599
	      ("cannot read number of vertices correctly in file %s\n", name);
	    TEST_EXIT(nv > 0)
	      ("number of vertices = %d must be bigger than 0\n", nv);

	    key_def[2] = true;
	    if (key_def[3])
	      fill(mesh, ne, nv);
	    break;
	  case 3:
600
601
	    result = fscanf(file, "%*s %*s %*s %d", &ne);
	    TEST_EXIT(result == 1)
602
603
604
605
606
607
608
609
610
611
	      ("cannot read number of elements correctly in file %s\n", name);
	    TEST_EXIT(ne > 0)
	      ("number of elements = %d must be bigger than 0\n", ne);

	    key_def[3] = true;
	    if (key_def[2])
	      fill(mesh, ne, nv);
	    break;
	  case 4:
	    fscanf(file, "%*s %*s");
612
613
	    for (int i = 0; i < nv; i++) {
	      for (j = 0; j <Global::getGeo(WORLD) ; j++) {
614
615
		result = fscanf(file, "%lf", &dbl);
		TEST_EXIT(result == 1)
616
617
		  ("error while reading coordinates, check file %s\n", name);
		coords[i][j] = dbl;
618
	      }
619
	    }
620
621
622
623
624
625
626
627
	    key_def[4] = true;
	    break;
	  case 5:
	    fscanf(file, "%*s %*s");
	    /****************************************************************************/
	    /* global number of vertices on a single element                            */
	    /****************************************************************************/

628
	    for (int i = 0; i < ne; i++) {
629
630
631
	      result = read_indices(file, *ind);
	      TEST_EXIT(result)
		("cannot read vertex indices of element %d in file %s\n",  i, name);
632

633
634
635
	      for (k = 0; k < mesh->getGeo(VERTEX); k++)
		mel_vertex[i][k] = (*ind)[k];
	    }
636
637
638
639
640
641
642
643

	    key_def[5] = true;
	    break;
	  case 6:
	    fscanf(file, "%*s %*s");
	    /****************************************************************************/
	    /* MEL boundary pointers                                                    */
	    /****************************************************************************/
644
	    for (int i = 0; i < ne; i++) {  
645
646
                // boundary information of ith element 

647
648
649
	      result = read_indices(file, *ind);
	      TEST_EXIT(result)
		("cannot read boundary type of element %d in file %s\n", i, name);
650

651
652
653
654
	      // fill boundary of macro-element
	      MacroReader::fillMelBoundary(mesh, 
					   mel[i], 
					   VecConv<int,NEIGH,PARTS>::convertVec((*ind), mesh));
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
	    }

	    this->fillBoundaryInfo(mesh);
                   
	    bound_set = true;
	    key_def[6] = true;
	    break;
	  case 7:
	    fscanf(file, "%*s %*s");
	    /****************************************************************************/
	    /* fill MEL neighbour pointers:                                             */
	    /*   if they are specified in the file: read them from file,                */
	    /*   else init them by a call of fill_mel_neighbour()                       */
	    /****************************************************************************/
	    neigh_set = true;
670
	    for (int i = 0; i < ne; i++) {
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
                //  neighbour information about ith element

		if (read_indices(file, *ind))
		  MacroReader::fillMelNeigh(mel[i], mel, 
					    VecConv<int,NEIGH,PARTS>::convertVec((*ind), 
										 mesh));
		else {
		  neigh_set = false; /* setting of neighbours fails :-( */
		  break;
		}
	      }

	    key_def[7] = true;
	    break;
	  case 8:
	    fscanf(file, "%*s %*s");
	    /****************************************************************************/
	    /* MEL elType                                                               */
	    /****************************************************************************/

	    if (dim == 2 || dim == 1)
	      ERROR("there is no element type in 2d and 2d; ignoring data for elType\n");

694
	    for (int i = 0; i < ne; i++) {
695
696
697
698
699
700
	      result = fscanf(file, "%d", &j);
	      TEST_EXIT(result == 1)
		("cannot read elType of element %d in file %s\n",
		 i, name);
	      if (dim == 3) {
		(mel)[i]->elType = j;
701
	      }
702
	    }
703
704
705
706
707
708
709
710
711
712

	    key_def[8] = true;
	    break;
	  case 9:
	    {
	      fscanf(file, "%*s");

	      int numFaces = mesh->getGeo(FACE);
	      int numEdgesAtBoundary = 0;

713
	      for (k = 1; k < dim; k++) {
714
715
716
		numEdgesAtBoundary += k;
	      }

717
	      for (int i = 0; i < ne; i++) {
718
719
		result = read_indices(file, *ind);
		TEST_EXIT(result)
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
		  ("cannot read boundary projector of element %d in file %s\n", i, name);
	
		Projection *projector = Projection::getProjection((*ind)[0]);

		if(projector && projector->getType() == VOLUME_PROJECTION) {
		  mel[i]->setProjection(0, projector);
		} else { // boundary projection
		  for(j = 0; j < mesh->getGeo(NEIGH); j++) {
		    projector = Projection::getProjection((*ind)[j]);
		    if(projector) {
		      mel[i]->setProjection(j, projector);
		      if(dim > 2) {
			for(k = 0; k < numEdgesAtBoundary; k++) {
			  int edgeNr = Global::getReferenceElement(dim)->getEdgeOfFace(j, k);
			  mel[i]->setProjection(numFaces + edgeNr, projector);
			}
		      }
		    }
		  }
		}
	      }
	    }
	    key_def[9] = true;
	    break;
	  case 10:
	    fscanf(file, "%*s %*s");
	    /****************************************************************************/
	    /* MEL regions                                                              */
	    /****************************************************************************/

750
	    for (int i = 0; i < ne; i++) {
751
752
	      result = fscanf(file, "%d", &j);
	      TEST_EXIT(result == 1)
753
		("cannot read region of element %d in file %s\n", i, name);
754
	      if (j >= 0) {
755
756
757
758
759
760
761
762
763
764
765
		Element *el = mel[i]->getElement();
		ElementRegion_ED *elementRegion = 
		  NEW ElementRegion_ED(el->getElementData());
		elementRegion->setRegion(j);
		el->setElementData(elementRegion);
	      }
	    }
	    key_def[10] = true;
	    break;
	  case 11:
	    fscanf(file, "%*s %*s");
766
	    for (int i = 0; i < ne; i++) {
767
768
	      result = read_indices(file, *ind);
	      TEST_EXIT(result)
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
		("cannot read surface regions of element %d in file %s\n", i, name);

	      Element *el = mel[i]->getElement();

	      for(j = 0; j < mesh->getGeo(NEIGH); j++) {
		if((*ind)[j] >= 0) {
		  SurfaceRegion_ED *surfaceRegion = 
		    NEW SurfaceRegion_ED(el->getElementData());
		  surfaceRegion->setSide(j);
		  surfaceRegion->setRegion((*ind)[j]);
		  el->setElementData(surfaceRegion);
		}
	      }
	    }
	    key_def[11] = true;
	    break;
	  case 12:
	    fscanf(file, "%*s %*s %*s");
	    break;
	  case 13:
	    fscanf(file, "%*s %*s");
	    break;
	  }
      }

    fclose(file);
  }


  int macro_type(const char *filename, const char *type)
  {
    const char *fn, *t;
  
    if (strlen(filename) <= strlen(type))
      return(false);
  
    fn = filename;
    while (*fn) fn++;
    t = type;
    while (*t) t++;
  
    while (t != type  &&  *t == *fn) t--;
  
    return(t == type);
  }


  /****************************************************************************/
  /*  sets the boundary of all edges/faces with no neigbour to a straight     */
  /*  line/face with Dirichlet boundary type                                  */
  /****************************************************************************/

  void MacroInfo::dirichletBoundary()
  {
823
824
    for (int i = 0; i < static_cast<int>( mel.size()); i++) {
      for (int k = 0; k < mesh->getGeo(NEIGH); k++) {
825
826
827
828
829
830
831
832
833
834
835
836
837
	if (mel[i]->neighbour[k])
	  mel[i]->boundary[k] = INTERIOR;
	else
	  mel[i]->boundary[k] = DIRICHLET;
      }
    }
  }


  void MacroInfo::fillBoundaryInfo(Mesh *mesh)
  {
    int i,j,k, nv = mesh->getNumberOfVertices();

838
    std::deque<MacroElement*>::iterator melIt;
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929

    BoundaryType *bound = GET_MEMORY(BoundaryType, nv);

    int dim = mesh->getDim();

    switch(dim) {
    case 1:
      break;
    case 2:
      for (i = 0; i < nv; i++)
	bound[i] = INTERIOR;

      for (i=0, melIt = mesh->firstMacroElement(); 
	   melIt != mesh->endOfMacroElements(); 
	   ++melIt, ++i) 
	{
	  for (j = 0; j < mesh->getGeo(NEIGH); j++) {
	    if ((*melIt)->getBoundary(j) != INTERIOR) {
	      if ((*melIt)->getBoundary(j) >= DIRICHLET) {
		int j1 = mel_vertex[i][(j+1)%3];
		int j2 = mel_vertex[i][(j+2)%3];

		bound[j1] = 
		  max(bound[j1], (*melIt)->getBoundary(j));
		bound[j2] = 
		  max(bound[j2], (*melIt)->getBoundary(j));
	      } 
	      else if ((*melIt)->getBoundary(j) <= NEUMANN) {
		int j1 = mel_vertex[i][(j+1)%3];
		int j2 = mel_vertex[i][(j+2)%3];

		if (bound[j1] != INTERIOR)
		  bound[j1] = 
		    max(bound[j1], (*melIt)->getBoundary(j));
		else
		  bound[j1] = (*melIt)->getBoundary(j);

		if (bound[j2] != INTERIOR)
		  bound[j2] = 
		    max(bound[j2], (*melIt)->getBoundary(j));
		else
		  bound[j2] = (*melIt)->getBoundary(j);
	      }
	    }
	  }
	}

      for (i=0, melIt = mesh->firstMacroElement(); 
	   melIt != mesh->endOfMacroElements(); 
	   ++melIt, i++) 
	{
	  for (j = 0; j < mesh->getGeo(VERTEX); j++)
	    (*melIt)->setBoundary(3 + j, bound[mel_vertex[i][j]]);
	}
      break;
    case 3:
      for (i = 0; i < nv; i++)
	bound[i] = INTERIOR;

      for (i=0, melIt = mesh->firstMacroElement(); 
	   melIt != mesh->endOfMacroElements(); 
	   ++melIt, i++) 
	{
	  for (j = 0; j < mesh->getGeo(NEIGH); j++) {
	    for (k = 1; k < 4; k++)
	      bound[mel_vertex[i][(j+k)%4]] =
		((*melIt)->getBoundary(j) != INTERIOR) ?
		newBound((*melIt)->getBoundary(j),
			 bound[mel_vertex[i][(j+k)%4]]) :
		//(*melIt)->getBoundary(j)->
		//newVal(bound[data->mel_vertex[i][(j+k)%4]]) :
		bound[mel_vertex[i][(j+k)%4]];
	  }
	}

      for (i = 0, melIt = mesh->firstMacroElement(); 
	   melIt != mesh->endOfMacroElements(); 
	   ++melIt, i++) 
	{
	  for (j = 0; j < mesh->getGeo(VERTEX); j++)
	    (*melIt)->setBoundary(10 + j, bound[mel_vertex[i][j]]);
	}
      break;
    default: ERROR_EXIT("invalid dim\n");
    }

    FREE_MEMORY(bound, BoundaryType, nv);
  }

  void MacroReader::computeNeighbours(Mesh *mesh)
  {
930
    FUNCNAME("MacroReader::computeNeighbours()");
931

932
    int dim = mesh->getDim();
933
    FixVec<DegreeOfFreedom*, DIMEN> dof(dim, NO_INIT);
934

935
936
937
938
    for (int i = 0; i < mesh->getNumberOfLeaves(); i++) {
      for (int k = 0; k < mesh->getGeo(NEIGH); k++) {
	mesh->getMacroElement(i)->setOppVertex(k, AMDIS_UNDEFINED);
	mesh->getMacroElement(i)->setNeighbour(k, NULL);
939
      }
940
    }
941

942
943
944
945
946
947
948
    for (int i = 0; i < mesh->getNumberOfLeaves(); i++) {
      for (int k = 0; k < mesh->getGeo(NEIGH); k++) {
	if (mesh->getMacroElement(i)->getBoundary(k) != INTERIOR) {
	  mesh->getMacroElement(i)->setNeighbour(k, NULL);
	  mesh->getMacroElement(i)->setOppVertex(k, -1);
	  continue;
	}
949

950
951
952
953
954
955
956
957
	if (mesh->getMacroElement(i)->getOppVertex(k) == AMDIS_UNDEFINED) {
	  if (dim == 1) {
	    dof[0] = const_cast<DegreeOfFreedom*>(mesh->getMacroElement(i)->
						  getElement()->getDOF(k));
	  } else {
	    for (int l = 0; l < dim; l++)
	      dof[l] = const_cast<DegreeOfFreedom*>(mesh->getMacroElement(i)->
						    getElement()->
958
						    getDOF((k + l + 1) % (dim + 1)));
959
	  }
960
961
962
963
964
965
966
967
968
969
970
971
972
	  
	  int j = 0;
	  for (j = i + 1; j < mesh->getNumberOfLeaves(); j++) {
	    int m = mesh->getMacroElement(j)->getElement()->oppVertex(dof);
	    if (m != -1) {
	      mesh->getMacroElement(i)->setNeighbour(k, mesh->getMacroElement(j));
	      mesh->getMacroElement(j)->setNeighbour(m, mesh->getMacroElement(i));
	      mesh->getMacroElement(i)->setOppVertex(k, m);
	      mesh->getMacroElement(j)->setOppVertex(m, k);
	      break;
	    }
	  }

973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
	  if (j >= mesh->getNumberOfLeaves()) {
	    std::cout << "----------- ERROR ------------" << std::endl;
	    std::cout << "Cannot find neighbour " << k << " of element " << i << std::endl;
	    std::cout << "  dim = " << dim << std::endl;
	    std::cout << "  coords of element = ";
	    for (int l = 0; l <= dim; l++) {
	      std::cout << mesh->getMacroElement(i)->getCoord(l);
	      if (l < dim) {
		std::cout << " / ";
	      }
	    }
	    std::cout << std::endl;
	    std::cout << "  dofs = ";
	    for (int l = 0; l < dim; l++) {
	      std::cout << *(dof[l]) << " ";
	    }
	    std::cout << std::endl;

	    ERROR_EXIT("\n");
	  }    
993
	}
994
      }
995
    }
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
  }


  /****************************************************************************/
  /*  boundaryDOFs:                                                           */
  /*  adds dof's at the edges of a given macro triangulation and calculates   */
  /*  the number of edges                                                     */
  /****************************************************************************/

  void MacroReader::boundaryDOFs(Mesh *mesh)
  {
1007
1008
1009
1010
1011
    FUNCNAME("Mesh::boundaryDOFs()");

    int lnode = mesh->getNode(EDGE);
    int k, lne = mesh->getNumberOfLeaves();
    int max_n_neigh = 0, n_neigh, ov;
1012
    std::deque<MacroElement*>::iterator mel;
1013
    const MacroElement* neigh;
1014
    DegreeOfFreedom *dof;
1015
1016
1017
1018
1019
1020
1021
1022

    mesh->setNumberOfEdges(0);
    mesh->setNumberOfFaces(0);

    int dim = mesh->getDim();

    switch(dim) {
    case 2:
1023
      for (mel = mesh->firstMacroElement(); mel != mesh->endOfMacroElements(); mel++) {
1024
1025
1026
1027
1028
1029
	// check for periodic boundary
	Element *el = const_cast<Element*>((*mel)->getElement());
	ElementData *ed = el->getElementData(PERIODIC);

	DimVec<bool> periodic(dim, DEFAULT_VALUE, false);

1030
	if (ed) {
1031
	  std::list<LeafDataPeriodic::PeriodicInfo> &periodicInfos = 
1032
	    dynamic_cast<LeafDataPeriodic*>(ed)->getInfoList();
1033
1034
	  std::list<LeafDataPeriodic::PeriodicInfo>::iterator it;
	  std::list<LeafDataPeriodic::PeriodicInfo>::iterator end = periodicInfos.end();
1035
1036
	  for (it = periodicInfos.begin(); it != end; ++it) {
	    if (it->type != 0) {
1037
1038
1039
1040
1041
	      periodic[it->elementSide] = true;
	    }
	  }
	}

1042
	for (int i = 0; i < mesh->getGeo(NEIGH); i++) {
1043
	  if (!(*mel)->getNeighbour(i) || 
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
	      ((*mel)->getNeighbour(i)->getIndex() < (*mel)->getIndex())) {

	    mesh->incrementNumberOfEdges(1);

	    if (mesh->getNumberOfDOFs(EDGE)) {
	      dof = el->setDOF(lnode + i, mesh->getDOF(EDGE));
      
	      if ((*mel)->getNeighbour(i)) {
		Element *neigh = const_cast<Element*>((*mel)->getNeighbour(i)->getElement());

		if (periodic[i]) {
		  neigh->setDOF(lnode + (*mel)->getOppVertex(i), mesh->getDOF(EDGE));
		} else {
		  neigh->setDOF(lnode + (*mel)->getOppVertex(i), dof);
1058
1059
		}
	      }
1060
1061
	    }
	  }  
1062
1063
1064
1065
1066
1067
	}
      }
      break;
    case 3:
      lnode = mesh->getNode(FACE);
      mel = mesh->firstMacroElement();
1068
      for (int i = 0; i < lne; i++) {
1069
1070
1071
1072
1073
1074
1075
1076

	// check for periodic boundary
	Element *el = const_cast<Element*>((*(mel+i))->getElement());
	ElementData *ed = el->getElementData(PERIODIC);

	DimVec<bool> periodic(dim, DEFAULT_VALUE, false);
      
	if(ed) {
1077
	  std::list<LeafDataPeriodic::PeriodicInfo> &periodicInfos = 
1078
	    dynamic_cast<LeafDataPeriodic*>(ed)->getInfoList();
1079
1080
	  std::list<LeafDataPeriodic::PeriodicInfo>::iterator it;
	  std::list<LeafDataPeriodic::PeriodicInfo>::iterator end = periodicInfos.end();
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
	  for(it = periodicInfos.begin(); it != end; ++it) {
	    if(it->type != 0) {
	      periodic[it->elementSide] = true;
	    }
	  }
	}

	for (k = 0; k < mesh->getGeo(EDGE); k++) {      
	  /*********************************************************************/
	  /* check for not counted edges                                       */
	  /*********************************************************************/
	  n_neigh = 1;

	  // 	static int faceOfEdge[6][2] = { {2, 3}, 
	  // 	                                {1, 3},
	  // 					{1, 2},
	  // 					{0, 3},
	  // 					{0, 2},
	  // 					{0, 1} };

	  // 	bool periodicEdge;
	  // 	if(periodic[faceOfEdge[k][0]] || periodic[faceOfEdge[k][1]]) {
	  // 	  periodicEdge = true;
	  // 	} else {
	  // 	  periodicEdge = false;
	  // 	}

	  if (newEdge(mesh, (*(mel+i)), k, &n_neigh/*, periodicEdge*/)) {
	    // 	  if(periodicEdge) {
	    // 	    mesh->incrementNumberOfEdges(2);
	    // 	  } else {
	    mesh->incrementNumberOfEdges(1);
	    // 	  }
	    max_n_neigh = max(max_n_neigh, n_neigh);
	  }
	}
      
	for (k = 0; k < mesh->getGeo(NEIGH); k++) {
	  neigh = (*(mel+i))->getNeighbour(k);
	  /*********************************************************************/
	  /* face is counted and dof is added by the element with bigger index */
	  /*********************************************************************/
	  if (neigh  &&  (neigh->getIndex() > (*(mel+i))->getIndex()))  continue;
	
	  mesh->incrementNumberOfFaces(1);
	
	  if (mesh->getNumberOfDOFs(FACE)) {
	    TEST_EXIT(!(*(mel+i))->getElement()->getDOF(lnode+k))
	      ("dof %d on element %d already set\n", 
	       lnode+k, (*(mel+i))->getIndex());
	  
	    const_cast<Element*>((*(mel+i))->getElement())->setDOF(lnode+k, 
								   mesh->getDOF(FACE));

	    if (neigh) {
	      ov = (*(mel+i))->getOppVertex(k);
	      TEST_EXIT(!neigh->getElement()->getDOF(lnode+ov))
		("dof %d on neighbour %d already set\n", 
		 lnode+ov, neigh->getIndex());
	    
	      Element *neighEl = 
		const_cast<Element*>((*(mel+i))->getNeighbour(k)->getElement());

	      if (periodic[k]) {
		neighEl->setDOF(lnode+ov, mesh->getDOF(FACE));
	      } else {
		neighEl->setDOF(lnode+ov, const_cast<int*>((*(mel+i))->getElement()->
							   getDOF(lnode+k)));
	      }
	    }
	  }
	}
      }
      break;
    default: ERROR_EXIT("invalid dim\n");
    }
    
1158
    if (3 == dim) {
1159
      mesh->setMaxEdgeNeigh(std::max(8, 2*max_n_neigh));
1160
    } else {
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
      mesh->setMaxEdgeNeigh(dim-1);    
    }
  }

  /* 
     testet mesh auf auftretende Zyklen
  
     wenn Zyklus auftritt:
     ordnet Eintraege in MacroElement-Struktur um, so dass kein Zyklus auftritt
     erzeugt neue Macro-Datei nameneu mit umgeordnetem Netz 
     (wenn nameneu=NULL wird keine MAcro-Datei erzeugt)
  */      

  void MacroReader::macroTest(Mesh *mesh, const char *nameneu)
  {
1176
    FUNCNAME("MacroReader::macroTest()");
1177
   
1178
1179
1180
1181
1182
1183
1184
1185
1186
    int i = macrotest(mesh);

    if (i >= 0) {
      ERROR("There is a cycle beginning in macro element %d\n", i);
      ERROR("Entries in MacroElement structures get reordered\n");
      umb(NULL, mesh, umbVkantMacro);

      if (nameneu) {
	ERROR_EXIT("mesh->feSpace\n");
1187
      }
1188
    }
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
  }
  
  /****************************************************************************/
  /*  macro_test():                              Author: Thomas Kastl (1998)  */
  /****************************************************************************/
  /*
    testet mesh auf auftretende Zyklen
  
    wenn mesh zyklenfrei -> -1
    sonst ->  globaler Index des Macroelementes bei dem ein Zyklus beginnt 
  */

  int MacroReader::macrotest(Mesh *mesh)
  {
1203
    FUNCNAME("MacroReader::macrotest()");
1204
1205
1206

    int *test;
    int *zykl;
1207
    std::deque<MacroElement*>::const_iterator macro,mac;
1208
    int flg;
1209
    std::deque<MacroElement*>::const_iterator macrolfd;
1210
1211
1212
    int zykstart;
    int dim = mesh->getDim();

1213
1214
    test = GET_MEMORY(int, mesh->getNumberOfMacros());
    zykl = GET_MEMORY(int, mesh->getNumberOfMacros());
1215
 
1216
1217
1218
    for (int i = 0; i < mesh->getNumberOfMacros(); i++) {
      test[i] = 0;
    }
1219

1220
1221
    zykstart = -1;
    macrolfd = mesh->firstMacroElement();
1222

1223
1224
1225
1226
1227
1228
1229
    while (macrolfd != mesh->endOfMacroElements()) {
      if (test[(*macrolfd)->getIndex()] == 1) {
	macrolfd++;
      } else {
	for (int i = 0; i < mesh->getNumberOfMacros(); i++) {
	  zykl[i] = 0;
	}
1230
    
1231
1232
1233
1234
1235
1236
1237
1238
	macro = macrolfd;
	flg = 2;
	do {
	  if (zykl[(*macro)->getIndex()] == 1) {
	    flg = 0;
	    zykstart = (*macro)->getIndex();
	  } else {
	    zykl[(*macro)->getIndex()] = 1;
1239
      
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
	    if (test[(*macro)->getIndex()] == 1) {
	      flg = 1;
	    } else if ((*macro)->getNeighbour(dim) == NULL) {
	      flg = 1;
	      test[(*macro)->getIndex()] = 1;
	    }
	    else if ((*macro) == (*macro)->getNeighbour(dim)->getNeighbour(dim)) {
	      flg = 1;
	      test[(*macro)->getIndex()] = 1;
	      test[(*macro)->getNeighbour(dim)->getIndex()] = 1;
	    } else {
	      for (mac = mesh->firstMacroElement();
		   (*mac)!=(*macro)->getNeighbour(dim);
		   mac++);
	      macro = mac;
	    } 
	  }	  
	} while(flg == 2);
1258
 
1259
1260
1261
1262
1263
	if (flg == 1) {
	  macrolfd++;
	} else  { 
	  macrolfd=mesh->endOfMacroElements();
	}
1264
      }
1265
    }
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
  
    FREE_MEMORY(zykl, int, mesh->getNumberOfMacros());
    FREE_MEMORY(test, int, mesh->getNumberOfMacros());
 
    return zykstart;
  }

  //   waehlt geeignete Verfeinerungskanten, so dass kein Zyklus auftritt (recumb)

  //   ele     Integer-Vektor der Dimension Anzahl der Macro-Elemente
  //           zur Speicherung der neuen Verfeinerungskanten
  //           (wird nur benoetigt, wenn umbvk=umb_vkant_macrodat) 
  
  //   umbvk   Fkt. zur Neuordnung der Verfeinerungskanten
  //           = umb_vkant_macro :
  //               Eintraege in MacroElement-Struktur und Eintraege in macro->el
  //               werden tatsaechlich umgeordnet
  //               -> ALBERT-Routine write_macro kann zum erzeugen einer
  //                  neuen Macro-Datei angewendet werden 
  //           = umb_vkant_macrodat :
  //               Eintraege werden nicht veraendert, es werden nur die lokalen
  //               Indices der Kanten, die zu Verfeinerungskanten werden im
  //               Integer-Vektor ele abgespeichert
  //               -> print_Macrodat zur Erzeugung einer zyklenfreien neuen
  //                  Macro-Datei kann angewendet werden

  void MacroReader::umb(int *ele, Mesh *mesh,
			void (*umbvk)(Mesh*,MacroElement*,int,int*))
  {
    FUNCNAME("MacroReader::umb");

    int *test;
    int i;
  
    test=GET_MEMORY(int, mesh->getNumberOfMacros());
  
    for (i=0; i < static_cast<int>(mesh->getNumberOfMacros()); i++)
      test[i]=0;

    recumb(mesh, (*mesh->firstMacroElement()), NULL,test,0,0,ele,umbvk);

    FREE_MEMORY(test, int, mesh->getNumberOfMacros());
  }

  bool MacroReader::newEdge(Mesh *mesh, MacroElement *mel,
			    int mel_edge_no, int *n_neigh)
  {
    FUNCNAME("MacroElement::newEdge"); 
    MacroElement    *nei;
    const DegreeOfFreedom *dof[2];
    DegreeOfFreedom *edge_dof = NULL;
    int             j, k, opp_v, mel_index, node=0;
    BoundaryType    lbound = INTERIOR;
    Projection *lproject = NULL;
    const int       max_no_list_el = 100;
    BoundaryType *list_bound[100];
    Projection **list_project[100];
    Element *el = const_cast<Element*>(mel->getElement());
    int edge_no = mel_edge_no;

    static int  next_el[6][2] = {{3,2},{1,3},{1,2},{0,3},{0,2},{0,1}};

    int vertices = mesh->getGeo(VERTEX);

    mel_index = mel->getIndex();

    list_bound[0] = &(mel->boundary[mesh->getGeo(FACE)+edge_no]);
    list_project[0] = &(mel->projection[mesh->getGeo(FACE)+edge_no]);

    if (mesh->getNumberOfDOFs(EDGE)) {
      node = mesh->getNode(EDGE);
      if (el->getDOF(node+edge_no)) {
	/****************************************************************************/
	/*  edge was counted by another macro element and dof was added on the      */
	/*  complete patch                                                          */
	/****************************************************************************/
	return false;
      } else {
	edge_dof = el->setDOF(node+edge_no,mesh->getDOF(EDGE));
      }
    }

    for (j = 0; j < 2; j++) {
      dof[j] = el->getDOF(el->getVertexOfEdge(edge_no, j));
    }


    /****************************************************************************/
    /*  first look for all neighbours in one direction until a boundary is      */
    /*  reached :-( or we are back to mel :-)                                   */
    /*  if the index of a neighbour is smaller than the element index, the edge */
    /*  is counted by this neighbour, return 0.                                 */
    /*  If we are back to element, return 1, to count the edge                  */
    /****************************************************************************/

    nei = mel->getNeighbour(next_el[edge_no][0]);
    opp_v = mel->getOppVertex(next_el[edge_no][0]);


    if(mel->getBoundary(next_el[edge_no][0])) {
      lbound = newBound(mel->getBoundary(next_el[edge_no][0]), lbound);
      lproject = mel->getProjection(next_el[edge_no][0]);
    }

    while (nei  &&  nei != mel) {
      for (j = 0; j < vertices; j++)
	if (nei->getElement()->getDOF(j) == dof[0])  break;
      for (k = 0; k < vertices; k++)
	if (nei->getElement()->getDOF(k) == dof[1])  break;

      // check for periodic boundary
      if(j == 4 || k == 4) {
	nei = NULL;
	break;
      }

      if (mesh->getNumberOfDOFs(EDGE))
	TEST_EXIT(nei->index > mel_index)
	  ("neighbour index %d < element index %d\n", nei->getIndex(), mel_index);

      if (!mesh->getNumberOfDOFs(EDGE) &&  nei->getIndex() < mel_index)  return false;

    
      edge_no = Tetrahedron::edgeOfDOFs[j][k];

      TEST_EXIT(*n_neigh < max_no_list_el)
	("too many neigbours for local list\n");

      list_bound[(*n_neigh)] = 
	&(nei->boundary[mesh->getGeo(FACE)+edge_no]);

      list_project[(*n_neigh)++] = 
	&(nei->projection[mesh->getGeo(FACE)+edge_no]);

      if (mesh->getNumberOfDOFs(EDGE))
	{
	  //       if(periodic) {
	  // 	nei->element->setDOF(node+edge_no, mesh->getDOF(EDGE));
	  //       } else {
	  nei->element->setDOF(node+edge_no,edge_dof);
	  //       }
	}

      if (next_el[edge_no][0] != opp_v)
	{
	  if(nei->getBoundary(next_el[edge_no][0])) {
	    lbound = newBound(nei->getBoundary(next_el[edge_no][0]), lbound);
	    Projection *neiProject = nei->getProjection(next_el[edge_no][0]);
	    if(!lproject)
	      lproject = neiProject;
	    else {
	      if(neiProject && (lproject->getID() < neiProject->getID())) {
		lproject = neiProject;
	      }
	    }
	  }
	  opp_v = nei->getOppVertex(next_el[edge_no][0]);
	  nei = nei->getNeighbour(next_el[edge_no][0]);
	}
      else
	{
	  if(nei->getBoundary(next_el[edge_no][1])) {
	    lbound = newBound(nei->getBoundary(next_el[edge_no][1]), lbound);
	    Projection *neiProject = nei->getProjection(next_el[edge_no][1]);	
	    if(!lproject)
	      lproject = neiProject;
	    else {
	      if(neiProject && (lproject->getID() < neiProject->getID())) {
		lproject = neiProject;
	      }
	    }
	  }
	  opp_v = nei->getOppVertex(next_el[edge_no][1]);
	  nei = nei->getNeighbour(next_el[edge_no][1]);
	}
    }
    if (!nei)
      {
	/****************************************************************************/
	/*  while looping around the edge the domain's boundary was reached. Now,   */
	/*  loop in the other direction to the domain's boundary		    */
	/****************************************************************************/
	edge_no = mel_edge_no;

	nei = mel->getNeighbour(next_el[edge_no][1]);
	opp_v = mel->getOppVertex(next_el[edge_no][1]);
	if(mel->getBoundary(next_el[edge_no][1])) {
	  lbound = newBound(mel->getBoundary(next_el[edge_no][1]), lbound); 
	  Projection *neiProject =  mel->getProjection(next_el[edge_no][1]);
	  if(!lproject)
	    lproject = neiProject;
	  else {
	    if(neiProject && (lproject->getID() < neiProject->getID())) {
	      lproject = neiProject;
	    }
	  }
	}
	while (nei)
	  {
	    for (j = 0; j < vertices; j++)
	      if (nei->getElement()->getDOF(j) == dof[0])  break;
	    for (k = 0; k < vertices; k++)
	      if (nei->getElement()->getDOF(k) == dof[1])  break;

	    // check for periodic boundary
	    if(j == 4 || k == 4) {
	      return false;
	    }

	    if (mesh->getNumberOfDOFs(EDGE))
	      TEST_EXIT(nei->getIndex() > mel_index)
		("neighbour index %d < element index %d\n", nei->getIndex(),
		 mel_index);

1480
1481
	    if (nei->getIndex() < mel_index)  
	      return false;
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552

	    edge_no = Tetrahedron::edgeOfDOFs[j][k];

	    TEST_EXIT(*n_neigh < max_no_list_el)
	      ("too many neigbours for local list\n");

	    list_bound[(*n_neigh)] = 
	      &(nei->boundary[mesh->getGeo(FACE)+edge_no]);

	    list_project[(*n_neigh)++] = 
	      &(nei->projection[mesh->getGeo(FACE)+edge_no]);

	    if (mesh->getNumberOfDOFs(EDGE)) {
	      TEST_EXIT(!nei->getElement()->getDOF(node+edge_no))
		("dof %d on element %d is already set, but not on element %d\n",
		 node + edge_no, nei->getIndex(), mel_index);
	
	      // 	if(periodic) {
	      // 	  nei->element->setDOF(node+edge_no, mesh->getDOF(EDGE));
	      // 	} else {
	      nei->element->setDOF(node+edge_no,edge_dof);
	      // 	}
	    }

	    if (next_el[edge_no][0] != opp_v)
	      {
		if(nei->getBoundary(next_el[edge_no][0])) {
		  lbound = newBound(nei->getBoundary(next_el[edge_no][0]), lbound);
		  Projection *neiProject = nei->getProjection(next_el[edge_no][0]);
		  if(!lproject)
		    lproject = neiProject;
		  else {
		    if(neiProject &&( lproject->getID() < neiProject->getID())) {
		      lproject = neiProject;
		    }
		  }
		}

		opp_v = nei->getOppVertex(next_el[edge_no][0]);
		nei = nei->getNeighbour(next_el[edge_no][0]);
	      }
	    else {
	      if(nei->getBoundary(next_el[edge_no][1])) {
		lbound = newBound(nei->getBoundary(next_el[edge_no][1]), lbound); 
		Projection *neiProject = nei->getProjection(next_el[edge_no][1]);
		if(!lproject)
		  lproject = neiProject;
		else {
		  if(neiProject && (lproject->getID() < neiProject->getID())) {
		    lproject = neiProject;
		  }
		}
	      }

	      opp_v = nei->getOppVertex(next_el[edge_no][1]);
	      nei = nei->getNeighbour(next_el[edge_no][1]);
	    }
	  }
      }
  
    for (j = 0; j < *n_neigh; j++) {
      *(list_bound[j]) = lbound;
      *(list_project[j]) = lproject;
    }
  
    return true;
  }

  void MacroReader::fillMelBoundary(Mesh *mesh, MacroElement *mel, 
				    FixVec<BoundaryType ,NEIGH> ind)
  {
1553
    for (int i = 0; i < mesh->getGeo(NEIGH); i++) {
1554
1555
1556
1557
1558
1559
      mel->boundary[i] = ind[i];    
    }
  }


  void MacroReader::fillMelNeigh(MacroElement *mel,
1560
				 std::deque<MacroElement*>& macro_elements, 
1561
1562
1563
1564
				 FixVec<int,NEIGH> ind)
  {
    int dim = mel->element->getMesh()->getDim();

1565
1566
1567
1568
1569
1570
    for (int k = 0; k < Global::getGeo(NEIGH, dim); k++) {
      if (ind[k] >= 0) 
	mel->neighbour[k] = macro_elements[ind[k]];
      else
	mel->neighbour[k] = NULL;
    }
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
  }


  //   ordnet Eintraege in Macro-Element macro bzgl. Verfeinerungskante ka um
  //   (coord, bound, boundary, neigh, oppVertex)

  //   ordnet Eintraege in macro->el bzgl. Verfeinerungskante ka um
  //   (Element-DOF's (macro->el->dof) in Ecken und auf Kanten,
  //    wenn NEIGH_IN_EL macro->el->neigh, macro->el->oppVertex)
  //   (wird fuer ALBERT-Routine write_macro benoetigt)

  //   ele wird nicht benoetigt (es kann NULL uebergeben werden)    


  void MacroReader::umbVkantMacro(Mesh *mesh, MacroElement* me, int ka, int *)
  {
    MacroElement* macr=NEW MacroElement(mesh->getDim());
    int i;
    int n0;
    DegreeOfFreedom *d[7];
  
    int vertices = mesh->getGeo(VERTEX);
    int facesPlusEdges = mesh->