Cholesky.cc 3.44 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#include "Cholesky.h"

bool Cholesky::factorization(Matrix<double> *A, Vector<double> *p)
{
  FUNCNAME("Cholesky::factorization");

  int n = A->getNumRows();
  TEST_EXIT(n == A->getNumCols())("Matrix is not quadratic!\n");

  // Checking memory for vector P of diagonal elements of factorization.
  static Vector<double> *pT = NULL;

  if (p)
  {
    if (p->getSize() != n)
      p->resize(n);
  }
  else
  {
    if (pT)
    {
      if (pT->getSize() != n)
	pT->resize(n);
    }
    else
      pT = NEW Vector<double>(n);

    p = pT;
  }

  // Constructs the Cholesky factorization A = L*L, with L lower triangular.
  // Only the upper triangle need be given; it is not modified.
  // The Cholesky factor L is stored in the lower triangle of A, except for
  // its diagonal which is stored in P.

  int i, j, k;
  double sum;

  for (i=0; i<n; i++)
  {
    for (j=i; j<n; j++)
    {
      for (sum=(*A)[i][j], k=i-1; k>=0; k--)
	sum -= (*A)[i][k] * (*A)[j][k];

      if (i==j)
      {
	if (sum<=0)
	{
	  MSG("Matrix is (numerically) not positive definite!\n");
	  MSG("Cholesky decomposition does not work; choose another method for solving the system.\n");
	  return false;
	}
	(*p)[i] = sqrt(sum);
      }
      else
	(*A)[j][i] = sum / (*p)[i];
    }
  }

  return true;
}

bool Cholesky::solve(Matrix<double> *A, Vector<double> *b, Vector<double> *x,
		     Vector<double> *p)
{
  FUNCNAME("Cholesky::solve");

  bool success = true;
  int        n = b->getSize();
  TEST_EXIT(n == A->getNumRows())
    ("Dimensions of matrix and vector do not match!\n");

  // Checking memory for solution vector X.
  if (x && (x->getSize() != n))
    x->resize(n);

  if (!x)
    x = NEW Vector<double>(n);

  // Checking vector P.
  static Vector<double> *pT = NULL;

  if (!p || (p->getSize() != n))
  {
    if (pT && pT->getSize() != n)
      DELETE pT;

    if (!pT)
      pT = NEW Vector<double>(n);

    p  = pT;

    success = factorization(A, p);
  }

  // Now solve the system by backsubstitution.
  int i, k;
  double sum;

  for (i=0; i<n; i++)        // Solve L*Y = B, storing Y in X.
  {
    for (sum=(*b)[i], k=i-1; k>=0; k--)
      sum -= (*A)[i][k] * (*x)[k];
    (*x)[i] = sum / (*p)[i];
  }

  for (i=n-1; i>=0; i--)     // Solve L^T*X = Y.
  {
    for (sum=(*x)[i], k=i+1; k<n; k++)
      sum -= (*A)[k][i] * (*x)[k];
    (*x)[i] = sum / (*p)[i];
  }

  return success;
}

bool Cholesky::solve(Matrix<double> *A, Vector<WorldVector<double> > *b,
		     Vector<WorldVector<double> > *x, Vector<double> *p)
{
  FUNCNAME("Cholesky::solve");

  bool success = true;
  int        n = b->getSize();
  TEST_EXIT(n == A->getNumRows())
    ("Dimensions of matrix and vector do not match!\n");

  // Checking memory for solution vector X.
  if (x && (x->getSize() != n))
    x->resize(n);

  if (!x)
    x = NEW Vector<WorldVector<double> >(n);

  // Checking vector P.
  static Vector<double> *pT = NULL;

  if (!p || (p->getSize() != n))
  {
    pT = NEW Vector<double>(n);
    p  = pT;

    success = factorization(A, p);
  }

  // Now solve the system by backsubstitution.
  int i, k;
  WorldVector<double> vec_sum;

  for (i=0; i<n; i++)        // Solve L*Y = B, storing L in X.
  {
    for (vec_sum=(*b)[i], k=i-1; k>=0; k--)
      vec_sum -= (*x)[k] * (*A)[i][k] ;
    (*x)[i] = vec_sum * (1.0/(*p)[i]);
  }

  for (i=n-1; i>=0; i--)     // Solve L^T*X = Y.
  {
    for (vec_sum=(*x)[i], k=i+1; k<n; k++)
      vec_sum -= (*x)[k] * (*A)[k][i] ;
    (*x)[i] = vec_sum * (1.0/(*p)[i]);
  }

  return success;
}