diff --git a/doc/tutorial/ellipt.tex b/doc/tutorial/ellipt.tex
index 40014f48b4a0eaf7953e40414178b43102107401..fe425f35ee042e52115ef2b20f574f7ab8a89d49 100644
--- a/doc/tutorial/ellipt.tex
+++ b/doc/tutorial/ellipt.tex
@@ -187,13 +187,13 @@ The operators now are defined as follows:
 \begin{lstlisting}{}
   // ===== create matrix operator =====
   Operator matrixOperator(ellipt.getFeSpace());
-  matrixOperator.addSecondOrderTerm(new Simple_SOT);
+  matrixOperator.addTerm(new Simple_SOT);
   ellipt.addMatrixOperator(matrixOperator, 0, 0);
 
   // ===== create rhs operator =====
   int degree = ellipt.getFeSpace()->getBasisFcts()->getDegree();
   Operator rhsOperator(ellipt.getFeSpace());
-  rhsOperator.addZeroOrderTerm(new CoordsAtQP_ZOT(new F(degree)));
+  rhsOperator.addTerm(new CoordsAtQP_ZOT(new F(degree)));
   ellipt.addVectorOperator(rhsOperator, 0);
 \end{lstlisting}
 We define a matrix operator (left hand side operator) on the finite
diff --git a/doc/tutorial/heat.tex b/doc/tutorial/heat.tex
index 8d9dbf69704f282924b31d43f3e89e26b88a4a48..f7901bbabcfbc7aeb1ce288c37f323f39b117db5 100644
--- a/doc/tutorial/heat.tex
+++ b/doc/tutorial/heat.tex
@@ -307,7 +307,7 @@ Now, we define the operators:
 
   // create laplace
   Operator A(heatSpace.getFeSpace());
-  A.addSecondOrderTerm(new Simple_SOT);
+  A.addTerm(new Simple_SOT);
   A.setUhOld(heat.getOldSolution(0));
   if (*(heat.getThetaPtr()) != 0.0)
     heatSpace.addMatrixOperator(A, 0, 0, heat.getThetaPtr(), &one);
@@ -329,7 +329,7 @@ operator by \verb+setUhOld+.
 \begin{lstlisting}{}
   // create zero order operator
   Operator C(heatSpace.getFeSpace());
-  C.addZeroOrderTerm(new Simple_ZOT);
+  C.addTerm(new Simple_ZOT);
   C.setUhOld(heat.getOldSolution(0));
   heatSpace.addMatrixOperator(C, 0, 0, heat.getInvTau(), heat.getInvTau());
   heatSpace.addVectorOperator(C, 0, heat.getInvTau(), heat.getInvTau());
@@ -345,7 +345,7 @@ the function \verb+getInvTau()+, which is a member of the class
 \begin{lstlisting}{}
   // create RHS operator
   Operator F(heatSpace.getFeSpace());
-  F.addZeroOrderTerm(new CoordsAtQP_ZOT(rhsFct));
+  F.addTerm(new CoordsAtQP_ZOT(rhsFct));
   heatSpace.addVectorOperator(F, 0);
 \end{lstlisting}
 
diff --git a/doc/tutorial/installation.tex b/doc/tutorial/installation.tex
index 61a1f94ab0f8b4476bb60734c9f3208b9efe6acf..db01106892611515632d7875f0502e75b29a8945 100644
--- a/doc/tutorial/installation.tex
+++ b/doc/tutorial/installation.tex
@@ -31,5 +31,5 @@ For the compilation of the examples, described in this section, the following st
 \end{enumerate}
 To run the example, call:\\
   \verb+> ./<PROG-NAME> <PARAMETER-FILE>+
-\input{makefile.tex}
+%\input{makefile.tex}
 
diff --git a/doc/tutorial/tutorial.pdf b/doc/tutorial/tutorial.pdf
index dfd25df2273db7d6e79b3e0a085fd29cd771137a..b3a8cf91aebbfc206e140b379af353b3a1328013 100644
Binary files a/doc/tutorial/tutorial.pdf and b/doc/tutorial/tutorial.pdf differ
diff --git a/doc/tutorial/vecellipt.tex b/doc/tutorial/vecellipt.tex
index d3f799777757de6d424f17691366c75e6c42f386..b277f67e64e964ae6989e53ed7a59915177cf1b4 100644
--- a/doc/tutorial/vecellipt.tex
+++ b/doc/tutorial/vecellipt.tex
@@ -80,12 +80,12 @@ The operator definitions for the first equation are:
 \begin{lstlisting}{}
   // ===== create operators =====
   Operator matrixOperator00(vecellipt.getFeSpace(0), vecellipt.getFeSpace(0));
-  matrixOperator00.addSecondOrderTerm(new Simple_SOT);
+  matrixOperator00.addTerm(new Simple_SOT);
   vecellipt.addMatrixOperator(&matrixOperator00, 0, 0);
 
   int degree = vecellipt.getFeSpace(0)->getBasisFcts()->getDegree();
   Operator rhsOperator0(vecellipt.getFeSpace(0));
-  rhsOperator0.addZeroOrderTerm(new CoordsAtQP_ZOT(new F(degree)));
+  rhsOperator0.addTerm(new CoordsAtQP_ZOT(new F(degree)));
   vecellipt.addVectorOperator(&rhsOperator0, 0);
 \end{lstlisting}
 
@@ -106,11 +106,11 @@ Now, the operators for the second equation are defined:
 
 \begin{lstlisting}{}
   Operator matrixOperator10(vecellipt.getFeSpace(1), vecellipt.getFeSpace(0));
-  matrixOperator10.addZeroOrderTerm(new Simple_ZOT);
+  matrixOperator10.addTerm(new Simple_ZOT);
   vecellipt.addMatrixOperator(matrixOperator10, 1, 0);
 
   Operator matrixOperator11(vecellipt.getFeSpace(1), vecellipt.getFeSpace(1));
-  matrixOperator11.addZeroOrderTerm(new Simple_ZOT(-1.0));
+  matrixOperator11.addTerm(new Simple_ZOT(-1.0));
   vecellipt.addMatrixOperator(matrixOperator11, 1, 1);
 \end{lstlisting}