Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • iwr/amdis
  • backofen/amdis
  • aland/amdis
3 results
Show changes
Showing
with 2535 additions and 0 deletions
set(MTL_COMMON_CONFIG "${MTL_DIR}/tools/cmake/MTLCommon.cmake")
if( EXISTS ${MTL_COMMON_CONFIG})
include(${MTL_COMMON_CONFIG})
else()
message(ERROR "could not find the common mtl configuration. this is possibly a wrong installation of mtl.")
endif()
-*- text -*-
Software License for MTL
Copyright (c) 2007-2008 The Trustees of Indiana University. All rights reserved.
Authors: Peter Gottschling and Andrew Lumsdaine
This file is part of the Matrix Template Library
See also license.mtl.txt in the distribution.
---------------------------------------------------------------
The Matrix Template Library
Version 4
I. Introduction
===============
The Matrix Template Library is a C++ class library for basic linear
algebra. The MTL is designed for high-performance while at the same
time taking advantage of the generic programming paradigm (ala the
STL) to allow much greater flexibility and breadth of
functionality. Many new and advanced programming techniques were used
in the construction of this library.
The MTL is a low level library in the sense that the user must be
conscious of the matrix type being used, and that all computationally
expensive operations are explicit. The MTL is not a C++ Matlab or
Mathematica. Nevertheless, the interface is designed to be simple and easy
to use.
The matrix types provided include compressed sparse row/column,
traditional row- and column-major dense, Morton-order, and block-recursive
matrices. All matrix types share a common and easy to use interface.
The algorithms consist of the traditional basic linear algebra
routines (from the BLAS level-1 to 3) which includes matrix and vector
arithmetic.
II. Compilers
=============
The Matrix Template Library is written in compliance with the C++ standard
and should be compilable with every compiler compliant with the standard.
It has been tested (and passed) with the following compilers and architectures:
Linux & MacOS
-------------
clang++ 3.0 (32 bit)
g++ 4.1.3 (32 and 64 bit)
g++ 4.2.4 (64bit)
g++ 4.3.4 (32 and 64 bit)
g++ 4.4.3 (32 and 64 bit)
g++ 4.5.1 (64 bit)
g++ 4.6.0 (64 bit)
g++ 4.6.1 (64 bit)
icc 9.1 (32 and 64 bit)
icc 10.0 (32 and 64 bit)
icc 10.1 (32 and 64 bit)
icc 11.0 (32 and 64 bit)
icc 11.1 (32 and 64 bit)
Windows
-------
VC 8.0 from Visual Studio 2005 (32 bit)
VC 9.0 from Visual Studio 2008 (32 bit)
VC 10.0 from Visual Studio 2010 (32 bit)
Compilers that are not standard-compliant (e.g. VC 6.0 from VS 2003) are not subject to support.
III. Documentation
==================
The documentation can be generated with doxygen in the main directory and
is found in the /libs/numeric/mtl/doc. You
can also view the documentation at our web site:
http://www.simunova.com/node/184
At the moment, the documentation illustrates the basic operations and
partially provides a reference manual of some classes and functions.
A detailed description of more features, especially tuning opportunities,
is in the works.
There are also a large number of examples in the /libs/numeric/mtl/examples
directory.
IV. Installation Procedure
==========================
See the file INSTALL in this directory.
V. Contact Information
=======================
The Matrix Template Library is available at the main distribution site:
http://www.mtl4.org
This distribution includes:
- Source code for the MTL (all header files /boost/numeric/mtl)
- Some completing sources (header files /boost/numeric/meta_math)
- A test suite (/libs/numeric/mtl/test)
- Some example code (/libs/numeric/mtl/examples)
Bug reports should be sent to mtl4@osl.iu.edu.
Questions, comments, suggestions, and requests for additional
information should also be directed to mtl4@osl.iu.edu.
Subscribe at:
http://www.osl.iu.edu/mailman/listinfo.cgi/mtl4
import getopt, sys, os, os.path, re, string
######################
# Helper functions
######################
# platform-dependent preprocessor definitions
def macro_flag(env, flag):
if sys.platform == 'win32' and conf.env['CC'] == 'cl':
return '/D' + flag
else:
return '-D' + flag
# add debugging flags to environment
def add_debug(env):
if sys.platform == 'win32' and conf.env['CC'] == 'cl':
env.Append(CCFLAGS = '/Z7')
env.Append(CCFLAGS = '/MDd')
else:
env.Append(CCFLAGS = '-g')
#print macro_flag(env, 'MTL_ASSERT_FOR_THROW')
env.Append(CCFLAGS = macro_flag(env, 'MTL_ASSERT_FOR_THROW'))
def check_g5():
print "platform ", sys.platform
if sys.platform == "darwin" :
system("/usr/bin/system_profiler SPHardwareDataType")
profile = os.popen("system_profiler SPHardwareDataType").read()
print profile
if profile.find("Mac G5") != -1:
print "is G5"
return 1
print "isn't G5"
return None
def add_platform_flags(env):
if env['CC'] == 'cl':
# Turn off some warnings: 1. for problems with CRTP 2. with VC's own headers
# 3. alleged ambiguos assignment
# I hope we find a cleaner way to get rid of this warning
wd = ' /wd4355 /wd4996 /wd4522'
env.Append(CCFLAGS = '/EHa /D_CONSOLE /D_CRT_SECURE_NO_DEPRECATE /DNOMINMAX' +
' /D_SECURE_SCL=0' + wd)
# The following two if shouldn't be necessary
# Note that INCLUDE must be split and LIB must not :-P
if os.environ.has_key('INCLUDE') :
for p in os.environ['INCLUDE'].split(';'):
env.Append(CPPPATH = p)
if os.environ.has_key('LIB') :
env.Append(LIBPATH = os.environ['LIB'])
# add optimization flags to environment
# normal optimization for opt=1, for opt=2 high optimization
# at the moment additional flags are added in this function
# -> this needs to be cleaned up!
def add_opt(env, opt):
if int(opt):
env.Append(CCFLAGS = macro_flag(env, 'NDEBUG'))
if sys.platform == 'win32' and conf.env['CC'] == 'cl':
if int(opt) == 1:
env.Append(CCFLAGS = '/O2 /Ot /Ob2')
elif int(opt) == 2:
env.Append(CCFLAGS = '/Ox')
env.Append(CCFLAGS = '/MD')
else:
if int(opt) == 2:
env.Append(CCFLAGS = '-O3')
if conf.env['CC'] == 'gcc':
env.Append(CCFLAGS = '-ffast-math')
#check_g5()
# env.Append(CCFLAGS = '-pg') # for profiling
# env.Append(LINKFLAGS = '-pg') # for profiling
elif int(opt) == 1:
env.Append(CCFLAGS = '-O2')
# env.Append(CCFLAGS = '-pg') # for profiling
# env.Append(LINKFLAGS = '-pg') # for profiling
if env['CC'] != 'cl':
env.Append(CXXFLAGS = conf.env['CCFLAGS'])
def check_no_long_double(conf):
cc = conf.env['CC']
if cc == 'gcc':
# conf.env.Append(CXXFLAGS = '-Werror -Wreorder -pedantic -Wpointer-arith -Wcast-align -Wcast-qual -Wwrite-strings')
output = os.popen(cc + " --version").read()
st = output.split('\n')[0]
tmatch = re.search(".* \(GCC\) (\d\.\d)", st)
if tmatch and string.atof(tmatch.group(1)) == 4.0:
conf.env.Append(CCFLAGS = '-Wno-long-double')
# conf.env.Append(CXXFLAGS = '-Wno-long-double')
def add_user_opt(env, add_optflag):
env.Append(CCFLAGS = add_optflag)
env.Append(CXXFLAGS = add_optflag)
###############################
# check for installed blas ...
# search different libraries
###############################
def detected_blas(env): # blas library found
env.Append(CPPDEFINES = 'MTL_HAS_BLAS')
def check_for_blas(env):
# symbolname
symname = 'dgemm_'
found_blas = 0
# get command line blas path
blas_path = ARGUMENTS.get('blas_path', '')
if blas_path:
print 'adding ' + blas_path + ' to LIBPATH.'
env.Append(LIBPATH = [ blas_path, blas_path + '/lib/' ])
# extra linker flags for blas
blas_ldflags = ARGUMENTS.get('blas_ldflags', '')
if blas_ldflags:
env.Append(_LIBFLAGS=blas_ldflags.split())
# get command line blas lib
blas_lib = ARGUMENTS.get('blas_lib', '')
if blas_lib:
myenv = env.Copy()
conf = Configure(myenv)
# check supplied lib
print "Checking for lib " + blas_lib + "..."
if conf.CheckLib(blas_lib, symname):
myenv = conf.Finish()
detected_blas(myenv)
myenv.Append(LIBS=[blas_lib])
return myenv
else:
print "Autodetecting BLAS support. See config.log for details!"
########################
# check for acml
myenv = env.Copy()
# new configure object
conf = Configure(myenv)
# additional libs needed for acml
myenv.Append(LIBS=['m', 'g2c'])
if conf.CheckLib('acml', symname):
detected_blas(myenv)
found_blas = 1
myenv = conf.Finish()
if(found_blas == 1):
return myenv
########################
# check for goto
myenv = env.Copy()
# new configure object
conf = Configure(myenv)
# additional libs needed for goto
myenv.Append(LIBS=['pthread'])
# extra linker flags for libgoto
# myenv.Append(_LIBFLAGS=['libs/numeric/mtl/build/xerbla.c'])
myenv.Append(_LIBFLAGS=['libs/numeric/mtl/build/xerbla.o']) # not portable !!!
# myenv.Library('build/xerbla', 'build/xerbla.c')
# myenv.Append(LIBS=['xerbla'])
# myenv.Append(LIBPATH=['build'])
if conf.CheckLib('goto', symname) or conf.CheckLib('goto_opteron-64', symname) or \
conf.CheckLib('goto_coppermine-32', symname) or conf.CheckLib('goto_opteron-32', symname) or \
conf.CheckLib('goto_itanium2-64', symname) or conf.CheckLib('goto_katmai-32', symname) or \
conf.CheckLib('goto_northwood-32', symname) or conf.CheckLib('goto_prescott-32', symname) or \
conf.CheckLib('goto_prescott-64', symname):
detected_blas(myenv)
found_blas = 1
myenv = conf.Finish()
if(found_blas == 1):
return myenv
########################
# check for ATLAS
myenv = env.Copy()
# new configure object
conf = Configure(myenv)
# additional libs needed for goto
myenv.Append(LIBS=['f77blas', 'g2c'])
if conf.CheckLib('atlas', symname):
detected_blas(myenv)
found_blas = 1
myenv = conf.Finish()
if(found_blas == 1):
return myenv
return env
###################################
# Add UMFPACK (extremely simplistic)
###################################
def detected_umfpack(env): # umfpack library found
env.Append(CPPDEFINES = 'MTL_HAS_UMFPACK')
def check_for_umfpack(env):
ufconfig_path = ARGUMENTS.get('ufconfig_path', '')
if ufconfig_path:
env.Prepend(CPPPATH = [ ufconfig_path ])
else:
print "UMFPACK only works with the UFconfig library."
print "Provide ufconfig_path."
print "Building continued without UMFPACK."
return env
amd_path = ARGUMENTS.get('amd_path', '')
if amd_path:
# print 'adding ' + amd_path + '/Lib to LIBPATH.'
env.Append(LIBPATH = [ amd_path + '/Lib' ])
#print 'adding ' + amd_path + '/Include to CPPPATH.'
env.Prepend(CPPPATH = [ amd_path + '/Include' ])
env.Prepend(LIBS=['amd'])
# print "nachher: ", env['CPPPATH']
else:
print "UMFPACK only works with the AMD library."
print "Provide amd_path."
print "Building continued without UMFPACK."
return env
# get command line umfpack path
umfpack_path = ARGUMENTS.get('umfpack_path', '')
if umfpack_path:
# print 'adding ' + umfpack_path + '/Lib to LIBPATH.'
env.Prepend(LIBPATH = [ umfpack_path + '/Lib' ])
env.Prepend(LIBS=['umfpack'])
# print 'adding ' + umfpack_path + '/Include to CPPPATH.'
env.Append(CPPPATH = [ umfpack_path + '/Include' ])
detected_umfpack(env)
return env
######################
# Start setting up env
######################
SourceSignatures('timestamp')
env = Environment()
# env.Decider('timestamp-newer')
conf = Configure(env)
check_no_long_double(conf)
env = conf.Finish()
# Search only for BLAS when explicitly asked for
with_blas = ARGUMENTS.get('with_blas', 0)
if int(with_blas):
env = check_for_blas(env)
# Search only for UMFPACK when explicitly asked for
with_umfpack = ARGUMENTS.get('with_umfpack', 0)
if int(with_umfpack):
env = check_for_umfpack(env)
######################
# Include paths
######################
my_cpppath = []
if os.environ.has_key('MTL_BOOST_ROOT') :
mtlp = os.environ['MTL_BOOST_ROOT']
my_cpppath.append(mtlp)
if os.environ.has_key('BOOST_ROOT') :
my_cpppath.append(os.environ['BOOST_ROOT'])
# In branches, the current directory is prepended
pwd = os.getcwd()
if not os.environ.has_key('MTL_BOOST_ROOT') \
or not hasattr(os.path, 'samefile') or not os.path.samefile(pwd, mtlp):
my_cpppath = [pwd] + my_cpppath
# Add directory of extern libraries if exist
# Not needed currently
#if os.path.exists('extern'):
# my_cpppath.append(os.path.abspath('extern'))
env.Append(CPPPATH = my_cpppath)
# Hack to select compiler explicitly
# env['CXX'] = 'g++-4.1'
######################
# Opt. and debug flags
######################
opts = Options()
opts.Add('opt', 'Set to 1 for normal optimization, 2 for high optimization', 0)
opts.Add('debug', 'Set to 1 for debugging', 0)
opts.Add('check', 'Set to 1 if test programs shall be ran', 0)
opts.Add('with_concepts', 'Set to 1 if test programs shall be compiled with conceptg++ (must be in ~/bin)', 0)
opts.Add('full_warnings', 'Set to 1 to turn on all possible warnings and transform into errors (currently only gcc)', 0)
opts.Add('add_ccflag', 'Add extra CC compiler flags that aren\'t automatically set', '')
opts.Add('add_cxxflag', 'Add extra CXX compiler flags that aren\'t automatically set', '')
opts.Add('add_optflag', 'Add extra optimization flags that aren\'t automatically set', '')
############
# BLAS flags
############
opts.Add('with_blas', 'Link with BLAS (have to given each time :-( until we can save configurations)', 0)
opts.Add('blas_path', 'Add path of blas library', '')
opts.Add('blas_lib', 'Add name of blas library', '')
opts.Add('blas_ldflags', 'Add LDFLAGS for blas library', '')
############
# UMFPACK flags
############
opts.Add('with_umfpack', 'Use UMFPACK. Needs umfpack_path and amd_path.', 0)
opts.Add('umfpack_path', 'Add path of UMFPACK library', '')
opts.Add('amd_path', 'Add path of AMD library', '')
opts.Add('ufconfig_path', 'Add path of AMD library', '')
Help(opts.GenerateHelpText(env))
#env.Append(CCFLAGS = ARGUMENTS.get('debug', ''))
# Hack, for test only
# env.Replace(CXX = '/san/intel/cc/9.0/bin/icc')
# To test with conceptg++
# requires
if int(ARGUMENTS.get('with_concepts', 0)):
env['CXX'] = '~/bin/conceptg++'
env.Append(CCFLAGS = macro_flag(env, 'CONCEPTS_WITHOUT_OVERLOADED_REQUIREMENTS'))
# Full warnings and treat as errors
if int(ARGUMENTS.get('full_warnings', 0)):
if env['CXX'] == 'g++':
env.Append(CXXFLAGS = '-Werror -Wall -Wreorder -pedantic -Wpointer-arith -Wcast-qual -Wcast-align -Wwrite-strings')
full_warnings = ARGUMENTS.get('full_warnings', 0)
# add user-defined CC flags
add_ccflag = ARGUMENTS.get('add_ccflag', '')
if add_ccflag:
env.Append(CCFLAGS = add_ccflag)
# add user-defined CXX flags
add_cxxflag = ARGUMENTS.get('add_cxxflag', '')
if add_cxxflag:
env.Append(CXXFLAGS = add_cxxflag)
add_platform_flags(env)
#create alternative environments
debug_env = env.Copy()
opt_env = env.Copy()
high_opt_env = env.Copy()
# add debugging flags to appropriate environment
debug = ARGUMENTS.get('debug', 0)
if int(debug):
add_debug(env)
add_debug(debug_env)
# add optimization flags to appropriate environment
opt = ARGUMENTS.get('opt', 0)
# Add optimization flags and then copy C flags into C++ flags
add_opt(debug_env, 0)
add_opt(env, int(opt))
add_opt(opt_env, 1)
add_opt(high_opt_env, 2)
# add user-defined optimization flags
add_optflag = ARGUMENTS.get('add_optflag', '')
if add_optflag:
add_user_opt(env, add_optflag)
add_user_opt(opt_env, add_optflag)
add_user_opt(high_opt_env, add_optflag)
# whether test programs should be ran
check = ARGUMENTS.get('check', 0)
#####################
# Sub-directories
#####################
Export('env debug_env opt_env high_opt_env check full_warnings')
SConscript(['libs/numeric/mtl/build/SConscript',
'libs/numeric/mtl/test/SConscript',
'libs/numeric/mtl/test_with_optimization/SConscript',
'libs/numeric/mtl/examples/SConscript',
'libs/numeric/mtl/experimental/SConscript',
'libs/numeric/mtl/timing/SConscript',
'libs/numeric/linear_algebra/test/SConscript',
'libs/numeric/itl/test/SConscript'])
// Software License for MTL
//
// Copyright (c) 2007 The Trustees of Indiana University.
// 2008 Dresden University of Technology and the Trustees of Indiana University.
// 2010 SimuNova UG (haftungsbeschränkt), www.simunova.com.
// All rights reserved.
// Authors: Peter Gottschling and Andrew Lumsdaine
//
// This file is part of the Matrix Template Library
//
// See also license.mtl.txt in the distribution.
#ifndef ITL_BASIC_ITERATION_INCLUDE
#define ITL_BASIC_ITERATION_INCLUDE
#include <iostream>
#include <complex>
#include <string>
namespace itl {
template <class Real>
class basic_iteration
{
public:
typedef basic_iteration self;
typedef Real real;
template <class Vector>
basic_iteration(const Vector& r0, int max_iter_, Real t, Real a = Real(0))
: error(0), i(0), norm_r0(std::abs(two_norm(r0))),
max_iter(max_iter_), rtol_(t), atol_(a), is_finished(false), my_quite(false), my_suppress(false) { }
basic_iteration(Real nb, int max_iter_, Real t, Real a = Real(0))
: error(0), i(0), norm_r0(nb), max_iter(max_iter_), rtol_(t), atol_(a), is_finished(false),
my_quite(false), my_suppress(false) {}
virtual ~basic_iteration() {}
bool check_max()
{
if (i >= max_iter)
error= 1, is_finished= true, err_msg= "Too many iterations.";
return is_finished;
}
template <class Vector>
bool finished(const Vector& r)
{
if (converged(two_norm(r)))
return is_finished= true;
return check_max();
}
bool finished(const Real& r)
{
if (converged(r))
return is_finished= true;
return check_max();
}
template <typename T>
bool finished(const std::complex<T>& r)
{
if (converged(std::abs(r)))
return is_finished= true;
return check_max();
}
bool finished() const { return is_finished; }
template <class T>
int terminate(const T& r) { finished(r); return error; }
bool converged(const Real& r) { resid_= r; return converged(); }
bool converged() const
{
if (norm_r0 == 0)
return resid_ <= atol_; // ignore relative tolerance if |r0| is zero
return resid_ <= rtol_ * norm_r0 || resid_ <= atol_;
}
self& operator++() { ++i; return *this; }
self& operator+=(int n) { i+= n; return *this; }
bool first() const { return i <= 1; }
virtual operator int() const { return error; }
virtual int error_code() const { return error; }
bool is_converged() const { return is_finished && error == 0; }
int iterations() const { return i; }
int max_iterations() const { return max_iter; }
void set_max_iterations(int m) { max_iter= m; }
Real resid() const { return resid_; }
Real relresid() const { return resid_ / norm_r0; }
Real normb() const { return norm_r0; }
Real tol() const { return rtol_; }
Real atol() const { return atol_; }
int fail(int err_code) { error = err_code; return error_code(); }
int fail(int err_code, const std::string& msg)
{ error = err_code; err_msg = msg; return error_code(); }
void set(Real v) { norm_r0 = v; }
void set_quite(bool q) { my_quite= q; }
bool is_quite() const { return my_quite; }
void suppress_resume(bool s) { my_suppress= s; }
bool resume_suppressed() const { return my_suppress; }
void update_progress(const basic_iteration& that)
{
i= that.i;
resid_= that.resid_;
if (that.error > 1) { // copy error except too many iterations
error= that.error;
err_msg= that.err_msg;
is_finished= true;
} else
finished(resid_);
}
protected:
int error, i;
Real norm_r0;
int max_iter;
Real rtol_, atol_, resid_;
std::string err_msg;
bool is_finished, my_quite, my_suppress;
};
} // namespace itl
#endif // ITL_BASIC_ITERATION_INCLUDE
// Software License for MTL
//
// Copyright (c) 2007 The Trustees of Indiana University.
// 2008 Dresden University of Technology and the Trustees of Indiana University.
// 2010 SimuNova UG (haftungsbeschränkt), www.simunova.com.
// All rights reserved.
// Authors: Peter Gottschling and Andrew Lumsdaine
//
// This file is part of the Matrix Template Library2
//
// See also license.mtl.txt in the distribution.
#ifndef ITL_CYCLIC_ITERATION_INCLUDE
#define ITL_CYCLIC_ITERATION_INCLUDE
#include <iostream>
#include <boost/numeric/itl/iteration/basic_iteration.hpp>
namespace itl {
/// Class for iteration control that cyclically prints residual
template <class Real, class OStream = std::ostream>
class cyclic_iteration : public basic_iteration<Real>
{
typedef basic_iteration<Real> super;
typedef cyclic_iteration self;
void print_resid()
{
if (!this->my_quite && this->i % cycle == 0)
if (multi_print || this->i != last_print) { // Avoid multiple print-outs in same iteration
out << "iteration " << this->i << ": resid " << this->resid()
// << " / " << this->norm_r0 << " = " << this->resid() / this->norm_r0 << " (rel. error)"
<< std::endl;
last_print= this->i;
}
}
public:
template <class Vector>
cyclic_iteration(const Vector& r0, int max_iter_, Real tol_, Real atol_ = Real(0), int cycle_ = 100,
OStream& out = std::cout)
: super(r0, max_iter_, tol_, atol_), cycle(cycle_), last_print(-1), multi_print(false), out(out)
{}
cyclic_iteration(Real r0, int max_iter_, Real tol_, Real atol_ = Real(0), int cycle_ = 100,
OStream& out = std::cout)
: super(r0, max_iter_, tol_, atol_), cycle(cycle_), last_print(-1), multi_print(false), out(out)
{}
bool finished() { return super::finished(); }
template <typename T>
bool finished(const T& r)
{
bool ret= super::finished(r);
print_resid();
return ret;
}
inline self& operator++() { ++this->i; return *this; }
inline self& operator+=(int n) { this->i+= n; return *this; }
operator int() const { return error_code(); }
/// Whether the residual is printed multiple times in iteration
bool is_multi_print() const { return multi_print; }
/// Set whether the residual is printed multiple times in iteration
void set_multi_print(bool m) { multi_print= m; }
int error_code() const
{
if (!this->my_suppress)
out << "finished! error code = " << this->error << '\n'
<< this->iterations() << " iterations\n"
<< this->resid() << " is actual final residual. \n"
<< this->relresid() << " is actual relative tolerance achieved. \n"
<< "Relative tol: " << this->rtol_ << " Absolute tol: " << this->atol_ << '\n'
<< "Convergence: " << pow(this->relresid(), 1.0 / double(this->iterations())) << std::endl;
return this->error;
}
protected:
int cycle, last_print;
bool multi_print;
OStream& out;
};
} // namespace itl
#endif // ITL_CYCLIC_ITERATION_INCLUDE
// Software License for MTL
//
// Copyright (c) 2007 The Trustees of Indiana University.
// 2008 Dresden University of Technology and the Trustees of Indiana University.
// 2010 SimuNova UG (haftungsbeschränkt), www.simunova.com.
// All rights reserved.
// Authors: Peter Gottschling and Andrew Lumsdaine
//
// This file is part of the Matrix Template Library
//
// See also license.mtl.txt in the distribution.
#ifndef ITL_NOISY_ITERATION_INCLUDE
#define ITL_NOISY_ITERATION_INCLUDE
#include <iostream>
#include <boost/numeric/itl/iteration/cyclic_iteration.hpp>
namespace itl {
template <class Real, class OStream = std::ostream>
class noisy_iteration : public cyclic_iteration<Real, OStream>
{
public:
template <class Vector>
noisy_iteration(const Vector& r0, int max_iter_, Real tol_, Real atol_ = Real(0),
OStream& out = std::cout)
: cyclic_iteration<Real, OStream>(r0, max_iter_, tol_, atol_, 1, out)
{}
};
} // namespace itl
#endif // ITL_NOISY_ITERATION_INCLUDE
// Software License for MTL
//
// Copyright (c) 2007 The Trustees of Indiana University.
// 2008 Dresden University of Technology and the Trustees of Indiana University.
// 2010 SimuNova UG (haftungsbeschränkt), www.simunova.com.
// All rights reserved.
// Authors: Peter Gottschling and Andrew Lumsdaine
//
// This file is part of the Matrix Template Library
//
// See also license.mtl.txt in the distribution.
#ifndef ITL_ITL_INCLUDE
#define ITL_ITL_INCLUDE
#include <boost/numeric/itl/iteration/basic_iteration.hpp>
#include <boost/numeric/itl/iteration/cyclic_iteration.hpp>
#include <boost/numeric/itl/iteration/noisy_iteration.hpp>
#include <boost/numeric/itl/krylov/cg.hpp>
#include <boost/numeric/itl/krylov/cgs.hpp>
#include <boost/numeric/itl/krylov/bicg.hpp>
#include <boost/numeric/itl/krylov/bicgstab.hpp>
#include <boost/numeric/itl/krylov/bicgstab_2.hpp>
#include <boost/numeric/itl/krylov/bicgstab_ell.hpp>
#include <boost/numeric/itl/krylov/fsm.hpp>
#include <boost/numeric/itl/krylov/idr_s.hpp>
#include <boost/numeric/itl/krylov/gmres.hpp>
#include <boost/numeric/itl/krylov/tfqmr.hpp>
#include <boost/numeric/itl/krylov/qmr.hpp>
#include <boost/numeric/itl/krylov/repeating_solver.hpp>
#include <boost/numeric/itl/minimization/quasi_newton.hpp>
#include <boost/numeric/itl/pc/identity.hpp>
#include <boost/numeric/itl/pc/is_identity.hpp>
#include <boost/numeric/itl/pc/diagonal.hpp>
#include <boost/numeric/itl/pc/ilu.hpp>
#include <boost/numeric/itl/pc/ilu_0.hpp>
#include <boost/numeric/itl/pc/ilut.hpp>
#include <boost/numeric/itl/pc/ic_0.hpp>
#include <boost/numeric/itl/pc/imf_preconditioner.hpp>
#include <boost/numeric/itl/pc/imf_algorithms.hpp>
#include <boost/numeric/itl/pc/sub_matrix_pc.hpp>
#include <boost/numeric/itl/pc/concat.hpp>
#include <boost/numeric/itl/smoother/gauss_seidel.hpp>
#include <boost/numeric/itl/stepper/armijo.hpp>
#include <boost/numeric/itl/stepper/wolf.hpp>
#include <boost/numeric/itl/updater/bfgs.hpp>
#include <boost/numeric/itl/updater/broyden.hpp>
#include <boost/numeric/itl/updater/dfp.hpp>
#include <boost/numeric/itl/updater/psb.hpp>
#include <boost/numeric/itl/updater/sr1.hpp>
#endif // ITL_ITL_INCLUDE
// Software License for MTL
//
// Copyright (c) 2007 The Trustees of Indiana University.
// 2008 Dresden University of Technology and the Trustees of Indiana University.
// 2010 SimuNova UG (haftungsbeschränkt), www.simunova.com.
// All rights reserved.
// Authors: Peter Gottschling and Andrew Lumsdaine
//
// This file is part of the Matrix Template Library
//
// See also license.mtl.txt in the distribution.
#ifndef ITL_ITL_FWD_INCLUDE
#define ITL_ITL_FWD_INCLUDE
#include <boost/numeric/mtl/concept/collection.hpp>
namespace itl {
template <class Real> class basic_iteration;
template <class Real, class OStream> class cyclic_iteration;
template <class Real, class OStream> class noisy_iteration;
template <typename Solver, typename VectorIn, bool trans> class solver_proxy;
namespace pc {
template <typename PC, typename Vector, bool> struct solver;
template <typename Matrix, typename Value> class identity;
// template <typename Matrix, typename Value, typename Vector> Vector solve(const identity<Matrix>&, const Vector& x);
// template <typename Matrix, typename Vector> Vector adjoint_solve(const identity<Matrix>&, const Vector& x);
template <typename Matrix, typename Value> class diagonal;
// template <typename Matrix, typename Vector> Vector solve(const diagonal<Matrix>& P, const Vector& x);
// template <typename Matrix, typename Vector> Vector adjoint_solve(const diagonal<Matrix>& P, const Vector& x);
template <typename Matrix, typename Factorizer, typename Value> class ilu;
template <typename Matrix, typename Value> class ilu_0; // Maybe we should declare the default here???
template <typename Matrix, typename Value> class ilut; // Maybe we should declare the default here???
// template <typename Matrix, typename Vector> Vector solve(const ilu_0<Matrix>& P, const Vector& x);
// template <typename Matrix, typename Vector> Vector adjoint_solve(const ilu_0<Matrix>& P, const Vector& x);
template <typename Matrix, typename Value> class ic_0; // Maybe we should declare the default here???
// template <typename Matrix, typename Vector> Vector solve(const ic_0<Matrix>& P, const Vector& x);
// template <typename Matrix, typename Value, typename Vector> Vector adjoint_solve(const ic_0<Matrix, Value>& P, const Vector& x);
} // namespace pc
template < typename LinearOperator, typename HilbertSpaceX, typename HilbertSpaceB,
typename Preconditioner, typename Iteration >
int cg(const LinearOperator& A, HilbertSpaceX& x, const HilbertSpaceB& b,
const Preconditioner& M, Iteration& iter);
template < typename LinearOperator, typename Preconditioner= pc::identity<LinearOperator, double>,
typename RightPreconditioner= pc::identity<LinearOperator, double> >
class cg_solver;
template < typename LinearOperator, typename Vector,
typename Preconditioner, typename Iteration >
int bicg(const LinearOperator &A, Vector &x, const Vector &b,
const Preconditioner &M, Iteration& iter);
template < class LinearOperator, class HilbertSpaceX, class HilbertSpaceB,
class Preconditioner, class Iteration >
int bicgstab(const LinearOperator& A, HilbertSpaceX& x, const HilbertSpaceB& b,
const Preconditioner& M, Iteration& iter);
template < class LinearOperator, class HilbertSpaceX, class HilbertSpaceB,
class Preconditioner, class Iteration >
int bicgstab_2(const LinearOperator& A, HilbertSpaceX& x, const HilbertSpaceB& b,
const Preconditioner& M, Iteration& iter);
template < typename LinearOperator, typename Vector,
typename LeftPreconditioner, typename RightPreconditioner,
typename Iteration >
int bicgstab_ell(const LinearOperator &A, Vector &x, const Vector &b,
const LeftPreconditioner &L, const RightPreconditioner &R,
Iteration& iter, size_t l);
template < typename LinearOperator, typename Preconditioner= pc::identity<LinearOperator, double>,
typename RightPreconditioner= pc::identity<LinearOperator, double> >
class bicgstab_ell_solver;
template <typename Solver, unsigned N, bool Stored= false>
class repeating_solver;
} // namespace itl
#endif // ITL_ITL_FWD_INCLUDE
// Software License for MTL
//
// Copyright (c) 2007 The Trustees of Indiana University.
// 2008 Dresden University of Technology and the Trustees of Indiana University.
// 2010 SimuNova UG (haftungsbeschränkt), www.simunova.com.
// All rights reserved.
// Authors: Peter Gottschling and Andrew Lumsdaine
//
// This file is part of the Matrix Template Library
//
// See also license.mtl.txt in the distribution.
#ifndef ITL_BICG_INCLUDE
#define ITL_BICG_INCLUDE
#include <complex>
#include <boost/numeric/itl/itl_fwd.hpp>
#include <boost/numeric/mtl/concept/collection.hpp>
#include <boost/numeric/mtl/operation/conj.hpp>
#include <boost/numeric/mtl/operation/resource.hpp>
#include <boost/numeric/mtl/interface/vpt.hpp>
namespace itl {
/// Bi-Conjugate Gradient
template < typename LinearOperator, typename Vector,
typename Preconditioner, typename Iteration >
int bicg(const LinearOperator &A, Vector &x, const Vector &b,
const Preconditioner &M, Iteration& iter)
{
mtl::vampir_trace<7003> tracer;
using mtl::conj;
typedef typename mtl::Collection<Vector>::value_type Scalar;
Scalar rho_1(0), rho_2(0), alpha(0), beta(0);
Vector r(b - A * x), z(resource(x)), p(resource(x)), q(resource(x)),
r_tilde(r), z_tilde(resource(x)), p_tilde(resource(x)), q_tilde(resource(x));
while ( ! iter.finished(r)) {
++iter;
z= solve(M, r);
z_tilde= adjoint_solve(M, r_tilde);
rho_1= dot(z_tilde, z);
if (rho_1 == 0.) return iter.fail(2, "bicg breakdown");
if (iter.first()) {
p= z;
p_tilde= z_tilde;
} else {
beta= rho_1 / rho_2;
p= z + beta * p;
p_tilde= z_tilde + conj(beta) * p_tilde;
}
q= A * p;
q_tilde= adjoint(A) * p_tilde;
alpha= rho_1 / dot(p_tilde, q);
x+= alpha * p;
r-= alpha * q;
r_tilde-= conj(alpha) * q_tilde;
rho_2= rho_1;
}
return iter;
}
/// Solver class for BiCG method; right preconditioner ignored (prints warning if not identity)
template < typename LinearOperator, typename Preconditioner= pc::identity<LinearOperator>,
typename RightPreconditioner= pc::identity<LinearOperator> >
class bicg_solver
{
public:
/// Construct solver from a linear operator; generate (left) preconditioner from it
explicit bicg_solver(const LinearOperator& A) : A(A), L(A)
{
if (!pc::static_is_identity<RightPreconditioner>::value)
std::cerr << "Right Preconditioner ignored!" << std::endl;
}
/// Construct solver from a linear operator and (left) preconditioner
bicg_solver(const LinearOperator& A, const Preconditioner& L) : A(A), L(L)
{
if (!pc::static_is_identity<RightPreconditioner>::value)
std::cerr << "Right Preconditioner ignored!" << std::endl;
}
/// Solve linear system approximately as specified by \p iter
template < typename HilbertSpaceB, typename HilbertSpaceX, typename Iteration >
int solve(const HilbertSpaceB& b, HilbertSpaceX& x, Iteration& iter) const
{
return bicg(A, x, b, L, iter);
}
/// Perform one bicg iteration on linear system
template < typename HilbertSpaceB, typename HilbertSpaceX >
int solve(const HilbertSpaceB& b, HilbertSpaceX& x) const
{
itl::basic_iteration<double> iter(x, 1, 0, 0);
return bicg(A, x, b, L, iter);
}
private:
const LinearOperator& A;
Preconditioner L;
};
} // namespace itl
#endif // ITL_BICG_INCLUDE
// Software License for MTL
//
// Copyright (c) 2007 The Trustees of Indiana University.
// 2008 Dresden University of Technology and the Trustees of Indiana University.
// 2010 SimuNova UG (haftungsbeschränkt), www.simunova.com.
// All rights reserved.
// Authors: Peter Gottschling and Andrew Lumsdaine
//
// This file is part of the Matrix Template Library
//
// See also license.mtl.txt in the distribution.
#ifndef ITL_BICGSTAB_INCLUDE
#define ITL_BICGSTAB_INCLUDE
#include <boost/numeric/mtl/concept/collection.hpp>
#include <boost/numeric/mtl/utility/exception.hpp>
#include <boost/numeric/itl/utility/exception.hpp>
#include <boost/numeric/mtl/operation/resource.hpp>
#include <boost/numeric/mtl/interface/vpt.hpp>
namespace itl {
/// Bi-Conjugate Gradient Stabilized
template < class LinearOperator, class HilbertSpaceX, class HilbertSpaceB,
class Preconditioner, class Iteration >
int bicgstab(const LinearOperator& A, HilbertSpaceX& x, const HilbertSpaceB& b,
const Preconditioner& M, Iteration& iter)
{
typedef typename mtl::Collection<HilbertSpaceX>::value_type Scalar;
typedef HilbertSpaceX Vector;
mtl::vampir_trace<7004> tracer;
Scalar rho_1(0), rho_2(0), alpha(0), beta(0), gamma, omega(0);
Vector p(resource(x)), phat(resource(x)), s(resource(x)), shat(resource(x)),
t(resource(x)), v(resource(x)), r(resource(x)), rtilde(resource(x));
r = b - A * x;
rtilde = r;
while (! iter.finished(r)) {
++iter;
rho_1 = dot(rtilde, r);
MTL_THROW_IF(rho_1 == 0.0, unexpected_orthogonality());
if (iter.first())
p = r;
else {
MTL_THROW_IF(omega == 0.0, unexpected_orthogonality());
beta = (rho_1 / rho_2) * (alpha / omega);
p = r + beta * (p - omega * v);
}
phat = solve(M, p);
v = A * phat;
gamma = dot(rtilde, v);
MTL_THROW_IF(gamma == 0.0, unexpected_orthogonality());
alpha = rho_1 / gamma;
s = r - alpha * v;
if (iter.finished(s)) {
x += alpha * phat;
break;
}
shat = solve(M, s);
t = A * shat;
omega = dot(t, s) / dot(t, t);
x += omega * shat + alpha * phat;
r = s - omega * t;
rho_2 = rho_1;
}
return iter;
}
/// Solver class for BiCGStab method; right preconditioner ignored (prints warning if not identity)
template < typename LinearOperator, typename Preconditioner= pc::identity<LinearOperator>,
typename RightPreconditioner= pc::identity<LinearOperator> >
class bicgstab_solver
{
public:
/// Construct solver from a linear operator; generate (left) preconditioner from it
explicit bicgstab_solver(const LinearOperator& A) : A(A), L(A)
{
if (!pc::static_is_identity<RightPreconditioner>::value)
std::cerr << "Right Preconditioner ignored!" << std::endl;
}
/// Construct solver from a linear operator and (left) preconditioner
bicgstab_solver(const LinearOperator& A, const Preconditioner& L) : A(A), L(L)
{
if (!pc::static_is_identity<RightPreconditioner>::value)
std::cerr << "Right Preconditioner ignored!" << std::endl;
}
/// Solve linear system approximately as specified by \p iter
template < typename HilbertSpaceB, typename HilbertSpaceX, typename Iteration >
int solve(const HilbertSpaceB& b, HilbertSpaceX& x, Iteration& iter) const
{
return bicgstab(A, x, b, L, iter);
}
/// Perform one BiCGStab iteration on linear system
template < typename HilbertSpaceB, typename HilbertSpaceX >
int solve(const HilbertSpaceB& b, HilbertSpaceX& x) const
{
itl::basic_iteration<double> iter(x, 1, 0, 0);
return solve(b, x, iter);
}
private:
const LinearOperator& A;
Preconditioner L;
};
} // namespace itl
#endif // ITL_BICGSTAB_INCLUDE
// Software License for MTL
//
// Copyright (c) 2007 The Trustees of Indiana University.
// 2008 Dresden University of Technology and the Trustees of Indiana University.
// 2010 SimuNova UG (haftungsbeschränkt), www.simunova.com.
// All rights reserved.
// Authors: Peter Gottschling and Andrew Lumsdaine
//
// This file is part of the Matrix Template Library
//
// See also license.mtl.txt in the distribution.
#ifndef ITL_BICGSTAB_2_INCLUDE
#define ITL_BICGSTAB_2_INCLUDE
#include <boost/numeric/mtl/concept/collection.hpp>
#include <boost/numeric/mtl/utility/exception.hpp>
#include <boost/numeric/linear_algebra/identity.hpp>
#include <boost/numeric/mtl/operation/resource.hpp>
#include <boost/numeric/mtl/operation/size.hpp>
#include <boost/numeric/itl/pc/identity.hpp>
#include <boost/numeric/mtl/vector/dense_vector.hpp>
#include <boost/numeric/mtl/matrix/strict_upper.hpp>
#include <boost/numeric/mtl/matrix/dense2D.hpp>
#include <boost/numeric/mtl/utility/irange.hpp>
#include <boost/numeric/mtl/operation/orth.hpp>
#include <boost/numeric/mtl/operation/lazy.hpp>
#include <boost/numeric/mtl/interface/vpt.hpp>
namespace itl {
/// Bi-Conjugate Gradient Stabilized(2)
template < typename LinearOperator, typename Vector,
typename Preconditioner, typename Iteration >
int bicgstab_2(const LinearOperator &A, Vector &x, const Vector &b,
const Preconditioner &L, Iteration& iter)
{
mtl::vampir_trace<7005> tracer;
using mtl::size; using mtl::irange; using mtl::imax; using mtl::matrix::strict_upper; using mtl::lazy;
typedef typename mtl::Collection<Vector>::value_type Scalar;
typedef typename mtl::Collection<Vector>::size_type Size;
if (size(b) == 0) throw mtl::logic_error("empty rhs vector");
const size_t l= 2;
const Scalar zero= math::zero(Scalar()), one= math::one(Scalar());
Vector x0(resource(x)), y(resource(x));
mtl::vector::dense_vector<Vector> r_hat(l+1,Vector(resource(x))), u_hat(l+1,Vector(resource(x)));
// shift problem
x0= zero;
r_hat[0]= b;
if (two_norm(x) != zero) {
r_hat[0]-= A * x;
x0= x;
x= zero;
}
Vector r0_tilde(r_hat[0]/two_norm(r_hat[0]));
y= solve(L, r_hat[0]);
r_hat[0]= y;
u_hat[0]= zero;
Scalar rho_0(one), rho_1(zero), alpha(zero), Gamma(zero), beta(zero), omega(one);
mtl::matrix::dense2D<Scalar> tau(l+1, l+1);
mtl::vector::dense_vector<Scalar> sigma(l+1), gamma(l+1), gamma_a(l+1), gamma_aa(l+1);
while (! iter.finished(r_hat[0])) {
++iter;
rho_0= -omega * rho_0;
for (Size j= 0; j < 2; ++j) {
rho_1= dot(r0_tilde, r_hat[j]);
beta= alpha * rho_1/rho_0; rho_0= rho_1;
for (Size i= 0; i <= j; ++i)
u_hat[i]= r_hat[i] - beta * u_hat[i];
y= A * u_hat[j];
u_hat[j+1]= solve(L, y);
Gamma= dot(r0_tilde, u_hat[j+1]);
alpha= rho_0 / Gamma;
for (Size i= 0; i <= j; ++i)
r_hat[i]-= alpha * u_hat[i+1];
if (iter.finished(r_hat[j])) {
x+= x0;
return iter;
}
y= A * r_hat[j];
r_hat[j+1]= solve(L, y);
x+= alpha * u_hat[0];
}
// mod GS (MR part)
irange i1m(1, imax);
mtl::vector::dense_vector<Vector> r_hat_tail(r_hat[i1m]);
tau[i1m][i1m]= orthogonalize_factors(r_hat_tail);
for (Size j= 1; j <= l; ++j)
gamma_a[j]= dot(r_hat[j], r_hat[0]) / tau[j][j];
gamma[l]= gamma_a[l]; omega= gamma[l];
if (omega == zero) return iter.fail(3, "bicg breakdown #2");
// is this something like a tri-solve?
for (Size j= l-1; j > 0; --j) {
Scalar sum= zero;
for (Size i=j+1;i<=l;++i)
sum += tau[j][i] * gamma[i];
gamma[j] = gamma_a[j] - sum;
}
gamma_aa[irange(1, l)]= strict_upper(tau[irange(1, l)][irange(1, l)]) * gamma[irange(2, l+1)] + gamma[irange(2, l+1)];
x+= gamma[1] * r_hat[0];
r_hat[0]-= gamma_a[l] * r_hat[l];
u_hat[0]-= gamma[l] * u_hat[l];
for (Size j=1; j < l; ++j) {
u_hat[0] -= gamma[j] * u_hat[j];
x+= gamma_aa[j] * r_hat[j];
r_hat[0] -= gamma_a[j] * r_hat[j];
}
}
x+= x0; // convert to real solution and undo shift
return iter;
}
/// Solver class for BiCGStab(2) method; right preconditioner ignored (prints warning if not identity)
template < typename LinearOperator, typename Preconditioner= pc::identity<LinearOperator>,
typename RightPreconditioner= pc::identity<LinearOperator> >
class bicgstab_2_solver
{
public:
/// Construct solver from a linear operator; generate (left) preconditioner from it
explicit bicgstab_2_solver(const LinearOperator& A) : A(A), L(A)
{
if (!pc::static_is_identity<RightPreconditioner>::value)
std::cerr << "Right Preconditioner ignored!" << std::endl;
}
/// Construct solver from a linear operator and (left) preconditioner
bicgstab_2_solver(const LinearOperator& A, const Preconditioner& L) : A(A), L(L)
{
if (!pc::static_is_identity<RightPreconditioner>::value)
std::cerr << "Right Preconditioner ignored!" << std::endl;
}
/// Solve linear system approximately as specified by \p iter
template < typename HilbertSpaceB, typename HilbertSpaceX, typename Iteration >
int solve(const HilbertSpaceB& b, HilbertSpaceX& x, Iteration& iter) const
{
return bicgstab_2(A, x, b, L, iter);
}
/// Perform one BiCGStab(2) iteration on linear system
template < typename HilbertSpaceB, typename HilbertSpaceX >
int solve(const HilbertSpaceB& b, HilbertSpaceX& x) const
{
itl::basic_iteration<double> iter(x, 1, 0, 0);
return bicgstab_2(A, x, b, L, iter);
}
private:
const LinearOperator& A;
Preconditioner L;
};
} // namespace itl
#endif // ITL_BICGSTAB_2_INCLUDE
// Software License for MTL
//
// Copyright (c) 2007 The Trustees of Indiana University.
// 2008 Dresden University of Technology and the Trustees of Indiana University.
// 2010 SimuNova UG (haftungsbeschränkt), www.simunova.com.
// All rights reserved.
// Authors: Peter Gottschling and Andrew Lumsdaine
//
// This file is part of the Matrix Template Library
//
// See also license.mtl.txt in the distribution.
// Written by Jan Bos
// Edited by Peter Gottschling
#ifndef ITL_BICGSTAB_ELL_INCLUDE
#define ITL_BICGSTAB_ELL_INCLUDE
#include <boost/numeric/itl/itl_fwd.hpp>
#include <boost/numeric/mtl/concept/collection.hpp>
#include <boost/numeric/mtl/vector/dense_vector.hpp>
#include <boost/numeric/mtl/matrix/strict_upper.hpp>
#include <boost/numeric/mtl/matrix/dense2D.hpp>
#include <boost/numeric/mtl/utility/irange.hpp>
#include <boost/numeric/mtl/operation/orth.hpp>
#include <boost/numeric/mtl/utility/exception.hpp>
#include <boost/numeric/linear_algebra/identity.hpp>
#include <boost/numeric/mtl/operation/resource.hpp>
#include <boost/numeric/mtl/operation/size.hpp>
#include <boost/numeric/mtl/interface/vpt.hpp>
namespace itl {
/// Bi-Conjugate Gradient Stabilized(ell)
template < typename LinearOperator, typename Vector,
typename LeftPreconditioner, typename RightPreconditioner,
typename Iteration >
int bicgstab_ell(const LinearOperator &A, Vector &x, const Vector &b,
const LeftPreconditioner &L, const RightPreconditioner &R,
Iteration& iter, size_t l)
{
mtl::vampir_trace<7006> tracer;
using mtl::size; using mtl::irange; using mtl::imax; using mtl::matrix::strict_upper;
typedef typename mtl::Collection<Vector>::value_type Scalar;
typedef typename mtl::Collection<Vector>::size_type Size;
if (size(b) == 0) throw mtl::logic_error("empty rhs vector");
const Scalar zero= math::zero(Scalar()), one= math::one(Scalar());
Vector x0(resource(x)), y(resource(x));
mtl::vector::dense_vector<Vector> r_hat(l+1,Vector(resource(x))), u_hat(l+1,Vector(resource(x)));
// shift problem
x0= zero;
r_hat[0]= b;
if (two_norm(x) != zero) {
r_hat[0]-= A * x;
x0= x;
x= zero;
}
Vector r0_tilde(r_hat[0]/two_norm(r_hat[0]));
y= solve(L, r_hat[0]);
r_hat[0]= y;
u_hat[0]= zero;
Scalar rho_0(one), rho_1(zero), alpha(zero), Gamma(zero), beta(zero), omega(one);
mtl::matrix::dense2D<Scalar> tau(l+1, l+1);
mtl::vector::dense_vector<Scalar> sigma(l+1), gamma(l+1), gamma_a(l+1), gamma_aa(l+1);
while (! iter.finished(r_hat[0])) {
++iter;
rho_0= -omega * rho_0;
for (Size j= 0; j < l; ++j) {
rho_1= dot(r0_tilde, r_hat[j]);
beta= alpha * rho_1/rho_0; rho_0= rho_1;
for (Size i= 0; i <= j; ++i)
u_hat[i]= r_hat[i] - beta * u_hat[i];
y= A * Vector(solve(R, u_hat[j]));
u_hat[j+1]= solve(L, y);
Gamma= dot(r0_tilde, u_hat[j+1]);
alpha= rho_0 / Gamma;
for (Size i= 0; i <= j; ++i)
r_hat[i]-= alpha * u_hat[i+1];
if (iter.finished(r_hat[j])) {
x= solve(R, x);
x+= x0;
return iter;
}
r_hat[j+1]= solve(R, r_hat[j]);
y= A * r_hat[j+1];
r_hat[j+1]= solve(L, y);
x+= alpha * u_hat[0];
}
// mod GS (MR part)
irange i1m(1, imax);
mtl::vector::dense_vector<Vector> r_hat_tail(r_hat[i1m]);
tau[i1m][i1m]= orthogonalize_factors(r_hat_tail);
for (Size j= 1; j <= l; ++j)
gamma_a[j]= dot(r_hat[j], r_hat[0]) / tau[j][j];
gamma[l]= gamma_a[l]; omega= gamma[l];
if (omega == zero) return iter.fail(3, "bicg breakdown #2");
// is this something like a tri-solve?
for (Size j= l-1; j > 0; --j) {
Scalar sum= zero;
for (Size i=j+1;i<=l;++i)
sum += tau[j][i] * gamma[i];
gamma[j] = gamma_a[j] - sum;
}
gamma_aa[irange(1, l)]= strict_upper(tau[irange(1, l)][irange(1, l)]) * gamma[irange(2, l+1)] + gamma[irange(2, l+1)];
x+= gamma[1] * r_hat[0];
r_hat[0]-= gamma_a[l] * r_hat[l];
u_hat[0]-= gamma[l] * u_hat[l];
for (Size j=1; j < l; ++j) {
u_hat[0] -= gamma[j] * u_hat[j];
x+= gamma_aa[j] * r_hat[j];
r_hat[0] -= gamma_a[j] * r_hat[j];
}
}
x= solve(R, x); x+= x0; // convert to real solution and undo shift
return iter;
}
/// Solver class for BiCGStab(ell) method; right preconditioner ignored (prints warning if not identity)
template < typename LinearOperator, typename Preconditioner,
typename RightPreconditioner>
class bicgstab_ell_solver
{
public:
/// Construct solver from a linear operator; generate (left) preconditioner from it
explicit bicgstab_ell_solver(const LinearOperator& A, size_t l= 8) : A(A), l(l), L(A), R(A) {}
/// Construct solver from a linear operator and left preconditioner
bicgstab_ell_solver(const LinearOperator& A, size_t l, const Preconditioner& L) : A(A), l(l), L(L), R(A) {}
/// Construct solver from a linear operator and left preconditioner
bicgstab_ell_solver(const LinearOperator& A, size_t l, const Preconditioner& L, const RightPreconditioner& R)
: A(A), l(l), L(L), R(R) {}
/// Solve linear system approximately as specified by \p iter
template < typename HilbertSpaceB, typename HilbertSpaceX, typename Iteration >
int solve(const HilbertSpaceB& b, HilbertSpaceX& x, Iteration& iter) const
{
return bicgstab_ell(A, x, b, L, R, iter, l);
}
/// Perform one BiCGStab(ell) iteration on linear system
template < typename HilbertSpaceB, typename HilbertSpaceX >
int solve(const HilbertSpaceB& b, HilbertSpaceX& x) const
{
itl::basic_iteration<double> iter(x, 1, 0, 0);
return solve(b, x, iter);
}
private:
const LinearOperator& A;
size_t l;
Preconditioner L;
RightPreconditioner R;
};
} // namespace itl
#endif // ITL_BICGSTAB_ELL_INCLUDE
// Software License for MTL
//
// Copyright (c) 2007 The Trustees of Indiana University.
// 2008 Dresden University of Technology and the Trustees of Indiana University.
// 2010 SimuNova UG (haftungsbeschränkt), www.simunova.com.
// All rights reserved.
// Authors: Peter Gottschling and Andrew Lumsdaine
//
// This file is part of the Matrix Template Library
//
// See also license.mtl.txt in the distribution.
#ifndef ITL_CG_INCLUDE
#define ITL_CG_INCLUDE
#include <cmath>
#include <cassert>
#include <iostream>
#include <boost/mpl/bool.hpp>
#include <boost/numeric/mtl/concept/collection.hpp>
#include <boost/numeric/itl/itl_fwd.hpp>
#include <boost/numeric/itl/iteration/basic_iteration.hpp>
#include <boost/numeric/itl/pc/identity.hpp>
#include <boost/numeric/itl/pc/is_identity.hpp>
#include <boost/numeric/mtl/operation/dot.hpp>
#include <boost/numeric/mtl/operation/unary_dot.hpp>
#include <boost/numeric/mtl/operation/conj.hpp>
#include <boost/numeric/mtl/operation/resource.hpp>
#include <boost/numeric/mtl/operation/lazy.hpp>
#include <boost/numeric/mtl/interface/vpt.hpp>
namespace itl {
/// Conjugate Gradients without preconditioning
template < typename LinearOperator, typename HilbertSpaceX, typename HilbertSpaceB,
typename Iteration >
int cg(const LinearOperator& A, HilbertSpaceX& x, const HilbertSpaceB& b,
Iteration& iter)
{
mtl::vampir_trace<7001> tracer;
using std::abs; using mtl::conj; using mtl::lazy;
typedef HilbertSpaceX Vector;
typedef typename mtl::Collection<HilbertSpaceX>::value_type Scalar;
typedef typename Iteration::real Real;
Scalar rho(0), rho_1(0), alpha(0), alpha_1(0);
Vector p(resource(x)), q(resource(x)), r(resource(x)), z(resource(x));
r = b - A*x;
rho = dot(r, r);
while (! iter.finished(Real(sqrt(abs(rho))))) {
++iter;
if (iter.first())
p = r;
else
p = r + (rho / rho_1) * p;
// q = A * p; alpha = rho / dot(p, q);
(lazy(q)= A * p) || (lazy(alpha_1)= lazy_dot(p, q));
alpha= rho / alpha_1;
x += alpha * p;
rho_1 = rho;
(lazy(r) -= alpha * q) || (lazy(rho) = lazy_unary_dot(r));
}
return iter;
}
/// Conjugate Gradients
template < typename LinearOperator, typename HilbertSpaceX, typename HilbertSpaceB,
typename Preconditioner, typename Iteration >
int cg(const LinearOperator& A, HilbertSpaceX& x, const HilbertSpaceB& b,
const Preconditioner& L, Iteration& iter)
{
using pc::is_identity;
if (is_identity(L))
return cg(A, x, b, iter);
mtl::vampir_trace<7002> tracer;
using std::abs; using mtl::conj; using mtl::lazy;
typedef HilbertSpaceX Vector;
typedef typename mtl::Collection<HilbertSpaceX>::value_type Scalar;
typedef typename Iteration::real Real;
Scalar rho(0), rho_1(0), rr, alpha(0), alpha_1;
Vector p(resource(x)), q(resource(x)), r(resource(x)), z(resource(x));
r = b - A*x;
rr = dot(r, r);
while (! iter.finished(Real(sqrt(abs(rr))))) {
++iter;
(lazy(z)= solve(L, r)) || (lazy(rho)= lazy_dot(r, z));
if (iter.first())
p = z;
else
p = z + (rho / rho_1) * p;
(lazy(q)= A * p) || (lazy(alpha_1)= lazy_dot(p, q));
alpha= rho / alpha_1;
x += alpha * p;
rho_1 = rho;
(lazy(r) -= alpha * q) || (lazy(rr) = lazy_unary_dot(r));
}
return iter;
}
/// Conjugate Gradients with ignored right preconditioner to unify interface
template < typename LinearOperator, typename HilbertSpaceX, typename HilbertSpaceB,
typename Preconditioner, typename RightPreconditioner, typename Iteration >
int cg(const LinearOperator& A, HilbertSpaceX& x, const HilbertSpaceB& b,
const Preconditioner& L, const RightPreconditioner&, Iteration& iter)
{
return cg(A, x, b, L, iter);
}
/// Solver class for CG method; right preconditioner ignored (prints warning if not identity)
template < typename LinearOperator, typename Preconditioner,
typename RightPreconditioner>
class cg_solver
{
public:
/// Construct solver from a linear operator; generate (left) preconditioner from it
explicit cg_solver(const LinearOperator& A) : A(A), L(A)
{
if (!pc::static_is_identity<RightPreconditioner>::value)
std::cerr << "Right Preconditioner ignored!" << std::endl;
}
/// Construct solver from a linear operator and (left) preconditioner
cg_solver(const LinearOperator& A, const Preconditioner& L) : A(A), L(L)
{
if (!pc::static_is_identity<RightPreconditioner>::value)
std::cerr << "Right Preconditioner ignored!" << std::endl;
}
/// Solve linear system approximately as specified by \p iter
template < typename HilbertSpaceB, typename HilbertSpaceX, typename Iteration >
int solve(const HilbertSpaceB& b, HilbertSpaceX& x, Iteration& iter) const
{
return cg(A, x, b, L, iter);
}
/// Perform one CG iteration on linear system
template < typename HilbertSpaceB, typename HilbertSpaceX >
int solve(const HilbertSpaceB& b, HilbertSpaceX& x) const
{
itl::basic_iteration<double> iter(x, 1, 0, 0);
return solve(b, x, iter);
}
private:
const LinearOperator& A;
Preconditioner L;
};
} // namespace itl
#endif // ITL_CG_INCLUDE
// Software License for MTL
//
// Copyright (c) 2007 The Trustees of Indiana University.
// 2008 Dresden University of Technology and the Trustees of Indiana University.
// 2010 SimuNova UG (haftungsbeschränkt), www.simunova.com.
// All rights reserved.
// Authors: Peter Gottschling and Andrew Lumsdaine
//
// This file is part of the Matrix Template Library
//
// See also license.mtl.txt in the distribution.
#ifndef ITL_CGS_INCLUDE
#define ITL_CGS_INCLUDE
#include <boost/numeric/mtl/concept/collection.hpp>
#include <boost/numeric/mtl/operation/resource.hpp>
#include <boost/numeric/mtl/operation/dot.hpp>
#include <boost/numeric/mtl/interface/vpt.hpp>
namespace itl {
/// Conjugate Gradient Squared
template < typename LinearOperator, typename Vector,
typename Preconditioner, typename Iteration >
int cgs(const LinearOperator &A, Vector &x, const Vector &b,
const Preconditioner &M, Iteration& iter)
{
mtl::vampir_trace<7007> tracer;
typedef typename mtl::Collection<Vector>::value_type Scalar;
Scalar rho_1(0), rho_2(0), alpha(0), beta(0);
Vector p(resource(x)), phat(resource(x)), q(resource(x)), qhat(resource(x)), vhat(resource(x)),
u(resource(x)), uhat(resource(x)), r(b - A * x), rtilde= r;
while (! iter.finished(r)) {
++iter;
rho_1= dot(rtilde, r);
if (rho_1 == 0.) iter.fail(2, "cgs breakdown");
if (iter.first())
p= u= r;
else {
beta = rho_1 / rho_2;
u= r + beta * q;
p= u + beta * (q + beta * p);
}
vhat= A * Vector(solve(M, p));
alpha = rho_1 / dot(rtilde, vhat);
q= u - alpha * vhat;
u+= q;
uhat= solve(M, u);
x+= alpha * uhat;
qhat= A * uhat;
r-= alpha * qhat;
rho_2= rho_1;
}
return iter;
}
/// Solver class for CGS method; right preconditioner ignored (prints warning if not identity)
template < typename LinearOperator, typename Preconditioner= pc::identity<LinearOperator>,
typename RightPreconditioner= pc::identity<LinearOperator> >
class cgs_solver
{
public:
/// Construct solver from a linear operator; generate (left) preconditioner from it
explicit cgs_solver(const LinearOperator& A) : A(A), L(A)
{
if (!pc::static_is_identity<RightPreconditioner>::value)
std::cerr << "Right Preconditioner ignored!" << std::endl;
}
/// Construct solver from a linear operator and (left) preconditioner
cgs_solver(const LinearOperator& A, const Preconditioner& L) : A(A), L(L)
{
if (!pc::static_is_identity<RightPreconditioner>::value)
std::cerr << "Right Preconditioner ignored!" << std::endl;
}
/// Solve linear system approximately as specified by \p iter
template < typename HilbertSpaceB, typename HilbertSpaceX, typename Iteration >
int solve(const HilbertSpaceB& b, HilbertSpaceX& x, Iteration& iter) const
{
return cgs(A, x, b, L, iter);
}
/// Perform one CGS iteration on linear system
template < typename HilbertSpaceB, typename HilbertSpaceX >
int solve(const HilbertSpaceB& b, HilbertSpaceX& x) const
{
itl::basic_iteration<double> iter(x, 1, 0, 0);
return solve(b, x, iter);
}
private:
const LinearOperator& A;
Preconditioner L;
};
} // namespace itl
#endif // ITL_CGS_INCLUDE
// Software License for MTL
//
// Copyright (c) 2007 The Trustees of Indiana University.
// 2008 Dresden University of Technology and the Trustees of Indiana University.
// 2010 SimuNova UG (haftungsbeschränkt), www.simunova.com.
// All rights reserved.
// Authors: Peter Gottschling and Andrew Lumsdaine
//
// This file is part of the Matrix Template Library
//
// See also license.mtl.txt in the distribution.
#ifndef ITL_FSM_INCLUDE
#define ITL_FSM_INCLUDE
#include <boost/numeric/mtl/operation/two_norm.hpp>
namespace itl {
/// Folded spectrum method
/** Computed and named as in http://en.wikipedia.org/wiki/Folded_spectrum_method **/
template < typename LinearOperator, typename VectorSpace, typename EigenValue,
typename Damping, typename Iteration >
int fsm(const LinearOperator& H, VectorSpace& phi, EigenValue eps, Damping alpha, Iteration& iter)
{
VectorSpace v1(H * phi - eps * phi);
for (; !iter.finished(v1); ++iter) {
VectorSpace v2(H * v1 - eps * v1);
phi-= alpha * v2;
phi/= two_norm(phi);
v1= H * phi - eps * phi;
}
return iter;
}
} // namespace itl
#endif // ITL_FSM_INCLUDE
// Software License for MTL
//
// Copyright (c) 2007 The Trustees of Indiana University.
// 2008 Dresden University of Technology and the Trustees of Indiana University.
// 2010 SimuNova UG (haftungsbeschränkt), www.simunova.com.
// All rights reserved.
// Authors: Peter Gottschling and Andrew Lumsdaine
//
// This file is part of the Matrix Template Library
//
// See also license.mtl.txt in the distribution.
// Written by Cornelius Steinhardt
#ifndef ITL_GMRES_INCLUDE
#define ITL_GMRES_INCLUDE
#include <algorithm>
#include <boost/numeric/mtl/concept/collection.hpp>
#include <boost/numeric/mtl/vector/dense_vector.hpp>
#include <boost/numeric/mtl/matrix/dense2D.hpp>
#include <boost/numeric/mtl/matrix/multi_vector.hpp>
#include <boost/numeric/mtl/operation/givens.hpp>
#include <boost/numeric/mtl/operation/two_norm.hpp>
#include <boost/numeric/mtl/utility/exception.hpp>
#include <boost/numeric/mtl/utility/irange.hpp>
namespace itl {
/// Generalized Minimal Residual method (without restart)
/** It computes at most kmax_in iterations (or size(x) depending on what is smaller)
regardless on whether the termination criterion is reached or not. **/
template < typename Matrix, typename Vector, typename LeftPreconditioner, typename RightPreconditioner, typename Iteration >
int gmres_full(const Matrix &A, Vector &x, const Vector &b,
LeftPreconditioner &L, RightPreconditioner &R, Iteration& iter)
{
using mtl::size; using mtl::irange; using mtl::iall; using std::abs; using std::sqrt;
typedef typename mtl::Collection<Vector>::value_type Scalar;
typedef typename mtl::Collection<Vector>::size_type Size;
if (size(b) == 0) throw mtl::logic_error("empty rhs vector");
const Scalar zero= math::zero(Scalar());
Scalar rho, nu, hr;
Size k, kmax(std::min(size(x), Size(iter.max_iterations() - iter.iterations())));
Vector r0(b - A *x), r(solve(L,r0)), va(resource(x)), va0(resource(x)), va00(resource(x));
mtl::matrix::multi_vector<Vector> V(Vector(resource(x), zero), kmax+1);
mtl::vector::dense_vector<Scalar> s(kmax+1, zero), c(kmax+1, zero), g(kmax+1, zero), y(kmax, zero); // replicated in distributed solvers
mtl::matrix::dense2D<Scalar> H(kmax+1, kmax); // dito
H= 0;
rho= g[0]= two_norm(r);
if (iter.finished(rho))
return iter;
V.vector(0)= r / rho;
H= zero;
// GMRES iteration
for (k= 0; k < kmax ; ++k, ++iter) {
va0= A * Vector(solve(R, V.vector(k)));
V.vector(k+1)= va= solve(L,va0);
// orth(V, V[k+1], false);
// modified Gram Schmidt method
for (Size j= 0; j < k+1; j++) {
H[j][k]= dot(V.vector(j), V.vector(k+1));
V.vector(k+1)-= H[j][k] * V.vector(j);
}
H[k+1][k]= two_norm(V.vector(k+1));
//reorthogonalize
for(Size j= 0; j < k+1; j++) {
hr= dot(V.vector(k+1), V.vector(j));
H[j][k]+= hr;
V.vector(k+1)-= hr * V.vector(j);
}
H[k+1][k]= two_norm(V.vector(k+1));
if (H[k+1][k] != zero) // watch for breakdown
V.vector(k+1)*= 1. / H[k+1][k];
// k Given's rotations
for(Size i= 0; i < k; i++)
mtl::matrix::givens<mtl::matrix::dense2D<Scalar> >(H, H[i][k-1], H[i+1][k-1]).trafo(i);
nu= sqrt(H[k][k]*H[k][k]+H[k+1][k]*H[k+1][k]);
if(nu != zero){
c[k]= H[k][k]/nu;
s[k]= -H[k+1][k]/nu;
H[k][k]=c[k]*H[k][k]-s[k]*H[k+1][k];
H[k+1][k]=0;
mtl::vector::givens<mtl::vector::dense_vector<Scalar> >(g, c[k], s[k]).trafo(k);
}
rho= abs(g[k+1]);
}
//reduce k, to get regular matrix
while (k > 0 && abs(g[k-1]<= iter.atol())) k--;
// iteration is finished -> compute x: solve H*y=g as far as rank of H allows
irange range(k);
for (; !range.empty(); --range) {
try {
y[range]= lu_solve(H[range][range], g[range]);
} catch (mtl::matrix_singular) { continue; } // if singular then try with sub-matrix
break;
}
if (range.finish() < k)
std::cerr << "GMRES orhogonalized with " << k << " vectors but matrix singular, can only use "
<< range.finish() << " vectors!\n";
if (range.empty())
return iter.fail(2, "GMRES did not find any direction to correct x");
x+= Vector(solve(R, Vector(V.vector(range)*y[range])));
r= b - A*x;
return iter.terminate(r);
}
/// Generalized Minimal Residual method with restart
template < typename Matrix, typename Vector, typename LeftPreconditioner,
typename RightPreconditioner, typename Iteration >
int gmres(const Matrix &A, Vector &x, const Vector &b,
LeftPreconditioner &L, RightPreconditioner &R,
Iteration& iter, typename mtl::Collection<Vector>::size_type restart)
{
do {
Iteration inner(iter);
inner.set_max_iterations(std::min(int(iter.iterations()+restart), iter.max_iterations()));
inner.suppress_resume(true);
gmres_full(A, x, b, L, R, inner);
iter.update_progress(inner);
} while (!iter.finished());
return iter;
}
/// Solver class for GMRES; right preconditioner ignored (prints warning if not identity)
template < typename LinearOperator, typename Preconditioner= pc::identity<LinearOperator>,
typename RightPreconditioner= pc::identity<LinearOperator> >
class gmres_solver
{
public:
/// Construct solver from a linear operator; generate (left) preconditioner from it
explicit gmres_solver(const LinearOperator& A, size_t restart= 8)
: A(A), restart(restart), L(A), R(A) {}
/// Construct solver from a linear operator and left preconditioner
gmres_solver(const LinearOperator& A, size_t restart, const Preconditioner& L)
: A(A), restart(restart), L(L), R(A) {}
/// Construct solver from a linear operator and left preconditioner
gmres_solver(const LinearOperator& A, size_t restart, const Preconditioner& L, const RightPreconditioner& R)
: A(A), restart(restart), L(L), R(R) {}
/// Solve linear system approximately as specified by \p iter
template < typename HilbertSpaceB, typename HilbertSpaceX, typename Iteration >
int solve(const HilbertSpaceB& b, HilbertSpaceX& x, Iteration& iter) const
{
return gmres(A, x, b, L, R, iter, restart);
}
/// Perform one GMRES iteration on linear system
template < typename HilbertSpaceB, typename HilbertSpaceX >
int solve(const HilbertSpaceB& b, HilbertSpaceX& x) const
{
itl::basic_iteration<double> iter(x, 1, 0, 0);
return solve(b, x, iter);
}
private:
const LinearOperator& A;
size_t restart;
Preconditioner L;
RightPreconditioner R;
};
} // namespace itl
#endif // ITL_GMRES_INCLUDE
// Software License for MTL
//
// Copyright (c) 2007 The Trustees of Indiana University.
// 2008 Dresden University of Technology and the Trustees of Indiana University.
// 2010 SimuNova UG (haftungsbeschränkt), www.simunova.com.
// All rights reserved.
// Authors: Peter Gottschling and Andrew Lumsdaine
//
// This file is part of the Matrix Template Library
//
// See also license.mtl.txt in the distribution.
// Peter Sonneveld and Martin B. van Gijzen, IDR(s): a family of simple and fast algorithms for solving large nonsymmetric linear systems.
// SIAM J. Sci. Comput. Vol. 31, No. 2, pp. 1035-1062 (2008). (copyright SIAM)
#ifndef ITL_IDR_S_INCLUDE
#define ITL_IDR_S_INCLUDE
#include <boost/numeric/mtl/concept/collection.hpp>
#include <boost/numeric/mtl/vector/dense_vector.hpp>
#include <boost/numeric/mtl/operation/random.hpp>
#include <boost/numeric/mtl/operation/orth.hpp>
#include <boost/numeric/mtl/operation/resource.hpp>
#include <boost/numeric/mtl/matrix/strict_upper.hpp>
#include <boost/numeric/mtl/utility/exception.hpp>
#include <boost/numeric/mtl/utility/irange.hpp>
#include <boost/numeric/linear_algebra/identity.hpp>
#include <boost/numeric/mtl/interface/vpt.hpp>
namespace itl {
/// Induced Dimension Reduction on s dimensions (IDR(s))
template < typename LinearOperator, typename Vector,
typename LeftPreconditioner, typename RightPreconditioner,
typename Iteration >
int idr_s(const LinearOperator &A, Vector &x, const Vector &b,
const LeftPreconditioner &, const RightPreconditioner &,
Iteration& iter, size_t s)
{
mtl::vampir_trace<7010> tracer;
using mtl::size; using mtl::iall; using mtl::matrix::strict_upper;
typedef typename mtl::Collection<Vector>::value_type Scalar;
typedef typename mtl::Collection<Vector>::size_type Size;
if (size(b) == 0) throw mtl::logic_error("empty rhs vector");
if (s < 1) s= 1;
const Scalar zero= math::zero(Scalar());
Scalar omega(zero);
Vector x0(x), y(resource(x)), v(resource(x)), t(resource(x)), q(resource(x)), r(b - A * x);
mtl::matrix::multi_vector<Vector> dR(Vector(resource(x), zero), s), dX(Vector(resource(x), zero), s), P(Vector(resource(x), zero), s);
mtl::vector::dense_vector<Scalar> m(s), c(s), dm(s); // replicated in distributed solvers
mtl::matrix::dense2D<Scalar> M(s, s); // dito
random(P);
P.vector(0)= r;
orth(P);
for (size_t k= 0; k < s; k++) {
v= A * r;
omega= dot(v, r) / dot(v, v);
dX.vector(k)= omega * r;
dR.vector(k)= -omega * v;
x+= dX.vector(k);
r+= dR.vector(k);
if ((++iter).finished(r)) return iter;
M[iall][k]= trans(P) * dR.vector(k);
}
Size oldest= 0;
m= trans(P) * r;
while (! iter.finished(r)) {
for (size_t k= 0; k < s; k++) {
c= lu_solve(M, m);
q= dR * -c;
v= r + q;
if (k == 0) {
t= A * v;
omega= dot(t, v) / dot(t, t);
dR.vector(oldest)= q - omega * t;
dX.vector(oldest)= omega * v - dX * c;
} else {
dX.vector(oldest)= omega * v - dX * c;
dR.vector(oldest)= A * -dX.vector(oldest);
}
r+= dR.vector(oldest);
x+= dX.vector(oldest);
if ((++iter).finished(r))
return iter;
dm= trans(P) * dR.vector(oldest);
M[iall][oldest]= dm;
m+= dm;
oldest= (oldest + 1) % s;
}
}
return iter;
}
/// Solver class for IDR(s) method; right preconditioner ignored (prints warning if not identity)
template < typename LinearOperator, typename Preconditioner= pc::identity<LinearOperator>,
typename RightPreconditioner= pc::identity<LinearOperator> >
class idr_s_solver
{
public:
/// Construct solver from a linear operator; generate (left) preconditioner from it
explicit idr_s_solver(const LinearOperator& A, size_t s= 8) : A(A), s(s), L(A), R(A) {}
/// Construct solver from a linear operator and left preconditioner
idr_s_solver(const LinearOperator& A, size_t s, const Preconditioner& L) : A(A), s(s), L(L), R(A) {}
/// Construct solver from a linear operator and left preconditioner
idr_s_solver(const LinearOperator& A, size_t s, const Preconditioner& L, const RightPreconditioner& R)
: A(A), s(s), L(L), R(R) {}
/// Solve linear system approximately as specified by \p iter
template < typename HilbertSpaceB, typename HilbertSpaceX, typename Iteration >
int solve(const HilbertSpaceB& b, HilbertSpaceX& x, Iteration& iter) const
{
return idr_s(A, x, b, L, R, iter, s);
}
/// Perform one IDR(s) iteration on linear system
template < typename HilbertSpaceB, typename HilbertSpaceX >
int solve(const HilbertSpaceB& b, HilbertSpaceX& x) const
{
itl::basic_iteration<double> iter(x, 1, 0, 0);
return solve(b, x, iter);
}
private:
const LinearOperator& A;
size_t s;
Preconditioner L;
RightPreconditioner R;
};
} // namespace itl
#endif // ITL_IDR_S_INCLUDE
// Software License for MTL
//
// Copyright (c) 2007 The Trustees of Indiana University.
// 2008 Dresden University of Technology and the Trustees of Indiana University.
// 2010 SimuNova UG (haftungsbeschränkt), www.simunova.com.
// All rights reserved.
// Authors: Peter Gottschling and Andrew Lumsdaine
//
// This file is part of the Matrix Template Library
//
// See also license.mtl.txt in the distribution.
// Written by Cornelius Steinhardt
#ifndef ITL_QMR_INCLUDE
#define ITL_QMR_INCLUDE
#include <boost/numeric/mtl/concept/collection.hpp>
#include <boost/numeric/mtl/operation/trans.hpp>
#include <boost/numeric/mtl/operation/resource.hpp>
#include <boost/numeric/mtl/interface/vpt.hpp>
namespace itl {
/// Quasi-Minimal Residual method
template < typename Matrix, typename Vector,typename LeftPreconditioner,
typename RightPreconditioner, typename Iteration >
int qmr(const Matrix& A, Vector& x, const Vector& b, LeftPreconditioner& L,
const RightPreconditioner& R, Iteration& iter)
{
mtl::vampir_trace<7008> tracer;
using mtl::size;
typedef typename mtl::Collection<Vector>::value_type Scalar;
if (size(b) == 0) throw mtl::logic_error("empty rhs vector");
const Scalar zero= math::zero(Scalar()), one= math::one(Scalar());
Scalar beta, gamma(one), gamma_1, delta, eta(-one), ep(one), rho_1, theta(zero), theta_1;
Vector r(b - A * x), v_tld(r), y(solve(L, v_tld)), w_tld(r), z(adjoint_solve(R,w_tld)), v(resource(x)), w(resource(x)),
y_tld(resource(x)), z_tld(resource(x)), p(resource(x)), q(resource(x)), p_tld(resource(x)), d(resource(x)), s(resource(x));
if (iter.finished(r))
return iter;
Scalar rho = two_norm(y), xi = two_norm(z);
while(! iter.finished(rho)) {
++iter;
if (rho == zero)
return iter.fail(1, "qmr breakdown #1, rho=0");
if (xi == zero)
return iter.fail(2, "qmr breakdown #2, xi=0");
v= v_tld / rho;
y/= rho;
w= w_tld / xi;
z/= xi;
delta = dot(z,y);
if (delta == zero)
return iter.fail(3, "qmr breakdown, delta=0 #3");
y_tld = solve(R,y);
z_tld = adjoint_solve(L,z);
if (iter.first()) {
p = y_tld;
q = z_tld;
} else {
p = y_tld - ((xi * delta) / ep) * p;
q = z_tld - ((rho* delta) / ep) * q;
}
p_tld = A * p;
ep = dot(q, p_tld);
if (ep == zero)
return iter.fail(4, "qmr breakdown ep=0 #4");
beta= ep / delta;
if (beta == zero)
return iter.fail(5, "qmr breakdown beta=0 #5");
v_tld = p_tld - beta * v;
y = solve(L,v_tld);
rho_1 = rho;
rho = two_norm(y);
w_tld= trans(A)*q - beta*w;
z = adjoint_solve(R, w_tld);
xi = two_norm(z);
gamma_1 = gamma;
theta_1 = theta;
theta = rho / (gamma_1 * beta);
gamma = one / (sqrt(one + theta * theta));
if (gamma == zero)
return iter.fail(6, "qmr breakdown gamma=0 #6");
eta= -eta * rho_1 * gamma * gamma / (beta * gamma_1 * gamma_1);
if (iter.first()) {
d= eta * p;
s= eta * p_tld;
} else {
d= eta * p + (theta_1 * theta_1 * gamma * gamma) * d;
s= eta * p_tld + (theta_1 * theta_1 * gamma * gamma) * s;
}
x += d;
r -= s;
}
return iter;
}
/// Solver class for Quasi-minimal residual method; right preconditioner ignored (prints warning if not identity)
template < typename LinearOperator, typename Preconditioner= pc::identity<LinearOperator>,
typename RightPreconditioner= pc::identity<LinearOperator> >
class qmr_solver
{
public:
/// Construct solver from a linear operator; generate (left) preconditioner from it
explicit qmr_solver(const LinearOperator& A) : A(A), L(A), R(A) {}
/// Construct solver from a linear operator and left preconditioner
qmr_solver(const LinearOperator& A, const Preconditioner& L) : A(A), L(L), R(A) {}
/// Construct solver from a linear operator and left preconditioner
qmr_solver(const LinearOperator& A, const Preconditioner& L, const RightPreconditioner& R)
: A(A), L(L), R(R) {}
/// Solve linear system approximately as specified by \p iter
template < typename HilbertSpaceB, typename HilbertSpaceX, typename Iteration >
int solve(const HilbertSpaceB& b, HilbertSpaceX& x, Iteration& iter) const
{
return qmr(A, x, b, L, R, iter);
}
/// Perform one QMR iteration on linear system
template < typename HilbertSpaceB, typename HilbertSpaceX >
int solve(const HilbertSpaceB& b, HilbertSpaceX& x) const
{
itl::basic_iteration<double> iter(x, 1, 0, 0);
return solve(b, x, iter);
}
private:
const LinearOperator& A;
Preconditioner L;
RightPreconditioner R;
};
} // namespace itl
#endif // ITL_QMR_INCLUDE
// Software License for MTL
//
// Copyright (c) 2007 The Trustees of Indiana University.
// 2008 Dresden University of Technology and the Trustees of Indiana University.
// 2010 SimuNova UG, www.simunova.com.
// All rights reserved.
// Authors: Peter Gottschling and Andrew Lumsdaine
//
// This file is part of the Matrix Template Library
//
// See also tools/license/license.mtl.txt in the distribution.
#ifndef ITL_REPEATING_SOLVER_INCLUDE
#define ITL_REPEATING_SOLVER_INCLUDE
#include <boost/mpl/if.hpp>
#include <boost/static_assert.hpp>
#include <boost/numeric/itl/itl_fwd.hpp>
namespace itl {
/// Class for calling \tparam N iterations of the given \tparam Solver
/** If \tparam Stored is true then the \tparam Solver object is stored (i.e. possibly copied) here.
Otherwise it is only referred and passing temporary objects to the constructor will cause errors. **/
template <typename Solver, unsigned N, bool Stored>
class repeating_solver
{
typedef typename boost::mpl::if_c<Stored, Solver, const Solver&>::type solver_type;
public:
explicit repeating_solver(const Solver& s) : s(s) {}
template <typename Matrix>
explicit repeating_solver(const Matrix& A) : s(A)
{
BOOST_STATIC_ASSERT((Stored)); // if matrix is passed class must own solver
}
/// Perform one GMRES iteration on linear system
template < typename VectorIn, typename VectorOut >
int solve(const VectorIn& b, VectorOut& x) const
{
itl::basic_iteration<double> iter(x, N, 0, 0);
return s.solve(b, x, iter);
}
private:
solver_type s;
};
} // namespace itl
#endif // ITL_REPEATING_SOLVER_INCLUDE
// Software License for MTL
//
// Copyright (c) 2007 The Trustees of Indiana University.
// 2008 Dresden University of Technology and the Trustees of Indiana University.
// 2010 SimuNova UG (haftungsbeschränkt), www.simunova.com.
// All rights reserved.
// Authors: Peter Gottschling and Andrew Lumsdaine
//
// This file is part of the Matrix Template Library
//
// See also license.mtl.txt in the distribution.
// Written by Cornelius Steinhardt
#ifndef ITL_TFQMR_INCLUDE
#define ITL_TFQMR_INCLUDE
#include <boost/numeric/mtl/concept/collection.hpp>
#include <boost/numeric/mtl/utility/exception.hpp>
#include <boost/numeric/linear_algebra/identity.hpp>
#include <boost/numeric/linear_algebra/inverse.hpp>
#include <boost/numeric/mtl/utility/irange.hpp>
#include <boost/numeric/mtl/operation/resource.hpp>
#include <boost/numeric/mtl/interface/vpt.hpp>
namespace itl {
/// Transposed-free Quasi-minimal residual
template < typename Matrix, typename Vector,
typename LeftPreconditioner, typename RightPreconditioner, typename Iteration >
int tfqmr(const Matrix &A, Vector &x, const Vector &b, const LeftPreconditioner &L,
const RightPreconditioner &R, Iteration& iter)
{
mtl::vampir_trace<7009> tracer;
using math::reciprocal; using mtl::size;
typedef typename mtl::Collection<Vector>::value_type Scalar;
if (size(b) == 0) throw mtl::logic_error("empty rhs vector");
const Scalar zero= math::zero(Scalar()), one= math::one(Scalar());
Scalar theta(zero), eta(zero), tau, rho, rhon, sigma, alpha, beta, c;
Vector rt(b - A*Vector(solve(R, x))) /* shift x= R*x */, r(solve(L, rt)), u1(resource(x)), u2(resource(x)),
y1(resource(x)), y2(resource(x)), w(resource(x)), d(resource(x), zero), v(resource(x));
if (iter.finished(rt))
return iter;
y1= w= r;
rt= A * Vector(solve(R, y1));
u1= v= solve(L,rt);
tau= two_norm(r);
rho= tau * tau;
// TFQMR iteration
while (! iter.finished(tau)) {
++iter;
sigma= dot(r,v);
if (sigma == zero)
return iter.fail(1, "tfgmr breakdown, sigma=0 #1");
alpha= rho / sigma;
// inner loop
for(int j=1; j < 3; j++) {
if (j == 1) {
w-= alpha * u1;
d= y1+ (theta * theta * eta / alpha) * d;
} else {
y2= y1 - alpha * v;
rt= A * Vector(solve(R, y2));
u2= solve(L, rt);
w-= alpha * u2;
d= y2 + (theta * theta * eta / alpha) * d;
}
theta= two_norm(w) / tau;
c= reciprocal(sqrt(one + theta*theta));
tau*= theta * c;
eta= c * c * alpha;
x+= eta * d;
} // end inner loop
if (rho == zero)
return iter.fail(1, "tfgmr breakdown, rho=0 #2");
rhon= dot(r,w);
beta= rhon/rho;
rho= rhon;
y1= w + beta*y2;
rt= A * Vector(solve(R, y1));
u1= solve(L, rt);
v= u1 + beta*(u2 + beta*v);
rt= A * x - b;
}
//shift back
x= solve(R, x);
return iter;
}
/// Solver class for Transposed-free quasi-minimal residual method; right preconditioner ignored (prints warning if not identity)
template < typename LinearOperator, typename Preconditioner= pc::identity<LinearOperator>,
typename RightPreconditioner= pc::identity<LinearOperator> >
class tfqmr_solver
{
public:
/// Construct solver from a linear operator; generate (left) preconditioner from it
explicit tfqmr_solver(const LinearOperator& A) : A(A), L(A), R(A) {}
/// Construct solver from a linear operator and left preconditioner
tfqmr_solver(const LinearOperator& A, const Preconditioner& L) : A(A), L(L), R(A) {}
/// Construct solver from a linear operator and left preconditioner
tfqmr_solver(const LinearOperator& A, const Preconditioner& L, const RightPreconditioner& R)
: A(A), L(L), R(R) {}
/// Solve linear system approximately as specified by \p iter
template < typename HilbertSpaceB, typename HilbertSpaceX, typename Iteration >
int solve(const HilbertSpaceB& b, HilbertSpaceX& x, Iteration& iter) const
{
return tfqmr(A, x, b, L, R, iter);
}
/// Perform one TFQMR iteration on linear system
template < typename HilbertSpaceB, typename HilbertSpaceX >
int solve(const HilbertSpaceB& b, HilbertSpaceX& x) const
{
itl::basic_iteration<double> iter(x, 1, 0, 0);
return solve(b, x, iter);
}
private:
const LinearOperator& A;
Preconditioner L;
RightPreconditioner R;
};
} // namespace itl
#endif // ITL_TFQMR_INCLUDE