From 59c57603ae19b8eb29a7f1904dd49bcc491a8083 Mon Sep 17 00:00:00 2001 From: Oliver Sander <sander@igpm.rwth-aachen.de> Date: Tue, 27 Jan 2015 14:39:16 +0000 Subject: [PATCH] Compute L^2 error of the real geodesic fe interpolation [[Imported from SVN: r10025]] --- src/harmonicmaps.cc | 7 ++----- 1 file changed, 2 insertions(+), 5 deletions(-) diff --git a/src/harmonicmaps.cc b/src/harmonicmaps.cc index 23e6d958..3187cf4a 100644 --- a/src/harmonicmaps.cc +++ b/src/harmonicmaps.cc @@ -35,6 +35,7 @@ #include <dune/gfe/chiralskyrmionenergy.hh> #include <dune/gfe/geodesicfeassembler.hh> #include <dune/gfe/riemanniantrsolver.hh> +#include <dune/gfe/embeddedglobalgfefunction.hh> // grid dimension const int dim = 2; @@ -241,11 +242,7 @@ int main (int argc, char *argv[]) try std::string lambda = std::string("lambda x: (") + parameterSet.get<std::string>("referenceSolution") + std::string(")"); PythonFunction<FieldVector<double,dim>, TargetSpace::CoordinateType > pythonReferenceSolution(Python::evaluate(lambda)); - std::vector<TargetSpace::CoordinateType> xEmbedded(x.size()); - for (size_t i=0; i<x.size(); i++) - xEmbedded[i] = x[i].globalCoordinates(); - - BasisGridFunction<FEBasis,std::vector<TargetSpace::CoordinateType> > numericalSolution(feBasis, xEmbedded); + GFE::EmbeddedGlobalGFEFunction<FEBasis, TargetSpace> numericalSolution(feBasis, x); // QuadratureRule for the integral of the L^2 error QuadratureRuleKey quadKey(dim,3); -- GitLab