From 9164962a81ddb83d5aa76b3906a844df19cc425c Mon Sep 17 00:00:00 2001 From: Oliver Sander <sander@igpm.rwth-aachen.de> Date: Mon, 29 May 2006 14:37:34 +0000 Subject: [PATCH] many fixes and a method to compute the strains [[Imported from SVN: r817]] --- src/rodassembler.cc | 227 ++++++++++++++++++++++++++++++++++++-------- src/rodassembler.hh | 3 + 2 files changed, 188 insertions(+), 42 deletions(-) diff --git a/src/rodassembler.cc b/src/rodassembler.cc index af4dc3f9..1f8584e5 100644 --- a/src/rodassembler.cc +++ b/src/rodassembler.cc @@ -3,7 +3,7 @@ #include <dune/istl/matrixindexset.hh> #include <dune/common/matrix.hh> -#include <dune/quadrature/quadraturerules.hh> +#include <dune/grid/common/quadraturerules.hh> #include <dune/disc/shapefunctions/lagrangeshapefunctions.hh> @@ -93,13 +93,6 @@ assembleMatrix(const std::vector<Configuration>& sol, } -#if 0 - // temporary: make identity - matrix = 0; - for (int i=0; i<matrix.N(); i++) - for (int j=0; j<6; j++) - matrix[i][i][j][j] = 1; -#endif } @@ -123,7 +116,6 @@ getLocalMatrix( EntityType &entity, for (int j=0; j<matSize; j++) localMat[i][j] = 0; - //const BaseFunctionSetType & baseSet = this->functionSpace_.getBaseFunctionSet( entity ); const LagrangeShapeFunctionSet<double, double, gridDim> & baseSet = Dune::LagrangeShapeFunctions<double, double, gridDim>::general(entity.geometry().type(), elementOrder); @@ -200,6 +192,7 @@ getLocalMatrix( EntityType &entity, } Quaternion<double> dq_dvij_dvkl[2][3][2][3]; + Quaternion<double> dq_dvij_dvkl_ds[2][3][2][3]; for (int i=0; i<2; i++) { for (int j=0; j<3; j++) { @@ -208,10 +201,14 @@ getLocalMatrix( EntityType &entity, for (int l=0; l<3; l++) { - for (int m=0; m<3; m++) + for (int m=0; m<3; m++) { dq_dvij_dvkl[i][j][k][l][m] = 0; + dq_dvij_dvkl_ds[i][j][k][l][m] = 0; + } dq_dvij_dvkl[i][j][k][l][3] = -0.25 * (j==l) * shapeFunction[i] * shapeFunction[k]; + dq_dvij_dvkl_ds[i][j][k][l][3] = -0.25 * (j==l) * shapeGrad[i] * shapeGrad[k]; + } } @@ -278,7 +275,7 @@ getLocalMatrix( EntityType &entity, for (int l=0; l<3; l++) { - FieldMatrix<double,3,3> A; + FieldMatrix<double,4,4> A; for (int a=0; a<4; a++) for (int b=0; b<4; b++) A[a][b] = (dq_dvij[k][l].mult(hatq))[a] * (dq_dvij[i][j].mult(hatq))[b] @@ -312,7 +309,29 @@ getLocalMatrix( EntityType &entity, } + // Get the derivative of the rotation at the quadrature point by interpolating in $H$ + Quaternion<double> hatq_s; + hatq_s[0] = localSolution[0].q[0]*shapeGrad[0] + localSolution[1].q[0]*shapeGrad[1]; + hatq_s[1] = localSolution[0].q[1]*shapeGrad[0] + localSolution[1].q[1]*shapeGrad[1]; + hatq_s[2] = localSolution[0].q[2]*shapeGrad[0] + localSolution[1].q[2]*shapeGrad[1]; + hatq_s[3] = localSolution[0].q[3]*shapeGrad[0] + localSolution[1].q[3]*shapeGrad[1]; + FieldVector<double,3> u; // The Darboux vector + u[0] = 2 * ( hatq[3]*hatq_s[0] + hatq[2]*hatq_s[1] - hatq[1]*hatq_s[2] - hatq[0]*hatq_s[3]); + u[1] = 2 * (-hatq[2]*hatq_s[0] + hatq[3]*hatq_s[1] + hatq[0]*hatq_s[2] - hatq[1]*hatq_s[3]); + u[2] = 2 * ( hatq[1]*hatq_s[0] - hatq[0]*hatq_s[1] + hatq[3]*hatq_s[2] - hatq[2]*hatq_s[3]); + + // Contains \partial q / \partial v^i_j at v = 0 + double dum_dvij[3][2][3]; + + for (int i=0; i<2; i++) + for (int j=0; j<3; j++) { + + for (int m=0; m<3; m++) + dum_dvij[m][i][j] = B(m, dq_dvij[i][j].mult(hatq))*hatq_s + B(m,hatq)*(dq_dvij_ds[i][j].mult(hatq)); + + } + // /////////////////////////////////// // Sum it all up // /////////////////////////////////// @@ -335,7 +354,7 @@ getLocalMatrix( EntityType &entity, + A3 * shapeGrad[i] * hatq.director(2)[j] * shapeGrad[k] * hatq.director(2)[l]); // \partial W^2 \partial v^i_j \partial r^k_l - localMat[i][k][j][l+3] = weight + localMat[i][k][j][l+3] += weight * (A1 * shapeGrad[k]*hatq.director(0)[l]*(r_s*dd_dvij[0][i][j]) + A1 * (r_s*hatq.director(0)) * shapeGrad[k] * dd_dvij[0][i][j][l] + A2 * shapeGrad[k]*hatq.director(1)[l]*(r_s*dd_dvij[1][i][j]) @@ -346,7 +365,7 @@ getLocalMatrix( EntityType &entity, localMat[i][k][j+3][l] = localMat[i][k][j][l+3]; // \partial W^2 \partial v^i_j \partial v^k_l - localMat[i][k][j+3][l+3] = weight + localMat[i][k][j+3][l+3] += weight * (A1 * (r_s * dd_dvij[0][k][l]) * (r_s * dd_dvij[0][i][j]) + A1 * (r_s * hatq.director(0)) * (r_s * dd_dvij_dvkl[0][i][j][k][l]) + A2 * (r_s * dd_dvij[1][k][l]) * (r_s * dd_dvij[1][i][j]) @@ -357,9 +376,30 @@ getLocalMatrix( EntityType &entity, // //////////////////////////////////////////// // The rotational part // //////////////////////////////////////////// + // Stupid: I want those as an array + double K[3] = {K1, K2, K3}; // \partial W^2 \partial v^i_j \partial v^k_l // All other derivatives are zero + for (int m=0; m<3; m++) { + + double sum = dum_dvij[m][k][l] * (B(m,dq_dvij[i][j].mult(hatq)) * hatq_s); + + sum += dum_dvij[m][k][l] * (B(m,hatq)*(dq_dvij_ds[i][j].mult(hatq) + dq_dvij[i][j].mult(hatq_s))); + + sum += u[m] * (B(m, dq_dvij_dvkl[i][j][k][l].mult(hatq)) * hatq_s); + + sum += u[m] * (B(m, dq_dvij[i][j].mult(hatq)) * dq_dvij_ds[k][l].mult(hatq)); + + sum += u[m] * (B(m, dq_dvij[k][l].mult(hatq)) * + (dq_dvij_ds[i][j].mult(hatq) + dq_dvij[i][j].mult(hatq_s))); + + sum += u[m] * (B(m, hatq) * + (dq_dvij_dvkl_ds[i][j][k][l].mult(hatq) + (dq_dvij_dvkl[i][j][k][l].mult(hatq_s)))); + + localMat[i][k][j+3][l+3] += 2*weight *K[m] * sum; + + } } @@ -371,32 +411,6 @@ getLocalMatrix( EntityType &entity, } -#if 0 - static int eleme = 0; - printf("********* Element %d **********\n", eleme++); - for (int row=0; row<matSize; row++) { - - for (int rcomp=0; rcomp<dim; rcomp++) { - - for (int col=0; col<matSize; col++) { - - for (int ccomp=0; ccomp<dim; ccomp++) - std::cout << mat[row][col][rcomp][ccomp] << " "; - - std::cout << " "; - - } - - std::cout << std::endl; - - } - - std::cout << std::endl; - - } - exit(0); -#endif - } template <class GridType> @@ -482,7 +496,7 @@ assembleGradient(const std::vector<Configuration>& sol, hatq[3] = localSolution[0].q[3]*shapeFunction[0] + localSolution[1].q[3]*shapeFunction[1]; hatq.normalize(); - // Get the derivative of the rotation at the quadrature point by interpolating in $H$ and normalizing + // Get the derivative of the rotation at the quadrature point by interpolating in $H$ Quaternion<double> hatq_s; hatq_s[0] = localSolution[0].q[0]*shapeGrad[0] + localSolution[1].q[0]*shapeGrad[1]; hatq_s[1] = localSolution[0].q[1]*shapeGrad[0] + localSolution[1].q[1]*shapeGrad[1]; @@ -721,7 +735,7 @@ computeEnergy(const std::vector<Configuration>& sol) const //std::cout << "strain : " << v << std::endl; - energy += 0.5*A1*v[0]*v[0] + 0.5*A2*v[1]*v[1] + 0.5*A3*(v[2]-1)*(v[2]-1); + energy += weight * 0.5*A1*v[0]*v[0] + 0.5*A2*v[1]*v[1] + 0.5*A3*(v[2]-1)*(v[2]-1); // Part II: the bending and twisting energy @@ -732,7 +746,7 @@ computeEnergy(const std::vector<Configuration>& sol) const //std::cout << "Darboux vector : " << u << std::endl; - energy += 0.5 * (K1*u[0]*u[0] + K2*u[1]*u[1] + K3*u[2]*u[2]); + energy += weight * 0.5 * (K1*u[0]*u[0] + K2*u[1]*u[1] + K3*u[2]*u[2]); } @@ -741,3 +755,132 @@ computeEnergy(const std::vector<Configuration>& sol) const return energy; } + + +template <class GridType> +void Dune::RodAssembler<GridType>:: +getStrain(const std::vector<Configuration>& sol, + BlockVector<FieldVector<double, blocksize> >& strain) const +{ + const typename GridType::Traits::LeafIndexSet& indexSet = grid_->leafIndexSet(); + + if (sol.size()!=indexSet.size(gridDim)) + DUNE_THROW(Exception, "Solution vector doesn't match the grid!"); + + // Strain defined on each element + strain.resize(indexSet.size(0)); + + ElementLeafIterator it = grid_->template leafbegin<0>(); + ElementLeafIterator endIt = grid_->template leafend<0>(); + + // Loop over all elements + for (; it!=endIt; ++it) { + + // Extract local solution on this element + const LagrangeShapeFunctionSet<double, double, gridDim> & baseSet + = Dune::LagrangeShapeFunctions<double, double, gridDim>::general(it->geometry().type(), elementOrder); + int numOfBaseFct = baseSet.size(); + + Configuration localSolution[numOfBaseFct]; + + for (int i=0; i<numOfBaseFct; i++) + localSolution[i] = sol[indexSet.template subIndex<gridDim>(*it,i)]; + + // Get quadrature rule + const int polOrd = 2; + const QuadratureRule<double, gridDim>& quad = QuadratureRules<double, gridDim>::rule(it->geometry().type(), polOrd); + + for (int pt=0; pt<quad.size(); pt++) { + + // Local position of the quadrature point + const FieldVector<double,gridDim>& quadPos = quad[pt].position(); + + const FieldMatrix<double,1,1>& inv = it->geometry().jacobianInverseTransposed(quadPos); + const double integrationElement = it->geometry().integrationElement(quadPos); + + double weight = quad[pt].weight() * integrationElement; + + // /////////////////////////////////////// + // Compute deformation gradient + // /////////////////////////////////////// + std::vector<FieldVector<double,gridDim> > shapeGrad(numOfBaseFct); + + for (int dof=0; dof<numOfBaseFct; dof++) { + + for (int i=0; i<gridDim; i++) + shapeGrad[dof][i] = baseSet[dof].evaluateDerivative(0,i,quadPos); + //std::cout << "Gradient " << dof << ": " << shape_grads[dof] << std::endl; + + // multiply with jacobian inverse + FieldVector<double,gridDim> tmp(0); + inv.umv(shapeGrad[dof], tmp); + shapeGrad[dof] = tmp; + //std::cout << "Gradient " << dof << ": " << shape_grads[dof] << std::endl; + + } + + // Get the value of the shape functions + double shapeFunction[2]; + for(int i=0; i<2; i++) + shapeFunction[i] = baseSet[i].evaluateFunction(0,quadPos); + + // ////////////////////////////////// + // Interpolate + // ////////////////////////////////// + + FieldVector<double,3> r_s; + r_s[0] = localSolution[0].r[0]*shapeGrad[0][0] + localSolution[1].r[0]*shapeGrad[1][0]; + r_s[1] = localSolution[0].r[1]*shapeGrad[0][0] + localSolution[1].r[1]*shapeGrad[1][0]; + r_s[2] = localSolution[0].r[2]*shapeGrad[0][0] + localSolution[1].r[2]*shapeGrad[1][0]; + + // Get the rotation at the quadrature point by interpolating in $H$ and normalizing + Quaternion<double> q; + q[0] = localSolution[0].q[0]*shapeFunction[0] + localSolution[1].q[0]*shapeFunction[1]; + q[1] = localSolution[0].q[1]*shapeFunction[0] + localSolution[1].q[1]*shapeFunction[1]; + q[2] = localSolution[0].q[2]*shapeFunction[0] + localSolution[1].q[2]*shapeFunction[1]; + q[3] = localSolution[0].q[3]*shapeFunction[0] + localSolution[1].q[3]*shapeFunction[1]; + + // The interpolated quaternion is not a unit quaternion anymore. We simply normalize + q.normalize(); + + // Get the derivative of the rotation at the quadrature point by interpolating in $H$ + Quaternion<double> q_s; + q_s[0] = localSolution[0].q[0]*shapeGrad[0][0] + localSolution[1].q[0]*shapeGrad[1][0]; + q_s[1] = localSolution[0].q[1]*shapeGrad[0][0] + localSolution[1].q[1]*shapeGrad[1][0]; + q_s[2] = localSolution[0].q[2]*shapeGrad[0][0] + localSolution[1].q[2]*shapeGrad[1][0]; + q_s[3] = localSolution[0].q[3]*shapeGrad[0][0] + localSolution[1].q[3]*shapeGrad[1][0]; + + // ///////////////////////////////////////////// + // Sum it all up + // ///////////////////////////////////////////// + + // Part I: the shearing and stretching strain + //std::cout << "tangent : " << r_s << std::endl; + FieldVector<double,3> v; + v[0] = r_s * q.director(0); // shear strain + v[1] = r_s * q.director(1); // shear strain + v[2] = r_s * q.director(2); // stretching strain + + //std::cout << "strain : " << v << std::endl; + + // Part II: the Darboux vector + + FieldVector<double,3> u; + u[0] = 2 * ( q[3]*q_s[0] + q[2]*q_s[1] - q[1]*q_s[2] - q[0]*q_s[3]); + u[1] = 2 * (-q[2]*q_s[0] + q[3]*q_s[1] + q[0]*q_s[2] - q[1]*q_s[3]); + u[2] = 2 * ( q[1]*q_s[0] - q[0]*q_s[1] + q[3]*q_s[2] - q[2]*q_s[3]); + + // Sum it all up + int elementIdx = indexSet.index(*it); + strain[elementIdx][0] += weight * v[0]; + strain[elementIdx][1] += weight * v[1]; + strain[elementIdx][2] += weight * v[2]; + strain[elementIdx][3] += weight * u[0]; + strain[elementIdx][4] += weight * u[1]; + strain[elementIdx][5] += weight * u[2]; + + } + + } + +} diff --git a/src/rodassembler.hh b/src/rodassembler.hh index 173a62c6..ba2ac41e 100644 --- a/src/rodassembler.hh +++ b/src/rodassembler.hh @@ -71,6 +71,9 @@ namespace Dune double computeEnergy(const std::vector<Configuration>& sol) const; void getNeighborsPerVertex(MatrixIndexSet& nb) const; + + void getStrain(const std::vector<Configuration>& sol, + BlockVector<FieldVector<double, blocksize> >& strain) const; protected: -- GitLab