From bd02d57d82c25b967dc4c9c2a1b8df8d002bdf03 Mon Sep 17 00:00:00 2001 From: Oliver Sander <oliver.sander@tu-dresden.de> Date: Wed, 9 May 2018 05:40:08 +0200 Subject: [PATCH] Use Newton instead of Trust-Region for the Geodesic FE min problems In theory this is dangerous, because a pure Newton method will only converge locally. However, the trust-region part had been partially disabled anyway, and I have not noticed any problems. Also, I think that from my well-posedness result for higher-order GeoFEs follows that a Newton method will always converge if the problem is well-posed (that is how the proof works, after all). On the plus side, this patch brings roughly 5% speed increas. --- dune/gfe/localgeodesicfefunction.hh | 5 +- dune/gfe/targetspacertrsolver.cc | 162 +++++----------------------- dune/gfe/targetspacertrsolver.hh | 58 ++-------- 3 files changed, 33 insertions(+), 192 deletions(-) diff --git a/dune/gfe/localgeodesicfefunction.hh b/dune/gfe/localgeodesicfefunction.hh index 1552f595..39602131 100644 --- a/dune/gfe/localgeodesicfefunction.hh +++ b/dune/gfe/localgeodesicfefunction.hh @@ -195,10 +195,7 @@ evaluate(const Dune::FieldVector<ctype, dim>& local) const solver.setup(&assembler, initialIterate, 1e-14, // tolerance - 100, // maxTrustRegionSteps - 2, // initial trust region radius - 100, // inner iterations - 1e-14 // inner tolerance + 100 // maxNewtonSteps ); solver.solve(); diff --git a/dune/gfe/targetspacertrsolver.cc b/dune/gfe/targetspacertrsolver.cc index 2e11e9ea..b00b59e1 100644 --- a/dune/gfe/targetspacertrsolver.cc +++ b/dune/gfe/targetspacertrsolver.cc @@ -13,39 +13,14 @@ void TargetSpaceRiemannianTRSolver<TargetSpace>:: setup(const AverageDistanceAssembler<TargetSpace>* assembler, const TargetSpace& x, double tolerance, - int maxTrustRegionSteps, - double initialTrustRegionRadius, - int innerIterations, - double innerTolerance) + int maxNewtonSteps) { assembler_ = assembler; x_ = x; tolerance_ = tolerance; - maxTrustRegionSteps_ = maxTrustRegionSteps; - initialTrustRegionRadius_ = initialTrustRegionRadius; - innerIterations_ = innerIterations; - innerTolerance_ = innerTolerance; + maxNewtonSteps_ = maxNewtonSteps; this->verbosity_ = NumProc::QUIET; minNumberOfIterations_ = 1; - -#ifdef USE_GAUSS_SEIDEL_SOLVER - // //////////////////////////////// - // Create a projected gauss-seidel solver - // //////////////////////////////// - - // First create a Gauss-seidel base solver - innerSolverStep_ = std::auto_ptr<TrustRegionGSStep<MatrixType, CorrectionType> >(new TrustRegionGSStep<MatrixType, CorrectionType>); - - energyNorm_ = std::auto_ptr<EnergyNorm<MatrixType, CorrectionType> >(new EnergyNorm<MatrixType, CorrectionType>(*innerSolverStep_.get())); - - innerSolver_ = std::auto_ptr< ::LoopSolver<CorrectionType> >(new ::LoopSolver<CorrectionType>(innerSolverStep_.get(), - innerIterations, - innerTolerance, - energyNorm_.get(), - Solver::QUIET)); - - innerSolver_->useRelativeError_ = false; -#endif } @@ -54,68 +29,34 @@ void TargetSpaceRiemannianTRSolver<TargetSpace>::solve() { assert(minNumberOfIterations_ > 0); - MaxNormTrustRegion<blocksize,field_type> trustRegion(1, // we have only one block - initialTrustRegionRadius_); - - field_type energy = assembler_->value(x_); - // ///////////////////////////////////////////////////// - // Trust-Region Solver + // Newton Solver // ///////////////////////////////////////////////////// - for (size_t i=0; i<maxTrustRegionSteps_; i++) { + for (size_t i=0; i<maxNewtonSteps_; i++) { if (this->verbosity_ == Solver::FULL) { std::cout << "----------------------------------------------------" << std::endl; - std::cout << " Trust-Region Step Number: " << i - << ", radius: " << trustRegion.radius() - << ", energy: " << energy << std::endl; + std::cout << " Newton Step Number: " << i + << ", energy: " << assembler_->value(x_) << std::endl; std::cout << "----------------------------------------------------" << std::endl; } - CorrectionType rhs(1); // length is 1 _block_ - CorrectionType corr(1); // length is 1 _block_ -#ifdef USE_GAUSS_SEIDEL_SOLVER - corr = 0; -#endif + CorrectionType corr; - MatrixType hesseMatrix(1,1); + MatrixType hesseMatrix; -#ifdef USE_GAUSS_SEIDEL_SOLVER - assembler_->assembleGradient(x_, rhs[0]); - assembler_->assembleHessian(x_, hesseMatrix[0][0]); -#else - /** \todo Fix this sense copying */ - typename TargetSpace::EmbeddedTangentVector foo; - assembler_->assembleEmbeddedGradient(x_, foo); - rhs[0] = foo; - assembler_->assembleEmbeddedHessian(x_, hesseMatrix[0][0]); -#endif + typename TargetSpace::EmbeddedTangentVector rhs; + assembler_->assembleEmbeddedGradient(x_, rhs); + assembler_->assembleEmbeddedHessian(x_, hesseMatrix); // The right hand side is the _negative_ gradient rhs *= -1; -#ifdef USE_GAUSS_SEIDEL_SOLVER - dynamic_cast<LinearIterationStep<MatrixType,CorrectionType>*>(innerSolver_->iterationStep_)->setProblem(hesseMatrix, corr, rhs); - - dynamic_cast<TrustRegionGSStep<MatrixType,CorrectionType>*>(innerSolver_->iterationStep_)->obstacles_ = &trustRegion.obstacles(); - - innerSolver_->preprocess(); -#endif // ///////////////////////////// // Solve ! // ///////////////////////////// -#ifdef USE_GAUSS_SEIDEL_SOLVER - innerSolver_->solve(); -#else Dune::FieldMatrix<field_type,blocksize,embeddedBlocksize> basis = x_.orthonormalFrame(); - GramSchmidtSolver<field_type, blocksize, embeddedBlocksize>::solve(hesseMatrix[0][0], corr[0], rhs[0], basis); -#endif - -#ifdef USE_GAUSS_SEIDEL_SOLVER - corr = innerSolver_->iterationStep_->getSol(); -#endif - - //std::cout << "Corr: " << corr << std::endl; + GramSchmidtSolver<field_type, blocksize, embeddedBlocksize>::solve(hesseMatrix, corr, rhs, basis); if (this->verbosity_ == NumProc::FULL) std::cout << "Infinity norm of the correction: " << corr.infinity_norm() << std::endl; @@ -125,84 +66,31 @@ void TargetSpaceRiemannianTRSolver<TargetSpace>::solve() std::cout << "CORRECTION IS SMALL ENOUGH" << std::endl; if (this->verbosity_ != NumProc::QUIET) - std::cout << i+1 << " trust-region steps were taken." << std::endl; + std::cout << i+1 << " Newton steps were taken." << std::endl; break; } // //////////////////////////////////////////////////// // Check whether trust-region step can be accepted // //////////////////////////////////////////////////// - +#if 0 TargetSpace newIterate = x_; - newIterate = TargetSpace::exp(newIterate, corr[0]); - - field_type oldEnergy = energy; - field_type energy = assembler_->value(newIterate); - - // compute the model decrease - // It is $ m(x) - m(x+s) = -<g,s> - 0.5 <s, Hs> - // Note that rhs = -g -#ifdef USE_GAUSS_SEIDEL_SOLVER - CorrectionType tmp(corr.size()); - tmp = 0; - hesseMatrix.umv(corr, tmp); - field_type modelDecrease = (rhs*corr) - 0.5 * (corr*tmp); -#else - field_type modelDecrease = (rhs*corr) - 0.5 * hesseMatrix[0][0].energyScalarProduct(corr[0],corr[0]); -#endif + newIterate = TargetSpace::exp(newIterate, corr); - if (this->verbosity_ == NumProc::FULL) { - std::cout << "Absolute model decrease: " << modelDecrease - << ", functional decrease: " << oldEnergy - energy << std::endl; - std::cout << "Relative model decrease: " << modelDecrease / energy - << ", functional decrease: " << (oldEnergy - energy)/energy << std::endl; - } - - assert(modelDecrease >= -1e-15); + if (this->verbosity_ == NumProc::FULL) + { + field_type oldEnergy = assembler_->value(x_); + field_type energy = assembler_->value(newIterate); - if (energy >= oldEnergy) { - if (this->verbosity_ == NumProc::FULL) + if (energy >= oldEnergy) printf("Richtung ist keine Abstiegsrichtung!\n"); } - if (energy >= oldEnergy && - i>minNumberOfIterations_-1 && - (std::abs(oldEnergy-energy)/energy < 1e-9 || modelDecrease/energy < 1e-9)) { - if (this->verbosity_ == NumProc::FULL) - std::cout << "Suspecting rounding problems" << std::endl; - - if (this->verbosity_ != NumProc::QUIET) - std::cout << i+1 << " trust-region steps were taken." << std::endl; - - x_ = newIterate; - break; - } - - // ////////////////////////////////////////////// - // Check for acceptance of the step - // ////////////////////////////////////////////// - if ( (oldEnergy-energy) / modelDecrease > 0.9) { - // very successful iteration - - x_ = newIterate; - trustRegion.scale(2); - - } else if ( (oldEnergy-energy) / modelDecrease > 0.01 - || std::abs(oldEnergy-energy) < 1e-12) { - // successful iteration - x_ = newIterate; - - } else { - // unsuccessful iteration - trustRegion.scale(0.5); - if (this->verbosity_ == NumProc::FULL) - std::cout << "Unsuccessful iteration!" << std::endl; - } - - // Write current energy - if (this->verbosity_ == NumProc::FULL) - std::cout << "--- Current energy: " << energy << " ---" << std::endl; - + // Actually take the step + x_ = newIterate; +#else + x_ = TargetSpace::exp(x_, corr); +#endif } } diff --git a/dune/gfe/targetspacertrsolver.hh b/dune/gfe/targetspacertrsolver.hh index 10e2d87f..568d8314 100644 --- a/dune/gfe/targetspacertrsolver.hh +++ b/dune/gfe/targetspacertrsolver.hh @@ -1,17 +1,7 @@ #ifndef TARGET_SPACE_RIEMANNIAN_TRUST_REGION_SOLVER_HH #define TARGET_SPACE_RIEMANNIAN_TRUST_REGION_SOLVER_HH - -//#define USE_GAUSS_SEIDEL_SOLVER - -#include <dune/istl/matrix.hh> - -#include <dune/solvers/common/boxconstraint.hh> -#ifdef USE_GAUSS_SEIDEL_SOLVER -#include <dune/solvers/solvers/loopsolver.hh> -#include <dune/solvers/iterationsteps/trustregiongsstep.hh> -#endif -#include <dune/solvers/norms/energynorm.hh> +#include <dune/solvers/common/numproc.hh> #include <dune/gfe/symmetricmatrix.hh> @@ -28,31 +18,16 @@ class TargetSpaceRiemannianTRSolver // Centralize the field type here typedef typename TargetSpace::ctype field_type; - // Some types that I need - // The types have the dynamic outer type because the dune-solvers solvers expect - // this sort of type. -#ifdef USE_GAUSS_SEIDEL_SOLVER - typedef Dune::Matrix<Dune::FieldMatrix<field_type, blocksize, blocksize> > MatrixType; - typedef Dune::BlockVector<Dune::FieldVector<field_type, blocksize> > CorrectionType; -#else - typedef Dune::Matrix<Dune::SymmetricMatrix<field_type, embeddedBlocksize> > MatrixType; - typedef Dune::BlockVector<Dune::FieldVector<field_type, embeddedBlocksize> > CorrectionType; -#endif + typedef Dune::SymmetricMatrix<field_type, embeddedBlocksize> MatrixType; + typedef Dune::FieldVector<field_type, embeddedBlocksize> CorrectionType; public: - TargetSpaceRiemannianTRSolver() - // : IterativeSolver<std::vector<TargetSpace>, Dune::BitSetVector<blocksize> >(0,100,NumProc::FULL) - {} - /** \brief Set up the solver using a monotone multigrid method as the inner solver */ void setup(const AverageDistanceAssembler<TargetSpace>* assembler, const TargetSpace& x, double tolerance, - int maxTrustRegionSteps, - double initialTrustRegionRadius, - int innerIterations, - double innerTolerance); + int maxNewtonSteps); void solve(); @@ -70,32 +45,13 @@ protected: /** \brief Tolerance of the solver */ double tolerance_; - /** \brief The initial trust-region radius in the maximum-norm */ - double initialTrustRegionRadius_; - - /** \brief Maximum number of trust-region steps */ - size_t maxTrustRegionSteps_; - - /** \brief Maximum number of multigrid iterations */ - int innerIterations_; - - /** \brief Error tolerance of the multigrid QP solver */ - double innerTolerance_; + /** \brief Maximum number of Newton steps */ + size_t maxNewtonSteps_; /** \brief The assembler for the average-distance functional */ const AverageDistanceAssembler<TargetSpace>* assembler_; -#ifdef USE_GAUSS_SEIDEL_SOLVER - /** \brief The solver for the quadratic inner problems */ - std::auto_ptr< ::LoopSolver<CorrectionType> > innerSolver_; - - /** \brief The iteration step for the quadratic inner problems */ - std::auto_ptr<TrustRegionGSStep<MatrixType, CorrectionType> > innerSolverStep_; - - /** \brief Norm for the quadratic inner problems */ - std::auto_ptr<EnergyNorm<MatrixType, CorrectionType> > energyNorm_; -#endif - /** \brief Specify a minimal number of iterations the trust-region solver has to do + /** \brief Specify a minimal number of iterations the Newton solver has to do * * This is needed when working with automatic differentiation. While a very low * number of iterations may be enough to precisely compute the value of a -- GitLab