Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-gfe
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sander, Oliver
dune-gfe
Commits
c0bfa724
Commit
c0bfa724
authored
14 years ago
by
Oliver Sander
Committed by
sander@FU-BERLIN.DE
14 years ago
Browse files
Options
Downloads
Patches
Plain Diff
Moved the Richardson iteration with a Steklov-Poincare preconditioner into a separate file
[[Imported from SVN: r6736]]
parent
38aae3ff
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
dirneucoupling.cc
+17
-376
17 additions, 376 deletions
dirneucoupling.cc
dune/gfe/coupling/rodcontinuumsteklovpoincarestep.hh
+519
-0
519 additions, 0 deletions
dune/gfe/coupling/rodcontinuumsteklovpoincarestep.hh
with
536 additions
and
376 deletions
dirneucoupling.cc
+
17
−
376
View file @
c0bfa724
...
@@ -39,6 +39,7 @@
...
@@ -39,6 +39,7 @@
#include
<dune/gfe/rodwriter.hh>
#include
<dune/gfe/rodwriter.hh>
#include
<dune/gfe/makestraightrod.hh>
#include
<dune/gfe/makestraightrod.hh>
#include
<dune/gfe/coupling/rodcontinuumcomplex.hh>
#include
<dune/gfe/coupling/rodcontinuumcomplex.hh>
#include
<dune/gfe/coupling/rodcontinuumsteklovpoincarestep.hh>
// Space dimension
// Space dimension
const
int
dim
=
3
;
const
int
dim
=
3
;
...
@@ -53,229 +54,6 @@ using std::vector;
...
@@ -53,229 +54,6 @@ using std::vector;
typedef
vector
<
RigidBodyMotion
<
dim
>
>
RodSolutionType
;
typedef
vector
<
RigidBodyMotion
<
dim
>
>
RodSolutionType
;
typedef
BlockVector
<
FieldVector
<
double
,
6
>
>
RodDifferenceType
;
typedef
BlockVector
<
FieldVector
<
double
,
6
>
>
RodDifferenceType
;
template
<
class
GridView
,
class
MatrixType
,
class
VectorType
>
class
LinearizedContinuumNeumannToDirichletMap
{
public:
/** \brief Constructor
*
*/
LinearizedContinuumNeumannToDirichletMap
(
const
BoundaryPatchBase
<
GridView
>&
interface
,
const
VectorType
&
weakVolumeAndNeumannTerm
,
const
VectorType
&
dirichletValues
,
const
LinearLocalAssembler
<
typename
GridView
::
Grid
,
typename
P1NodalBasis
<
GridView
,
double
>::
LocalFiniteElement
,
typename
P1NodalBasis
<
GridView
,
double
>::
LocalFiniteElement
,
Dune
::
FieldMatrix
<
double
,
3
,
3
>
>*
localAssembler
,
const
shared_ptr
<
::
LoopSolver
<
VectorType
>
>&
solver
)
:
interface_
(
interface
),
weakVolumeAndNeumannTerm_
(
weakVolumeAndNeumannTerm
),
dirichletValues_
(
dirichletValues
),
solver_
(
solver
),
localAssembler_
(
localAssembler
)
{}
/** \brief Map a Neumann value to a Dirichlet value
*
* \param currentIterate The continuum configuration that we are linearizing about
*
* \return The infinitesimal movement of the interface
*/
FieldVector
<
double
,
6
>
apply
(
const
VectorType
&
currentIterate
,
const
Dune
::
FieldVector
<
double
,
3
>&
force
,
const
Dune
::
FieldVector
<
double
,
3
>&
torque
,
const
Dune
::
FieldVector
<
double
,
3
>&
centerOfTorque
)
{
////////////////////////////////////////////////////
// Assemble the linearized problem
////////////////////////////////////////////////////
/** \todo We are actually assembling standard linear elasticity,
* i.e. the linearization at zero
*/
typedef
P1NodalBasis
<
GridView
,
double
>
P1Basis
;
P1Basis
basis
(
interface_
.
gridView
());
OperatorAssembler
<
P1Basis
,
P1Basis
>
assembler
(
basis
,
basis
);
MatrixType
stiffnessMatrix
;
assembler
.
assemble
(
*
localAssembler_
,
stiffnessMatrix
);
/////////////////////////////////////////////////////////////////////
// Turn the input force and torque into a Neumann boundary field
/////////////////////////////////////////////////////////////////////
VectorType
neumannValues
(
stiffnessMatrix
.
N
());
neumannValues
=
0
;
//
computeAveragePressure
<
GridView
>
(
force
,
torque
,
interface_
,
centerOfTorque
,
neumannValues
);
// The weak form of the Neumann data
VectorType
rhs
=
weakVolumeAndNeumannTerm_
;
assembleAndAddNeumannTerm
<
GridView
,
VectorType
>
(
interface_
,
neumannValues
,
rhs
);
// Solve the Neumann problem for the continuum
VectorType
x
=
dirichletValues_
;
assert
(
(
dynamic_cast
<
LinearIterationStep
<
MatrixType
,
VectorType
>*
>
(
solver_
->
iterationStep_
))
);
dynamic_cast
<
LinearIterationStep
<
MatrixType
,
VectorType
>*
>
(
solver_
->
iterationStep_
)
->
setProblem
(
stiffnessMatrix
,
x
,
rhs
);
//solver.preprocess();
solver_
->
iterationStep_
->
preprocess
();
solver_
->
solve
();
x
=
solver_
->
iterationStep_
->
getSol
();
std
::
cout
<<
"x:
\n
"
<<
x
<<
std
::
endl
;
// Average the continuum displacement on the coupling boundary
RigidBodyMotion
<
3
>
averageInterface
;
computeAverageInterface
(
interface_
,
x
,
averageInterface
);
std
::
cout
<<
"Average interface: "
<<
averageInterface
<<
std
::
endl
;
// Compute the linearization
FieldVector
<
double
,
6
>
interfaceCorrection
;
interfaceCorrection
[
0
]
=
averageInterface
.
r
[
0
];
interfaceCorrection
[
1
]
=
averageInterface
.
r
[
1
];
interfaceCorrection
[
2
]
=
averageInterface
.
r
[
2
];
FieldVector
<
double
,
3
>
infinitesimalRotation
=
Rotation
<
3
,
double
>::
expInv
(
averageInterface
.
q
);
interfaceCorrection
[
3
]
=
infinitesimalRotation
[
0
];
interfaceCorrection
[
4
]
=
infinitesimalRotation
[
1
];
interfaceCorrection
[
5
]
=
infinitesimalRotation
[
2
];
return
interfaceCorrection
;
}
private
:
const
VectorType
&
weakVolumeAndNeumannTerm_
;
const
VectorType
&
dirichletValues_
;
const
shared_ptr
<
::
LoopSolver
<
VectorType
>
>
solver_
;
const
BoundaryPatchBase
<
GridView
>&
interface_
;
const
LinearLocalAssembler
<
typename
GridView
::
Grid
,
typename
P1NodalBasis
<
GridView
,
double
>::
LocalFiniteElement
,
typename
P1NodalBasis
<
GridView
,
double
>::
LocalFiniteElement
,
Dune
::
FieldMatrix
<
double
,
3
,
3
>
>*
localAssembler_
;
};
template
<
class
GridView
,
class
VectorType
>
class
LinearizedRodNeumannToDirichletMap
{
public:
/** \brief Constructor
*
*/
LinearizedRodNeumannToDirichletMap
(
const
BoundaryPatchBase
<
GridView
>&
interface
,
LocalGeodesicFEStiffness
<
GridView
,
RigidBodyMotion
<
3
>
>*
localAssembler
)
:
interface_
(
interface
),
localAssembler_
(
localAssembler
)
{}
/** \brief Map a Neumann value to a Dirichlet value
*
* \param currentIterate The rod configuration that we are linearizing about
*
* \return The Dirichlet value
*/
Dune
::
FieldVector
<
double
,
6
>
apply
(
const
RodSolutionType
&
currentIterate
,
const
Dune
::
FieldVector
<
double
,
3
>&
force
,
const
Dune
::
FieldVector
<
double
,
3
>&
torque
,
const
Dune
::
FieldVector
<
double
,
3
>&
centerOfTorque
)
{
////////////////////////////////////////////////////
// Assemble the linearized rod problem
////////////////////////////////////////////////////
typedef
BCRSMatrix
<
FieldMatrix
<
double
,
6
,
6
>
>
MatrixType
;
GeodesicFEAssembler
<
GridView
,
RigidBodyMotion
<
3
>
>
assembler
(
interface_
.
gridView
(),
localAssembler_
);
MatrixType
stiffnessMatrix
;
assembler
.
assembleMatrix
(
currentIterate
,
stiffnessMatrix
,
true
// assemble occupation pattern
);
VectorType
rhs
(
currentIterate
.
size
());
rhs
=
0
;
assembler
.
assembleGradient
(
currentIterate
,
rhs
);
// The right hand side is the _negative_ gradient
rhs
*=
-
1
;
/////////////////////////////////////////////////////////////////////
// Turn the input force and torque into a Neumann boundary field
/////////////////////////////////////////////////////////////////////
// The weak form of the Neumann data
rhs
[
0
][
0
]
+=
force
[
0
];
rhs
[
0
][
1
]
+=
force
[
1
];
rhs
[
0
][
2
]
+=
force
[
2
];
rhs
[
0
][
3
]
+=
torque
[
0
];
rhs
[
0
][
4
]
+=
torque
[
1
];
rhs
[
0
][
5
]
+=
torque
[
2
];
///////////////////////////////////////////////////////////
// Modify matrix and rhs to contain one Dirichlet node
///////////////////////////////////////////////////////////
int
dIdx
=
rhs
.
size
()
-
1
;
// hardwired index of the single Dirichlet node
rhs
[
dIdx
]
=
0
;
stiffnessMatrix
[
dIdx
]
=
0
;
stiffnessMatrix
[
dIdx
][
dIdx
]
=
Dune
::
ScaledIdentityMatrix
<
double
,
6
>
(
1
);
//////////////////////////////////////////////////
// Solve the Neumann problem
//////////////////////////////////////////////////
VectorType
x
(
rhs
.
size
());
x
=
0
;
// initial iterate
// Technicality: turn the matrix into a linear operator
Dune
::
MatrixAdapter
<
MatrixType
,
VectorType
,
VectorType
>
op
(
stiffnessMatrix
);
// A preconditioner
Dune
::
SeqILU0
<
MatrixType
,
VectorType
,
VectorType
>
ilu0
(
stiffnessMatrix
,
1.0
);
// A preconditioned conjugate-gradient solver
Dune
::
CGSolver
<
VectorType
>
cg
(
op
,
ilu0
,
1E-4
,
100
,
2
);
// Object storing some statistics about the solving process
Dune
::
InverseOperatorResult
statistics
;
// Solve!
cg
.
apply
(
x
,
rhs
,
statistics
);
std
::
cout
<<
"x:
\n
"
<<
x
<<
std
::
endl
;
std
::
cout
<<
"Linear rod interface correction: "
<<
x
[
0
]
<<
std
::
endl
;
return
x
[
0
];
}
private
:
const
BoundaryPatchBase
<
GridView
>&
interface_
;
LocalGeodesicFEStiffness
<
GridView
,
RigidBodyMotion
<
3
>
>*
localAssembler_
;
};
int
main
(
int
argc
,
char
*
argv
[])
try
int
main
(
int
argc
,
char
*
argv
[])
try
{
{
...
@@ -514,7 +292,7 @@ int main (int argc, char *argv[]) try
...
@@ -514,7 +292,7 @@ int main (int argc, char *argv[]) try
// Make pre and postsmoothers
// Make pre and postsmoothers
BlockGSStep
<
MatrixType
,
VectorType
>
presmoother
,
postsmoother
;
BlockGSStep
<
MatrixType
,
VectorType
>
presmoother
,
postsmoother
;
MultigridStep
<
MatrixType
,
VectorType
>
multigridStep
(
stiffnessMatrix3d
,
x3d
,
rhs3d
,
1
);
MultigridStep
<
MatrixType
,
VectorType
>
multigridStep
(
stiffnessMatrix3d
,
x3d
,
rhs3d
,
toplevel
+
1
);
multigridStep
.
setMGType
(
mu
,
nu1
,
nu2
);
multigridStep
.
setMGType
(
mu
,
nu1
,
nu2
);
multigridStep
.
ignoreNodes_
=
&
dirichletNodes
.
back
();
multigridStep
.
ignoreNodes_
=
&
dirichletNodes
.
back
();
...
@@ -660,160 +438,23 @@ int main (int argc, char *argv[]) try
...
@@ -660,160 +438,23 @@ int main (int argc, char *argv[]) try
}
else
if
(
ddType
==
"RichardsonIteration"
)
{
}
else
if
(
ddType
==
"RichardsonIteration"
)
{
///////////////////////////////////////////////////////////////////
Dune
::
array
<
double
,
2
>
alpha
=
parameterSet
.
get
<
array
<
double
,
2
>
>
(
"NeumannNeumannDamping"
);
// One preconditioned Richardson step
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
// Evaluate the Dirichlet-to-Neumann map for the rod
///////////////////////////////////////////////////////////////////
// solve a Dirichlet problem for the rod
rodX
[
0
]
=
lambda
;
rodSolver
.
setInitialSolution
(
rodX
);
rodSolver
.
solve
();
rodX
=
rodSolver
.
getSol
();
// Extract Neumann values
BitSetVector
<
1
>
couplingBitfield
(
rodX
.
size
(),
false
);
// Using that index 0 is always the left boundary for a uniformly refined OneDGrid
couplingBitfield
[
0
]
=
true
;
LeafBoundaryPatch
<
RodGridType
>
couplingBoundary
(
*
complex
.
rodGrids_
[
"rod"
],
couplingBitfield
);
FieldVector
<
double
,
dim
>
resultantForce
,
resultantTorque
;
resultantForce
=
rodAssembler
.
getResultantForce
(
couplingBoundary
,
rodX
,
resultantTorque
);
// Flip orientation
resultantForce
*=
-
1
;
resultantTorque
*=
-
1
;
std
::
cout
<<
"resultant force: "
<<
resultantForce
<<
std
::
endl
;
std
::
cout
<<
"resultant torque: "
<<
resultantTorque
<<
std
::
endl
;
///////////////////////////////////////////////////////////////////
// Evaluate the Dirichlet-to-Neumann map for the continuum
///////////////////////////////////////////////////////////////////
// Turn \lambda \in TSE(3) into a Dirichlet value for the continuum
RigidBodyMotion
<
3
>
relativeMovement
;
relativeMovement
.
r
=
lambda
.
r
-
referenceInterface
.
r
;
relativeMovement
.
q
=
referenceInterface
.
q
;
relativeMovement
.
q
.
invert
();
relativeMovement
.
q
=
lambda
.
q
.
mult
(
relativeMovement
.
q
);
setRotation
(
interfaceBoundary
.
back
(),
x3d
,
relativeMovement
);
// Solve the Dirichlet problem
multigridStep
.
setProblem
(
stiffnessMatrix3d
,
x3d
,
rhs3d
,
complex
.
continuumGrids_
[
"continuum"
]
->
maxLevel
()
+
1
);
solver
->
preprocess
();
multigridStep
.
preprocess
();
solver
->
solve
();
x3d
=
multigridStep
.
getSol
();
// Integrate over the residual on the coupling boundary to obtain
// an element of T^*SE.
FieldVector
<
double
,
3
>
continuumForce
,
continuumTorque
;
VectorType
residual
=
rhs3d
;
stiffnessMatrix3d
.
mmv
(
x3d
,
residual
);
/** \todo Is referenceInterface.r the correct center of rotation? */
computeTotalForceAndTorque
(
interfaceBoundary
.
back
(),
residual
,
referenceInterface
.
r
,
continuumForce
,
continuumTorque
);
///////////////////////////////////////////////////////////////
// Compute the overall Steklov-Poincare residual
///////////////////////////////////////////////////////////////
FieldVector
<
double
,
3
>
residualForce
=
resultantForce
+
continuumForce
;
FieldVector
<
double
,
3
>
residualTorque
=
resultantTorque
+
continuumTorque
;
///////////////////////////////////////////////////////////////
// Apply the preconditioner
///////////////////////////////////////////////////////////////
FieldVector
<
double
,
6
>
interfaceCorrection
;
if
(
preconditioner
==
"DirichletNeumann"
)
{
////////////////////////////////////////////////////////////////////
// Preconditioner is the linearized Neumann-to-Dirichlet map
// of the continuum.
////////////////////////////////////////////////////////////////////
LinearizedContinuumNeumannToDirichletMap
<
GridType
::
LevelGridView
,
MatrixType
,
VectorType
>
linContNtDMap
(
interfaceBoundary
.
back
(),
rhs3d
,
dirichletValues
.
back
(),
&
localAssembler
,
solver
);
interfaceCorrection
=
linContNtDMap
.
apply
(
x3d
,
residualForce
,
residualTorque
,
rodX
[
0
].
r
);
}
else
if
(
preconditioner
==
"NeumannDirichlet"
)
{
////////////////////////////////////////////////////////////////////
// Preconditioner is the linearized Neumann-to-Dirichlet map
// of the rod.
////////////////////////////////////////////////////////////////////
typedef
BlockVector
<
FieldVector
<
double
,
6
>
>
RodVectorType
;
LinearizedRodNeumannToDirichletMap
<
RodGridType
::
LeafGridView
,
RodVectorType
>
linRodNtDMap
(
couplingBoundary
,
&
rodLocalStiffness
);
interfaceCorrection
=
linRodNtDMap
.
apply
(
rodX
,
residualForce
,
residualTorque
,
rodX
[
0
].
r
);
}
else
if
(
preconditioner
==
"NeumannNeumann"
)
{
////////////////////////////////////////////////////////////////////
// Preconditioner is a convex combination of the linearized
// Neumann-to-Dirichlet map of the continuum and the linearized
// Neumann-to-Dirichlet map of the rod.
////////////////////////////////////////////////////////////////////
LinearizedContinuumNeumannToDirichletMap
<
GridType
::
LevelGridView
,
MatrixType
,
VectorType
>
linContNtDMap
(
interfaceBoundary
.
back
(),
rhs3d
,
dirichletValues
.
back
(),
&
localAssembler
,
solver
);
typedef
BlockVector
<
FieldVector
<
double
,
6
>
>
RodVectorType
;
LinearizedRodNeumannToDirichletMap
<
RodGridType
::
LeafGridView
,
RodVectorType
>
linRodNtDMap
(
couplingBoundary
,
&
rodLocalStiffness
);
array
<
double
,
2
>
alpha
=
parameterSet
.
get
<
array
<
double
,
2
>
>
(
"neumannNeumannWeights"
);
FieldVector
<
double
,
6
>
continuumCorrection
=
linContNtDMap
.
apply
(
x3d
,
residualForce
,
residualTorque
,
rodX
[
0
].
r
);
FieldVector
<
double
,
6
>
rodCorrection
=
linRodNtDMap
.
apply
(
rodX
,
residualForce
,
residualTorque
,
rodX
[
0
].
r
);
for
(
int
j
=
0
;
j
<
6
;
j
++
)
interfaceCorrection
[
j
]
=
(
alpha
[
0
]
*
continuumCorrection
[
j
]
+
alpha
[
1
]
*
rodCorrection
[
j
])
/
alpha
[
0
]
+
alpha
[
1
];
}
else
if
(
preconditioner
==
"RobinRobin"
)
{
DUNE_THROW
(
NotImplemented
,
"Robin-Robin preconditioner not implemented yet"
);
RodContinuumSteklovPoincareStep
<
RodGridType
,
GridType
>
rodContinuumSteklovPoincareStep
(
complex
,
preconditioner
,
}
else
alpha
,
DUNE_THROW
(
NotImplemented
,
preconditioner
<<
" is not a known preconditioner"
);
damping
,
referenceInterface
,
&
rodAssembler
,
&
rodLocalStiffness
,
&
rodSolver
,
&
interfaceBoundary
.
back
(),
&
stiffnessMatrix3d
,
&
dirichletValues
.
back
(),
solver
,
&
localAssembler
);
///////////////////////////////////////////////////////////////////////////////
rodContinuumSteklovPoincareStep
.
iterate
(
lambda
);
// Apply the damped correction to the current interface value
///////////////////////////////////////////////////////////////////////////////
interfaceCorrection
*=
damping
;
lambda
=
RigidBodyMotion
<
3
>::
exp
(
lambda
,
interfaceCorrection
);
}
else
}
else
DUNE_THROW
(
NotImplemented
,
ddType
<<
" is not a known domain decomposition algorithm"
);
DUNE_THROW
(
NotImplemented
,
ddType
<<
" is not a known domain decomposition algorithm"
);
...
...
This diff is collapsed.
Click to expand it.
dune/gfe/coupling/rodcontinuumsteklovpoincarestep.hh
0 → 100644
+
519
−
0
View file @
c0bfa724
#ifndef ROD_CONTINUUM_STEKLOV_POINCARE_STEP_HH
#define ROD_CONTINUUM_STEKLOV_POINCARE_STEP_HH
#include
<vector>
#include
<dune/common/shared_ptr.hh>
#include
<dune/common/fvector.hh>
#include
<dune/common/fmatrix.hh>
#include
<dune/common/bitsetvector.hh>
#include
<dune/istl/bcrsmatrix.hh>
#include
<dune/istl/bvector.hh>
#include
<dune/gfe/coupling/rodcontinuumcomplex.hh>
template
<
class
GridView
,
class
MatrixType
,
class
VectorType
>
class
LinearizedContinuumNeumannToDirichletMap
{
public:
/** \brief Constructor
*
*/
LinearizedContinuumNeumannToDirichletMap
(
const
BoundaryPatchBase
<
GridView
>&
interface
,
const
VectorType
&
weakVolumeAndNeumannTerm
,
const
VectorType
&
dirichletValues
,
const
LinearLocalAssembler
<
typename
GridView
::
Grid
,
typename
P1NodalBasis
<
GridView
,
double
>::
LocalFiniteElement
,
typename
P1NodalBasis
<
GridView
,
double
>::
LocalFiniteElement
,
Dune
::
FieldMatrix
<
double
,
3
,
3
>
>*
localAssembler
,
const
Dune
::
shared_ptr
<
::
LoopSolver
<
VectorType
>
>&
solver
)
:
interface_
(
interface
),
weakVolumeAndNeumannTerm_
(
weakVolumeAndNeumannTerm
),
dirichletValues_
(
dirichletValues
),
solver_
(
solver
),
localAssembler_
(
localAssembler
)
{}
/** \brief Map a Neumann value to a Dirichlet value
*
* \param currentIterate The continuum configuration that we are linearizing about
*
* \return The infinitesimal movement of the interface
*/
Dune
::
FieldVector
<
double
,
6
>
apply
(
const
VectorType
&
currentIterate
,
const
Dune
::
FieldVector
<
double
,
3
>&
force
,
const
Dune
::
FieldVector
<
double
,
3
>&
torque
,
const
Dune
::
FieldVector
<
double
,
3
>&
centerOfTorque
)
{
////////////////////////////////////////////////////
// Assemble the linearized problem
////////////////////////////////////////////////////
/** \todo We are actually assembling standard linear elasticity,
* i.e. the linearization at zero
*/
typedef
P1NodalBasis
<
GridView
,
double
>
P1Basis
;
P1Basis
basis
(
interface_
.
gridView
());
OperatorAssembler
<
P1Basis
,
P1Basis
>
assembler
(
basis
,
basis
);
MatrixType
stiffnessMatrix
;
assembler
.
assemble
(
*
localAssembler_
,
stiffnessMatrix
);
/////////////////////////////////////////////////////////////////////
// Turn the input force and torque into a Neumann boundary field
/////////////////////////////////////////////////////////////////////
VectorType
neumannValues
(
stiffnessMatrix
.
N
());
neumannValues
=
0
;
//
computeAveragePressure
<
GridView
>
(
force
,
torque
,
interface_
,
centerOfTorque
,
neumannValues
);
// The weak form of the Neumann data
VectorType
rhs
=
weakVolumeAndNeumannTerm_
;
assembleAndAddNeumannTerm
<
GridView
,
VectorType
>
(
interface_
,
neumannValues
,
rhs
);
// Solve the Neumann problem for the continuum
VectorType
x
=
dirichletValues_
;
assert
(
(
dynamic_cast
<
LinearIterationStep
<
MatrixType
,
VectorType
>*
>
(
solver_
->
iterationStep_
))
);
dynamic_cast
<
LinearIterationStep
<
MatrixType
,
VectorType
>*
>
(
solver_
->
iterationStep_
)
->
setProblem
(
stiffnessMatrix
,
x
,
rhs
);
//solver.preprocess();
solver_
->
iterationStep_
->
preprocess
();
solver_
->
solve
();
x
=
solver_
->
iterationStep_
->
getSol
();
std
::
cout
<<
"x:
\n
"
<<
x
<<
std
::
endl
;
// Average the continuum displacement on the coupling boundary
RigidBodyMotion
<
3
>
averageInterface
;
computeAverageInterface
(
interface_
,
x
,
averageInterface
);
std
::
cout
<<
"Average interface: "
<<
averageInterface
<<
std
::
endl
;
// Compute the linearization
Dune
::
FieldVector
<
double
,
6
>
interfaceCorrection
;
interfaceCorrection
[
0
]
=
averageInterface
.
r
[
0
];
interfaceCorrection
[
1
]
=
averageInterface
.
r
[
1
];
interfaceCorrection
[
2
]
=
averageInterface
.
r
[
2
];
Dune
::
FieldVector
<
double
,
3
>
infinitesimalRotation
=
Rotation
<
3
,
double
>::
expInv
(
averageInterface
.
q
);
interfaceCorrection
[
3
]
=
infinitesimalRotation
[
0
];
interfaceCorrection
[
4
]
=
infinitesimalRotation
[
1
];
interfaceCorrection
[
5
]
=
infinitesimalRotation
[
2
];
return
interfaceCorrection
;
}
private
:
const
VectorType
&
weakVolumeAndNeumannTerm_
;
const
VectorType
&
dirichletValues_
;
const
Dune
::
shared_ptr
<
::
LoopSolver
<
VectorType
>
>
solver_
;
const
BoundaryPatchBase
<
GridView
>&
interface_
;
const
LinearLocalAssembler
<
typename
GridView
::
Grid
,
typename
P1NodalBasis
<
GridView
,
double
>::
LocalFiniteElement
,
typename
P1NodalBasis
<
GridView
,
double
>::
LocalFiniteElement
,
Dune
::
FieldMatrix
<
double
,
3
,
3
>
>*
localAssembler_
;
};
template
<
class
GridView
,
class
VectorType
>
class
LinearizedRodNeumannToDirichletMap
{
static
const
int
dim
=
3
;
typedef
std
::
vector
<
RigidBodyMotion
<
dim
>
>
RodSolutionType
;
public:
/** \brief Constructor
*
*/
LinearizedRodNeumannToDirichletMap
(
const
BoundaryPatchBase
<
GridView
>&
interface
,
LocalGeodesicFEStiffness
<
GridView
,
RigidBodyMotion
<
3
>
>*
localAssembler
)
:
interface_
(
interface
),
localAssembler_
(
localAssembler
)
{}
/** \brief Map a Neumann value to a Dirichlet value
*
* \param currentIterate The rod configuration that we are linearizing about
*
* \return The Dirichlet value
*/
Dune
::
FieldVector
<
double
,
6
>
apply
(
const
RodSolutionType
&
currentIterate
,
const
Dune
::
FieldVector
<
double
,
3
>&
force
,
const
Dune
::
FieldVector
<
double
,
3
>&
torque
,
const
Dune
::
FieldVector
<
double
,
3
>&
centerOfTorque
)
{
////////////////////////////////////////////////////
// Assemble the linearized rod problem
////////////////////////////////////////////////////
typedef
Dune
::
BCRSMatrix
<
Dune
::
FieldMatrix
<
double
,
6
,
6
>
>
MatrixType
;
GeodesicFEAssembler
<
GridView
,
RigidBodyMotion
<
3
>
>
assembler
(
interface_
.
gridView
(),
localAssembler_
);
MatrixType
stiffnessMatrix
;
assembler
.
assembleMatrix
(
currentIterate
,
stiffnessMatrix
,
true
// assemble occupation pattern
);
VectorType
rhs
(
currentIterate
.
size
());
rhs
=
0
;
assembler
.
assembleGradient
(
currentIterate
,
rhs
);
// The right hand side is the _negative_ gradient
rhs
*=
-
1
;
/////////////////////////////////////////////////////////////////////
// Turn the input force and torque into a Neumann boundary field
/////////////////////////////////////////////////////////////////////
// The weak form of the Neumann data
rhs
[
0
][
0
]
+=
force
[
0
];
rhs
[
0
][
1
]
+=
force
[
1
];
rhs
[
0
][
2
]
+=
force
[
2
];
rhs
[
0
][
3
]
+=
torque
[
0
];
rhs
[
0
][
4
]
+=
torque
[
1
];
rhs
[
0
][
5
]
+=
torque
[
2
];
///////////////////////////////////////////////////////////
// Modify matrix and rhs to contain one Dirichlet node
///////////////////////////////////////////////////////////
int
dIdx
=
rhs
.
size
()
-
1
;
// hardwired index of the single Dirichlet node
rhs
[
dIdx
]
=
0
;
stiffnessMatrix
[
dIdx
]
=
0
;
stiffnessMatrix
[
dIdx
][
dIdx
]
=
Dune
::
ScaledIdentityMatrix
<
double
,
6
>
(
1
);
//////////////////////////////////////////////////
// Solve the Neumann problem
//////////////////////////////////////////////////
VectorType
x
(
rhs
.
size
());
x
=
0
;
// initial iterate
// Technicality: turn the matrix into a linear operator
Dune
::
MatrixAdapter
<
MatrixType
,
VectorType
,
VectorType
>
op
(
stiffnessMatrix
);
// A preconditioner
Dune
::
SeqILU0
<
MatrixType
,
VectorType
,
VectorType
>
ilu0
(
stiffnessMatrix
,
1.0
);
// A preconditioned conjugate-gradient solver
Dune
::
CGSolver
<
VectorType
>
cg
(
op
,
ilu0
,
1E-4
,
100
,
2
);
// Object storing some statistics about the solving process
Dune
::
InverseOperatorResult
statistics
;
// Solve!
cg
.
apply
(
x
,
rhs
,
statistics
);
std
::
cout
<<
"x:
\n
"
<<
x
<<
std
::
endl
;
std
::
cout
<<
"Linear rod interface correction: "
<<
x
[
0
]
<<
std
::
endl
;
return
x
[
0
];
}
private
:
const
BoundaryPatchBase
<
GridView
>&
interface_
;
LocalGeodesicFEStiffness
<
GridView
,
RigidBodyMotion
<
3
>
>*
localAssembler_
;
};
template
<
class
RodGridType
,
class
ContinuumGridType
>
class
RodContinuumSteklovPoincareStep
{
static
const
int
dim
=
ContinuumGridType
::
dimension
;
// The type used for rod configurations
typedef
std
::
vector
<
RigidBodyMotion
<
dim
>
>
RodSolutionType
;
// The type used for continuum configurations
typedef
Dune
::
BlockVector
<
Dune
::
FieldVector
<
double
,
dim
>
>
VectorType
;
typedef
Dune
::
BlockVector
<
Dune
::
FieldVector
<
double
,
6
>
>
RodCorrectionType
;
typedef
Dune
::
BCRSMatrix
<
Dune
::
FieldMatrix
<
double
,
3
,
3
>
>
MatrixType
;
typedef
P1NodalBasis
<
typename
ContinuumGridType
::
LeafGridView
,
double
>
ContinuumFEBasis
;
public:
/** \brief Constructor */
RodContinuumSteklovPoincareStep
(
const
RodContinuumComplex
<
RodGridType
,
ContinuumGridType
>&
complex
,
const
std
::
string
&
preconditioner
,
const
Dune
::
array
<
double
,
2
>&
alpha
,
double
richardsonDamping
,
const
RigidBodyMotion
<
3
>&
referenceInterface
,
RodAssembler
<
typename
RodGridType
::
LeafGridView
,
3
>*
rodAssembler
,
RodLocalStiffness
<
typename
RodGridType
::
LeafGridView
,
double
>*
rodLocalStiffness
,
RiemannianTrustRegionSolver
<
RodGridType
,
RigidBodyMotion
<
3
>
>*
rodSolver
,
const
LevelBoundaryPatch
<
ContinuumGridType
>*
interfaceBoundary
,
const
MatrixType
*
stiffnessMatrix3d
,
const
VectorType
*
dirichletValues
,
const
Dune
::
shared_ptr
<
::
LoopSolver
<
VectorType
>
>
solver
,
StVenantKirchhoffAssembler
<
ContinuumGridType
,
typename
ContinuumFEBasis
::
LocalFiniteElement
,
typename
ContinuumFEBasis
::
LocalFiniteElement
>*
localAssembler
)
:
complex_
(
complex
),
preconditioner_
(
preconditioner
),
alpha_
(
alpha
),
richardsonDamping_
(
richardsonDamping
),
referenceInterface_
(
referenceInterface
),
rodAssembler_
(
rodAssembler
),
rodLocalStiffness_
(
rodLocalStiffness
),
rodSolver_
(
rodSolver
),
interfaceBoundary_
(
interfaceBoundary
),
stiffnessMatrix3d_
(
stiffnessMatrix3d
),
dirichletValues_
(
dirichletValues
),
solver_
(
solver
),
localAssembler_
(
localAssembler
)
{}
/** \brief Do one Steklov-Poincare step
* \param[in,out] lambda The old and new iterate
*/
void
iterate
(
RigidBodyMotion
<
3
>&
lambda
);
private
:
//////////////////////////////////////////////////////////////////
// Data members related to the coupled problem
//////////////////////////////////////////////////////////////////
RodContinuumComplex
<
RodGridType
,
ContinuumGridType
>
complex_
;
std
::
string
preconditioner_
;
/** \brief Neumann-Neumann damping */
Dune
::
array
<
double
,
2
>
alpha_
;
double
richardsonDamping_
;
//////////////////////////////////////////////////////////////////
// Data members related to the rod problems
//////////////////////////////////////////////////////////////////
RigidBodyMotion
<
dim
>
referenceInterface_
;
RodAssembler
<
typename
RodGridType
::
LeafGridView
,
3
>*
rodAssembler_
;
RodLocalStiffness
<
typename
RodGridType
::
LeafGridView
,
double
>*
rodLocalStiffness_
;
RiemannianTrustRegionSolver
<
RodGridType
,
RigidBodyMotion
<
3
>
>*
rodSolver_
;
//////////////////////////////////////////////////////////////////
// Data members related to the continuum problems
//////////////////////////////////////////////////////////////////
const
LevelBoundaryPatch
<
ContinuumGridType
>*
interfaceBoundary_
;
const
MatrixType
*
stiffnessMatrix3d_
;
const
VectorType
*
dirichletValues_
;
const
Dune
::
shared_ptr
<
::
LoopSolver
<
VectorType
>
>
solver_
;
/** \todo Hack:
* - we actually need a base class
* - we don't need the global ContinuumFEBasis
*/
StVenantKirchhoffAssembler
<
ContinuumGridType
,
typename
ContinuumFEBasis
::
LocalFiniteElement
,
typename
ContinuumFEBasis
::
LocalFiniteElement
>*
localAssembler_
;
};
/** \brief One preconditioned Richardson step
*/
template
<
class
RodGridType
,
class
ContinuumGridType
>
void
RodContinuumSteklovPoincareStep
<
RodGridType
,
ContinuumGridType
>::
iterate
(
RigidBodyMotion
<
3
>&
lambda
)
{
///////////////////////////////////////////////////////////////////
// Evaluate the Dirichlet-to-Neumann map for the rod
///////////////////////////////////////////////////////////////////
// solve a Dirichlet problem for the rod
RodSolutionType
rodX
;
/** \todo Using that index 0 is always the left boundary for a uniformly refined OneDGrid */
rodX
[
0
]
=
lambda
;
#warning Dirichlet boundary not properly set
rodX
.
back
()
=
lambda
;
rodSolver_
->
setInitialSolution
(
rodX
);
rodSolver_
->
solve
();
rodX
=
rodSolver_
->
getSol
();
// Extract Neumann values
Dune
::
BitSetVector
<
1
>
couplingBitfield
(
rodX
.
size
(),
false
);
/** \todo Using that index 0 is always the left boundary for a uniformly refined OneDGrid */
couplingBitfield
[
0
]
=
true
;
LeafBoundaryPatch
<
RodGridType
>
couplingBoundary
(
*
complex_
.
rodGrids_
[
"rod"
],
couplingBitfield
);
Dune
::
FieldVector
<
double
,
dim
>
resultantForce
,
resultantTorque
;
resultantForce
=
rodAssembler_
->
getResultantForce
(
couplingBoundary
,
rodX
,
resultantTorque
);
// Flip orientation
resultantForce
*=
-
1
;
resultantTorque
*=
-
1
;
std
::
cout
<<
"resultant force: "
<<
resultantForce
<<
std
::
endl
;
std
::
cout
<<
"resultant torque: "
<<
resultantTorque
<<
std
::
endl
;
///////////////////////////////////////////////////////////////////
// Evaluate the Dirichlet-to-Neumann map for the continuum
///////////////////////////////////////////////////////////////////
VectorType
x3d
(
complex_
.
continuumGrids_
[
"continuum"
]
->
size
(
dim
));
x3d
=
0
;
// Turn \lambda \in TSE(3) into a Dirichlet value for the continuum
RigidBodyMotion
<
3
>
relativeMovement
;
relativeMovement
.
r
=
lambda
.
r
-
referenceInterface_
.
r
;
relativeMovement
.
q
=
referenceInterface_
.
q
;
relativeMovement
.
q
.
invert
();
relativeMovement
.
q
=
lambda
.
q
.
mult
(
relativeMovement
.
q
);
setRotation
(
*
interfaceBoundary_
,
x3d
,
relativeMovement
);
// Right hand side vector: currently with Neumann and volume terms
VectorType
rhs3d
(
x3d
.
size
());
rhs3d
=
0
;
// Solve the Dirichlet problem
assert
(
(
dynamic_cast
<
LinearIterationStep
<
MatrixType
,
VectorType
>*
>
(
solver_
->
iterationStep_
))
);
dynamic_cast
<
LinearIterationStep
<
MatrixType
,
VectorType
>*
>
(
solver_
->
iterationStep_
)
->
setProblem
(
*
stiffnessMatrix3d_
,
x3d
,
rhs3d
);
solver_
->
preprocess
();
dynamic_cast
<
IterationStep
<
VectorType
>*
>
(
solver_
->
iterationStep_
)
->
preprocess
();
solver_
->
solve
();
x3d
=
dynamic_cast
<
IterationStep
<
VectorType
>*
>
(
solver_
->
iterationStep_
)
->
getSol
();
// Integrate over the residual on the coupling boundary to obtain
// an element of T^*SE.
Dune
::
FieldVector
<
double
,
3
>
continuumForce
,
continuumTorque
;
VectorType
residual
=
rhs3d
;
stiffnessMatrix3d_
->
mmv
(
x3d
,
residual
);
/** \todo Is referenceInterface.r the correct center of rotation? */
computeTotalForceAndTorque
(
*
interfaceBoundary_
,
residual
,
referenceInterface_
.
r
,
continuumForce
,
continuumTorque
);
///////////////////////////////////////////////////////////////
// Compute the overall Steklov-Poincare residual
///////////////////////////////////////////////////////////////
Dune
::
FieldVector
<
double
,
3
>
residualForce
=
resultantForce
+
continuumForce
;
Dune
::
FieldVector
<
double
,
3
>
residualTorque
=
resultantTorque
+
continuumTorque
;
///////////////////////////////////////////////////////////////
// Apply the preconditioner
///////////////////////////////////////////////////////////////
Dune
::
FieldVector
<
double
,
6
>
interfaceCorrection
;
if
(
preconditioner_
==
"DirichletNeumann"
)
{
////////////////////////////////////////////////////////////////////
// Preconditioner is the linearized Neumann-to-Dirichlet map
// of the continuum.
////////////////////////////////////////////////////////////////////
LinearizedContinuumNeumannToDirichletMap
<
typename
ContinuumGridType
::
LevelGridView
,
MatrixType
,
VectorType
>
linContNtDMap
(
*
interfaceBoundary_
,
rhs3d
,
*
dirichletValues_
,
localAssembler_
,
solver_
);
interfaceCorrection
=
linContNtDMap
.
apply
(
x3d
,
residualForce
,
residualTorque
,
rodX
[
0
].
r
);
}
else
if
(
preconditioner_
==
"NeumannDirichlet"
)
{
////////////////////////////////////////////////////////////////////
// Preconditioner is the linearized Neumann-to-Dirichlet map
// of the rod.
////////////////////////////////////////////////////////////////////
LinearizedRodNeumannToDirichletMap
<
typename
RodGridType
::
LeafGridView
,
RodCorrectionType
>
linRodNtDMap
(
couplingBoundary
,
rodLocalStiffness_
);
interfaceCorrection
=
linRodNtDMap
.
apply
(
rodX
,
residualForce
,
residualTorque
,
rodX
[
0
].
r
);
}
else
if
(
preconditioner_
==
"NeumannNeumann"
)
{
////////////////////////////////////////////////////////////////////
// Preconditioner is a convex combination of the linearized
// Neumann-to-Dirichlet map of the continuum and the linearized
// Neumann-to-Dirichlet map of the rod.
////////////////////////////////////////////////////////////////////
LinearizedContinuumNeumannToDirichletMap
<
typename
ContinuumGridType
::
LevelGridView
,
MatrixType
,
VectorType
>
linContNtDMap
(
*
interfaceBoundary_
,
rhs3d
,
*
dirichletValues_
,
localAssembler_
,
solver_
);
LinearizedRodNeumannToDirichletMap
<
typename
RodGridType
::
LeafGridView
,
RodCorrectionType
>
linRodNtDMap
(
couplingBoundary
,
rodLocalStiffness_
);
Dune
::
FieldVector
<
double
,
6
>
continuumCorrection
=
linContNtDMap
.
apply
(
x3d
,
residualForce
,
residualTorque
,
rodX
[
0
].
r
);
Dune
::
FieldVector
<
double
,
6
>
rodCorrection
=
linRodNtDMap
.
apply
(
rodX
,
residualForce
,
residualTorque
,
rodX
[
0
].
r
);
for
(
int
j
=
0
;
j
<
6
;
j
++
)
interfaceCorrection
[
j
]
=
(
alpha_
[
0
]
*
continuumCorrection
[
j
]
+
alpha_
[
1
]
*
rodCorrection
[
j
])
/
alpha_
[
0
]
+
alpha_
[
1
];
}
else
if
(
preconditioner_
==
"RobinRobin"
)
{
DUNE_THROW
(
Dune
::
NotImplemented
,
"Robin-Robin preconditioner not implemented yet"
);
}
else
DUNE_THROW
(
Dune
::
NotImplemented
,
preconditioner_
<<
" is not a known preconditioner"
);
///////////////////////////////////////////////////////////////////////////////
// Apply the damped correction to the current interface value
///////////////////////////////////////////////////////////////////////////////
interfaceCorrection
*=
richardsonDamping_
;
lambda
=
RigidBodyMotion
<
3
>::
exp
(
lambda
,
interfaceCorrection
);
}
#endif
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment