Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-gfe
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sander, Oliver
dune-gfe
Merge requests
!67
Modernize rod code
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
Modernize rod code
modernize-rod-code
into
master
Overview
0
Commits
16
Pipelines
11
Changes
20
Merged
Sander, Oliver
requested to merge
modernize-rod-code
into
master
4 years ago
Overview
0
Commits
16
Pipelines
11
Changes
2
Expand
0
0
Merge request reports
Compare
version 3
version 10
76484b25
4 years ago
version 9
7d22b79b
4 years ago
version 8
6aaf9733
4 years ago
version 7
5c5df662
4 years ago
version 6
c744b1a0
4 years ago
version 5
565d26ac
4 years ago
version 4
918e4b09
4 years ago
version 3
bcb88f54
4 years ago
version 2
ff8ee9c7
4 years ago
version 1
4ced01be
4 years ago
master (base)
and
version 5
latest version
baf1f9fd
16 commits,
4 years ago
version 10
76484b25
16 commits,
4 years ago
version 9
7d22b79b
15 commits,
4 years ago
version 8
6aaf9733
13 commits,
4 years ago
version 7
5c5df662
12 commits,
4 years ago
version 6
c744b1a0
11 commits,
4 years ago
version 5
565d26ac
11 commits,
4 years ago
version 4
918e4b09
11 commits,
4 years ago
version 3
bcb88f54
11 commits,
4 years ago
version 2
ff8ee9c7
11 commits,
4 years ago
version 1
4ced01be
11 commits,
4 years ago
Show latest version
2 files
+
10
−
1
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
Files
2
Search (e.g. *.vue) (Ctrl+P)
dune/gfe/rodlocalstiffness.hh deleted
100644 → 0
+
0
−
720
Options
#ifndef ROD_LOCAL_STIFFNESS_HH
#define ROD_LOCAL_STIFFNESS_HH
#include
<array>
#include
<dune/common/fmatrix.hh>
#include
<dune/istl/matrix.hh>
#include
<dune/geometry/quadraturerules.hh>
#include
<dune/functions/functionspacebases/lagrangebasis.hh>
#include
<dune/gfe/localfirstordermodel.hh>
#include
"rigidbodymotion.hh"
template
<
class
GridView
,
class
RT
>
class
RodLocalStiffness
:
public
Dune
::
GFE
::
LocalFirstOrderModel
<
Dune
::
Functions
::
LagrangeBasis
<
GridView
,
1
>
,
RigidBodyMotion
<
RT
,
3
>
>
{
typedef
RigidBodyMotion
<
RT
,
3
>
TargetSpace
;
typedef
Dune
::
Functions
::
LagrangeBasis
<
GridView
,
1
>
Basis
;
// grid types
typedef
typename
GridView
::
Grid
::
ctype
DT
;
typedef
typename
GridView
::
template
Codim
<
0
>
::
Entity
Entity
;
// some other sizes
enum
{
dim
=
GridView
::
dimension
};
// Quadrature order used for the extension and shear energy
enum
{
shearQuadOrder
=
2
};
// Quadrature order used for the bending and torsion energy
enum
{
bendingQuadOrder
=
2
};
public
:
/** \brief The stress-free configuration */
std
::
vector
<
RigidBodyMotion
<
RT
,
3
>
>
referenceConfiguration_
;
public
:
//! Each block is x, y, theta in 2d, T (R^3 \times SO(3)) in 3d
enum
{
blocksize
=
6
};
// define the number of components of your system, this is used outside
// to allocate the correct size of (dense) blocks with a FieldMatrix
enum
{
m
=
blocksize
};
// types for matrics, vectors and boundary conditions
typedef
Dune
::
FieldMatrix
<
RT
,
m
,
m
>
MBlockType
;
// one entry in the stiffness matrix
typedef
Dune
::
FieldVector
<
RT
,
m
>
VBlockType
;
// one entry in the global vectors
// /////////////////////////////////
// The material parameters
// /////////////////////////////////
/** \brief Material constants */
std
::
array
<
double
,
3
>
K_
;
std
::
array
<
double
,
3
>
A_
;
GridView
gridView_
;
//! Constructor
RodLocalStiffness
(
const
GridView
&
gridView
,
const
std
::
array
<
double
,
3
>&
K
,
const
std
::
array
<
double
,
3
>&
A
)
:
K_
(
K
),
A_
(
A
),
gridView_
(
gridView
)
{}
/** \brief Constructor setting shape constants and material parameters
\param A The rod section area
\param J1, J2 The geometric moments (Flchentrgheitsmomente)
\param E Young's modulus
\param nu Poisson number
*/
RodLocalStiffness
(
const
GridView
&
gridView
,
double
A
,
double
J1
,
double
J2
,
double
E
,
double
nu
)
:
gridView_
(
gridView
)
{
// shear modulus
double
G
=
E
/
(
2
+
2
*
nu
);
K_
[
0
]
=
E
*
J1
;
K_
[
1
]
=
E
*
J2
;
K_
[
2
]
=
G
*
(
J1
+
J2
);
A_
[
0
]
=
G
*
A
;
A_
[
1
]
=
G
*
A
;
A_
[
2
]
=
E
*
A
;
}
void
setReferenceConfiguration
(
const
std
::
vector
<
RigidBodyMotion
<
RT
,
3
>
>&
referenceConfiguration
)
{
referenceConfiguration_
=
referenceConfiguration
;
}
/** \brief Compute local element energy */
virtual
RT
energy
(
const
typename
Basis
::
LocalView
&
localView
,
const
std
::
vector
<
RigidBodyMotion
<
RT
,
3
>
>&
localSolution
)
const
override
;
/** \brief Assemble the element gradient of the energy functional */
void
assembleGradient
(
const
typename
Basis
::
LocalView
&
localView
,
const
std
::
vector
<
RigidBodyMotion
<
RT
,
3
>
>&
solution
,
std
::
vector
<
Dune
::
FieldVector
<
double
,
6
>
>&
gradient
)
const
override
;
Dune
::
FieldVector
<
double
,
6
>
getStrain
(
const
std
::
vector
<
RigidBodyMotion
<
RT
,
3
>
>&
localSolution
,
const
Entity
&
element
,
const
Dune
::
FieldVector
<
double
,
1
>&
pos
)
const
;
Dune
::
FieldVector
<
RT
,
6
>
getStress
(
const
std
::
vector
<
RigidBodyMotion
<
RT
,
3
>
>&
localSolution
,
const
Entity
&
element
,
const
Dune
::
FieldVector
<
double
,
1
>&
pos
)
const
;
protected
:
void
getLocalReferenceConfiguration
(
const
Entity
&
element
,
std
::
vector
<
RigidBodyMotion
<
RT
,
3
>
>&
localReferenceConfiguration
)
const
{
unsigned
int
numOfBaseFct
=
element
.
subEntities
(
dim
);
localReferenceConfiguration
.
resize
(
numOfBaseFct
);
for
(
size_t
i
=
0
;
i
<
numOfBaseFct
;
i
++
)
localReferenceConfiguration
[
i
]
=
referenceConfiguration_
[
gridView_
.
indexSet
().
subIndex
(
element
,
i
,
dim
)];
}
public
:
static
void
interpolationDerivative
(
const
Rotation
<
RT
,
3
>&
q0
,
const
Rotation
<
RT
,
3
>&
q1
,
double
s
,
std
::
array
<
Quaternion
<
double
>
,
6
>&
grad
);
static
void
interpolationVelocityDerivative
(
const
Rotation
<
RT
,
3
>&
q0
,
const
Rotation
<
RT
,
3
>&
q1
,
double
s
,
double
intervalLength
,
std
::
array
<
Quaternion
<
double
>
,
6
>&
grad
);
protected
:
template
<
class
T
>
static
Dune
::
FieldVector
<
T
,
3
>
darboux
(
const
Rotation
<
T
,
3
>&
q
,
const
Dune
::
FieldVector
<
T
,
4
>&
q_s
)
{
Dune
::
FieldVector
<
double
,
3
>
u
;
// The Darboux vector
u
[
0
]
=
2
*
(
q
.
B
(
0
)
*
q_s
);
u
[
1
]
=
2
*
(
q
.
B
(
1
)
*
q_s
);
u
[
2
]
=
2
*
(
q
.
B
(
2
)
*
q_s
);
return
u
;
}
};
template
<
class
GridType
,
class
RT
>
RT
RodLocalStiffness
<
GridType
,
RT
>::
energy
(
const
typename
Basis
::
LocalView
&
localView
,
const
std
::
vector
<
RigidBodyMotion
<
RT
,
3
>
>&
localSolution
)
const
{
assert
(
localSolution
.
size
()
==
2
);
const
auto
&
element
=
localView
.
element
();
RT
energy
=
0
;
std
::
vector
<
RigidBodyMotion
<
RT
,
3
>
>
localReferenceConfiguration
;
getLocalReferenceConfiguration
(
element
,
localReferenceConfiguration
);
// ///////////////////////////////////////////////////////////////////////////////
// The following two loops are a reduced integration scheme. We integrate
// the transverse shear and extensional energy with a first-order quadrature
// formula, even though it should be second order. This prevents shear-locking.
// ///////////////////////////////////////////////////////////////////////////////
const
Dune
::
QuadratureRule
<
double
,
1
>&
shearingQuad
=
Dune
::
QuadratureRules
<
double
,
1
>::
rule
(
element
.
type
(),
shearQuadOrder
);
// hack: convert from std::array to std::vector
std
::
vector
<
RigidBodyMotion
<
RT
,
3
>
>
localSolutionVector
(
localSolution
.
begin
(),
localSolution
.
end
());
for
(
size_t
pt
=
0
;
pt
<
shearingQuad
.
size
();
pt
++
)
{
// Local position of the quadrature point
const
Dune
::
FieldVector
<
double
,
1
>&
quadPos
=
shearingQuad
[
pt
].
position
();
const
double
integrationElement
=
element
.
geometry
().
integrationElement
(
quadPos
);
double
weight
=
shearingQuad
[
pt
].
weight
()
*
integrationElement
;
Dune
::
FieldVector
<
double
,
6
>
strain
=
getStrain
(
localSolutionVector
,
element
,
quadPos
);
// The reference strain
Dune
::
FieldVector
<
double
,
6
>
referenceStrain
=
getStrain
(
localReferenceConfiguration
,
element
,
quadPos
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
energy
+=
weight
*
0.5
*
A_
[
i
]
*
(
strain
[
i
]
-
referenceStrain
[
i
])
*
(
strain
[
i
]
-
referenceStrain
[
i
]);
}
// Get quadrature rule
const
Dune
::
QuadratureRule
<
double
,
1
>&
bendingQuad
=
Dune
::
QuadratureRules
<
double
,
1
>::
rule
(
element
.
type
(),
bendingQuadOrder
);
for
(
size_t
pt
=
0
;
pt
<
bendingQuad
.
size
();
pt
++
)
{
// Local position of the quadrature point
const
Dune
::
FieldVector
<
double
,
1
>&
quadPos
=
bendingQuad
[
pt
].
position
();
double
weight
=
bendingQuad
[
pt
].
weight
()
*
element
.
geometry
().
integrationElement
(
quadPos
);
Dune
::
FieldVector
<
double
,
6
>
strain
=
getStrain
(
localSolutionVector
,
element
,
quadPos
);
// The reference strain
Dune
::
FieldVector
<
double
,
6
>
referenceStrain
=
getStrain
(
localReferenceConfiguration
,
element
,
quadPos
);
// Part II: the bending and twisting energy
for
(
int
i
=
0
;
i
<
3
;
i
++
)
energy
+=
weight
*
0.5
*
K_
[
i
]
*
(
strain
[
i
+
3
]
-
referenceStrain
[
i
+
3
])
*
(
strain
[
i
+
3
]
-
referenceStrain
[
i
+
3
]);
}
return
energy
;
}
template
<
class
GridType
,
class
RT
>
void
RodLocalStiffness
<
GridType
,
RT
>::
interpolationDerivative
(
const
Rotation
<
RT
,
3
>&
q0
,
const
Rotation
<
RT
,
3
>&
q1
,
double
s
,
std
::
array
<
Quaternion
<
double
>
,
6
>&
grad
)
{
// Clear output array
for
(
int
i
=
0
;
i
<
6
;
i
++
)
grad
[
i
]
=
0
;
// The derivatives with respect to w^0
// Compute q_1^{-1}q_0
Rotation
<
RT
,
3
>
q1InvQ0
=
q1
;
q1InvQ0
.
invert
();
q1InvQ0
=
q1InvQ0
.
mult
(
q0
);
{
// Compute v = (1-s) \exp^{-1} ( q_1^{-1} q_0)
Dune
::
FieldVector
<
RT
,
3
>
v
=
Rotation
<
RT
,
3
>::
expInv
(
q1InvQ0
);
v
*=
(
1
-
s
);
Dune
::
FieldMatrix
<
RT
,
4
,
3
>
dExp_v
=
Rotation
<
RT
,
3
>::
Dexp
(
SkewMatrix
<
RT
,
3
>
(
v
));
Dune
::
FieldMatrix
<
RT
,
3
,
4
>
dExpInv
=
Rotation
<
RT
,
3
>::
DexpInv
(
q1InvQ0
);
Dune
::
FieldMatrix
<
RT
,
4
,
4
>
mat
(
0
);
for
(
int
i
=
0
;
i
<
4
;
i
++
)
for
(
int
j
=
0
;
j
<
4
;
j
++
)
for
(
int
k
=
0
;
k
<
3
;
k
++
)
mat
[
i
][
j
]
+=
(
1
-
s
)
*
dExp_v
[
i
][
k
]
*
dExpInv
[
k
][
j
];
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
Quaternion
<
RT
>
dw
;
for
(
int
j
=
0
;
j
<
4
;
j
++
)
dw
[
j
]
=
0.5
*
(
i
==
j
);
// dExp[j][i] at v=0
dw
=
q1InvQ0
.
Quaternion
<
double
>::
mult
(
dw
);
mat
.
umv
(
dw
,
grad
[
i
]);
grad
[
i
]
=
q1
.
Quaternion
<
double
>::
mult
(
grad
[
i
]);
}
}
// The derivatives with respect to w^1
// Compute q_0^{-1}
Rotation
<
RT
,
3
>
q0InvQ1
=
q0
;
q0InvQ1
.
invert
();
q0InvQ1
=
q0InvQ1
.
mult
(
q1
);
{
// Compute v = s \exp^{-1} ( q_0^{-1} q_1)
Dune
::
FieldVector
<
RT
,
3
>
v
=
Rotation
<
RT
,
3
>::
expInv
(
q0InvQ1
);
v
*=
s
;
Dune
::
FieldMatrix
<
RT
,
4
,
3
>
dExp_v
=
Rotation
<
RT
,
3
>::
Dexp
(
SkewMatrix
<
RT
,
3
>
(
v
));
Dune
::
FieldMatrix
<
RT
,
3
,
4
>
dExpInv
=
Rotation
<
RT
,
3
>::
DexpInv
(
q0InvQ1
);
Dune
::
FieldMatrix
<
RT
,
4
,
4
>
mat
(
0
);
for
(
int
i
=
0
;
i
<
4
;
i
++
)
for
(
int
j
=
0
;
j
<
4
;
j
++
)
for
(
int
k
=
0
;
k
<
3
;
k
++
)
mat
[
i
][
j
]
+=
s
*
dExp_v
[
i
][
k
]
*
dExpInv
[
k
][
j
];
for
(
int
i
=
3
;
i
<
6
;
i
++
)
{
Quaternion
<
RT
>
dw
;
for
(
int
j
=
0
;
j
<
4
;
j
++
)
dw
[
j
]
=
0.5
*
((
i
-
3
)
==
j
);
// dExp[j][i-3] at v=0
dw
=
q0InvQ1
.
Quaternion
<
double
>::
mult
(
dw
);
mat
.
umv
(
dw
,
grad
[
i
]);
grad
[
i
]
=
q0
.
Quaternion
<
double
>::
mult
(
grad
[
i
]);
}
}
}
template
<
class
GridType
,
class
RT
>
void
RodLocalStiffness
<
GridType
,
RT
>::
interpolationVelocityDerivative
(
const
Rotation
<
RT
,
3
>&
q0
,
const
Rotation
<
RT
,
3
>&
q1
,
double
s
,
double
intervalLength
,
std
::
array
<
Quaternion
<
double
>
,
6
>&
grad
)
{
// Clear output array
for
(
int
i
=
0
;
i
<
6
;
i
++
)
grad
[
i
]
=
0
;
// Compute q_0^{-1}
Rotation
<
RT
,
3
>
q0Inv
=
q0
;
q0Inv
.
invert
();
// Compute v = s \exp^{-1} ( q_0^{-1} q_1)
Dune
::
FieldVector
<
RT
,
3
>
v
=
Rotation
<
RT
,
3
>::
expInv
(
q0Inv
.
mult
(
q1
));
v
*=
s
/
intervalLength
;
Dune
::
FieldMatrix
<
RT
,
4
,
3
>
dExp_v
=
Rotation
<
RT
,
3
>::
Dexp
(
SkewMatrix
<
RT
,
3
>
(
v
));
std
::
array
<
Dune
::
FieldMatrix
<
RT
,
3
,
3
>
,
4
>
ddExp
;
Rotation
<
RT
,
3
>::
DDexp
(
v
,
ddExp
);
Dune
::
FieldMatrix
<
RT
,
3
,
4
>
dExpInv
=
Rotation
<
RT
,
3
>::
DexpInv
(
q0Inv
.
mult
(
q1
));
Dune
::
FieldMatrix
<
RT
,
4
,
4
>
mat
(
0
);
for
(
int
i
=
0
;
i
<
4
;
i
++
)
for
(
int
j
=
0
;
j
<
4
;
j
++
)
for
(
int
k
=
0
;
k
<
3
;
k
++
)
mat
[
i
][
j
]
+=
1
/
intervalLength
*
dExp_v
[
i
][
k
]
*
dExpInv
[
k
][
j
];
// /////////////////////////////////////////////////
// The derivatives with respect to w^0
// /////////////////////////////////////////////////
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
// \partial exp \partial w^1_j at 0
Quaternion
<
RT
>
dw
;
for
(
int
j
=
0
;
j
<
4
;
j
++
)
dw
[
j
]
=
0.5
*
(
i
==
j
);
// dExp_v_0[j][i];
// \xi = \exp^{-1} q_0^{-1} q_1
Dune
::
FieldVector
<
RT
,
3
>
xi
=
Rotation
<
RT
,
3
>::
expInv
(
q0Inv
.
mult
(
q1
));
Quaternion
<
RT
>
addend0
;
addend0
=
0
;
dExp_v
.
umv
(
xi
,
addend0
);
addend0
=
dw
.
mult
(
addend0
);
addend0
/=
intervalLength
;
// \parder{\xi}{w^1_j} = ...
Quaternion
<
RT
>
dwConj
=
dw
;
dwConj
.
conjugate
();
//dwConj[3] -= 2 * dExp_v_0[3][i]; the last row of dExp_v_0 is zero
dwConj
=
dwConj
.
mult
(
q0Inv
.
mult
(
q1
));
Dune
::
FieldVector
<
RT
,
3
>
dxi
(
0
);
Rotation
<
RT
,
3
>::
DexpInv
(
q0Inv
.
mult
(
q1
)).
umv
(
dwConj
,
dxi
);
Quaternion
<
RT
>
vHv
;
for
(
int
j
=
0
;
j
<
4
;
j
++
)
{
vHv
[
j
]
=
0
;
// vHv[j] = dxi * DDexp * xi
for
(
int
k
=
0
;
k
<
3
;
k
++
)
for
(
int
l
=
0
;
l
<
3
;
l
++
)
vHv
[
j
]
+=
ddExp
[
j
][
k
][
l
]
*
dxi
[
k
]
*
xi
[
l
];
}
vHv
*=
s
/
intervalLength
/
intervalLength
;
// Third addend
mat
.
umv
(
dwConj
,
grad
[
i
]);
// add up
grad
[
i
]
+=
addend0
;
grad
[
i
]
+=
vHv
;
grad
[
i
]
=
q0
.
Quaternion
<
double
>::
mult
(
grad
[
i
]);
}
// /////////////////////////////////////////////////
// The derivatives with respect to w^1
// /////////////////////////////////////////////////
for
(
int
i
=
3
;
i
<
6
;
i
++
)
{
// \partial exp \partial w^1_j at 0
Quaternion
<
RT
>
dw
;
for
(
int
j
=
0
;
j
<
4
;
j
++
)
dw
[
j
]
=
0.5
*
((
i
-
3
)
==
j
);
// dw[j] = dExp_v_0[j][i-3];
// \xi = \exp^{-1} q_0^{-1} q_1
Dune
::
FieldVector
<
RT
,
3
>
xi
=
Rotation
<
RT
,
3
>::
expInv
(
q0Inv
.
mult
(
q1
));
// \parder{\xi}{w^1_j} = ...
Dune
::
FieldVector
<
RT
,
3
>
dxi
(
0
);
dExpInv
.
umv
(
q0Inv
.
Quaternion
<
double
>::
mult
(
q1
.
Quaternion
<
double
>::
mult
(
dw
)),
dxi
);
Quaternion
<
RT
>
vHv
;
for
(
int
j
=
0
;
j
<
4
;
j
++
)
{
// vHv[j] = dxi * DDexp * xi
vHv
[
j
]
=
0
;
for
(
int
k
=
0
;
k
<
3
;
k
++
)
for
(
int
l
=
0
;
l
<
3
;
l
++
)
vHv
[
j
]
+=
ddExp
[
j
][
k
][
l
]
*
dxi
[
k
]
*
xi
[
l
];
}
vHv
*=
s
/
intervalLength
/
intervalLength
;
// ///////////////////////////////////
// second addend
// ///////////////////////////////////
dw
=
q0Inv
.
Quaternion
<
double
>::
mult
(
q1
.
Quaternion
<
double
>::
mult
(
dw
));
mat
.
umv
(
dw
,
grad
[
i
]);
grad
[
i
]
+=
vHv
;
grad
[
i
]
=
q0
.
Quaternion
<
double
>::
mult
(
grad
[
i
]);
}
}
template
<
class
GridType
,
class
RT
>
Dune
::
FieldVector
<
double
,
6
>
RodLocalStiffness
<
GridType
,
RT
>::
getStrain
(
const
std
::
vector
<
RigidBodyMotion
<
RT
,
3
>
>&
localSolution
,
const
Entity
&
element
,
const
Dune
::
FieldVector
<
double
,
1
>&
pos
)
const
{
if
(
!
element
.
isLeaf
())
DUNE_THROW
(
Dune
::
NotImplemented
,
"Only for leaf elements"
);
assert
(
localSolution
.
size
()
==
2
);
// Strain defined on each element
Dune
::
FieldVector
<
double
,
6
>
strain
(
0
);
// Extract local solution on this element
Dune
::
P1LocalFiniteElement
<
double
,
double
,
1
>
localFiniteElement
;
int
numOfBaseFct
=
localFiniteElement
.
localCoefficients
().
size
();
const
Dune
::
FieldMatrix
<
double
,
1
,
1
>&
inv
=
element
.
geometry
().
jacobianInverseTransposed
(
pos
);
// ///////////////////////////////////////
// Compute deformation gradient
// ///////////////////////////////////////
std
::
vector
<
Dune
::
FieldMatrix
<
double
,
1
,
1
>
>
shapeGrad
;
localFiniteElement
.
localBasis
().
evaluateJacobian
(
pos
,
shapeGrad
);
for
(
int
dof
=
0
;
dof
<
numOfBaseFct
;
dof
++
)
{
// multiply with jacobian inverse
Dune
::
FieldVector
<
double
,
1
>
tmp
(
0
);
inv
.
umv
(
shapeGrad
[
dof
][
0
],
tmp
);
shapeGrad
[
dof
][
0
]
=
tmp
;
}
// //////////////////////////////////
// Interpolate
// //////////////////////////////////
Dune
::
FieldVector
<
double
,
3
>
r_s
;
for
(
int
i
=
0
;
i
<
3
;
i
++
)
r_s
[
i
]
=
localSolution
[
0
].
r
[
i
]
*
shapeGrad
[
0
][
0
]
+
localSolution
[
1
].
r
[
i
]
*
shapeGrad
[
1
][
0
];
// Interpolate the rotation at the quadrature point
Rotation
<
RT
,
3
>
q
=
Rotation
<
RT
,
3
>::
interpolate
(
localSolution
[
0
].
q
,
localSolution
[
1
].
q
,
pos
);
// Get the derivative of the rotation at the quadrature point by interpolating in $H$
Quaternion
<
double
>
q_s
=
Rotation
<
RT
,
3
>::
interpolateDerivative
(
localSolution
[
0
].
q
,
localSolution
[
1
].
q
,
pos
);
// Transformation from the reference element
q_s
*=
inv
[
0
][
0
];
// /////////////////////////////////////////////
// Sum it all up
// /////////////////////////////////////////////
// Part I: the shearing and stretching strain
strain
[
0
]
=
r_s
*
q
.
director
(
0
);
// shear strain
strain
[
1
]
=
r_s
*
q
.
director
(
1
);
// shear strain
strain
[
2
]
=
r_s
*
q
.
director
(
2
);
// stretching strain
// Part II: the Darboux vector
Dune
::
FieldVector
<
double
,
3
>
u
=
darboux
(
q
,
q_s
);
strain
[
3
]
=
u
[
0
];
strain
[
4
]
=
u
[
1
];
strain
[
5
]
=
u
[
2
];
return
strain
;
}
template
<
class
GridType
,
class
RT
>
Dune
::
FieldVector
<
RT
,
6
>
RodLocalStiffness
<
GridType
,
RT
>::
getStress
(
const
std
::
vector
<
RigidBodyMotion
<
RT
,
3
>
>&
localSolution
,
const
Entity
&
element
,
const
Dune
::
FieldVector
<
double
,
1
>&
pos
)
const
{
const
auto
&
indexSet
=
gridView_
.
indexSet
();
std
::
vector
<
TargetSpace
>
localRefConf
=
{
referenceConfiguration_
[
indexSet
.
subIndex
(
element
,
0
,
1
)],
referenceConfiguration_
[
indexSet
.
subIndex
(
element
,
1
,
1
)]};
auto
&&
strain
=
getStrain
(
localSolution
,
element
,
pos
);
auto
&&
referenceStrain
=
getStrain
(
localRefConf
,
element
,
pos
);
Dune
::
FieldVector
<
RT
,
6
>
stress
;
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
stress
[
i
]
=
(
strain
[
i
]
-
referenceStrain
[
i
])
*
A_
[
i
];
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
stress
[
i
+
3
]
=
(
strain
[
i
+
3
]
-
referenceStrain
[
i
+
3
])
*
K_
[
i
];
return
stress
;
}
template
<
class
GridType
,
class
RT
>
void
RodLocalStiffness
<
GridType
,
RT
>::
assembleGradient
(
const
typename
Basis
::
LocalView
&
localView
,
const
std
::
vector
<
RigidBodyMotion
<
RT
,
3
>
>&
solution
,
std
::
vector
<
Dune
::
FieldVector
<
double
,
6
>
>&
gradient
)
const
{
using
namespace
Dune
;
const
auto
&
element
=
localView
.
element
();
std
::
vector
<
RigidBodyMotion
<
RT
,
3
>
>
localReferenceConfiguration
;
getLocalReferenceConfiguration
(
element
,
localReferenceConfiguration
);
// Extract local solution on this element
Dune
::
P1LocalFiniteElement
<
double
,
double
,
1
>
localFiniteElement
;
int
numOfBaseFct
=
localFiniteElement
.
localCoefficients
().
size
();
// init
gradient
.
resize
(
numOfBaseFct
);
for
(
size_t
i
=
0
;
i
<
gradient
.
size
();
i
++
)
gradient
[
i
]
=
0
;
double
intervalLength
=
element
.
geometry
().
corner
(
1
)[
0
]
-
element
.
geometry
().
corner
(
0
)[
0
];
// ///////////////////////////////////////////////////////////////////////////////////
// Reduced integration to avoid locking: assembly is split into a shear part
// and a bending part. Different quadrature rules are used for the two parts.
// This avoids locking.
// ///////////////////////////////////////////////////////////////////////////////////
// Get quadrature rule
const
QuadratureRule
<
double
,
1
>&
shearingQuad
=
QuadratureRules
<
double
,
1
>::
rule
(
element
.
type
(),
shearQuadOrder
);
for
(
size_t
pt
=
0
;
pt
<
shearingQuad
.
size
();
pt
++
)
{
// Local position of the quadrature point
const
FieldVector
<
double
,
1
>&
quadPos
=
shearingQuad
[
pt
].
position
();
const
FieldMatrix
<
double
,
1
,
1
>&
inv
=
element
.
geometry
().
jacobianInverseTransposed
(
quadPos
);
const
double
integrationElement
=
element
.
geometry
().
integrationElement
(
quadPos
);
double
weight
=
shearingQuad
[
pt
].
weight
()
*
integrationElement
;
// ///////////////////////////////////////
// Compute deformation gradient
// ///////////////////////////////////////
std
::
vector
<
Dune
::
FieldMatrix
<
double
,
1
,
1
>
>
shapeGrad
;
localFiniteElement
.
localBasis
().
evaluateJacobian
(
quadPos
,
shapeGrad
);
for
(
int
dof
=
0
;
dof
<
numOfBaseFct
;
dof
++
)
{
// multiply with jacobian inverse
FieldVector
<
double
,
1
>
tmp
(
0
);
inv
.
umv
(
shapeGrad
[
dof
][
0
],
tmp
);
shapeGrad
[
dof
][
0
]
=
tmp
;
}
// //////////////////////////////////
// Interpolate
// //////////////////////////////////
FieldVector
<
double
,
3
>
r_s
;
for
(
int
i
=
0
;
i
<
3
;
i
++
)
r_s
[
i
]
=
solution
[
0
].
r
[
i
]
*
shapeGrad
[
0
]
+
solution
[
1
].
r
[
i
]
*
shapeGrad
[
1
];
// Interpolate current rotation at this quadrature point
Rotation
<
RT
,
3
>
q
=
Rotation
<
RT
,
3
>::
interpolate
(
solution
[
0
].
q
,
solution
[
1
].
q
,
quadPos
[
0
]);
// The current strain
FieldVector
<
double
,
blocksize
>
strain
=
getStrain
(
solution
,
element
,
quadPos
);
// The reference strain
FieldVector
<
double
,
blocksize
>
referenceStrain
=
getStrain
(
localReferenceConfiguration
,
element
,
quadPos
);
// dd_dvij[m][i][j] = \parder {(d_k)_i} {q}
Tensor3
<
double
,
3
,
3
,
4
>
dd_dq
;
q
.
getFirstDerivativesOfDirectors
(
dd_dq
);
// First derivatives of the position
std
::
array
<
Quaternion
<
double
>
,
6
>
dq_dwij
;
interpolationDerivative
(
solution
[
0
].
q
,
solution
[
1
].
q
,
quadPos
,
dq_dwij
);
// /////////////////////////////////////////////
// Sum it all up
// /////////////////////////////////////////////
for
(
int
i
=
0
;
i
<
numOfBaseFct
;
i
++
)
{
// /////////////////////////////////////////////
// The translational part
// /////////////////////////////////////////////
// \partial \bar{W} / \partial r^i_j
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
for
(
int
m
=
0
;
m
<
3
;
m
++
)
gradient
[
i
][
j
]
+=
weight
*
(
A_
[
m
]
*
(
strain
[
m
]
-
referenceStrain
[
m
])
*
shapeGrad
[
i
]
*
q
.
director
(
m
)[
j
]);
}
// \partial \bar{W}_v / \partial v^i_j
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
for
(
int
m
=
0
;
m
<
3
;
m
++
)
{
FieldVector
<
double
,
3
>
tmp
(
0
);
dd_dq
[
m
].
umv
(
dq_dwij
[
3
*
i
+
j
],
tmp
);
gradient
[
i
][
3
+
j
]
+=
weight
*
A_
[
m
]
*
(
strain
[
m
]
-
referenceStrain
[
m
])
*
(
r_s
*
tmp
);
}
}
}
}
// /////////////////////////////////////////////////////
// Now: the bending/torsion part
// /////////////////////////////////////////////////////
// Get quadrature rule
const
QuadratureRule
<
double
,
1
>&
bendingQuad
=
QuadratureRules
<
double
,
1
>::
rule
(
element
.
type
(),
bendingQuadOrder
);
for
(
std
::
size_t
pt
=
0
;
pt
<
bendingQuad
.
size
();
pt
++
)
{
// Local position of the quadrature point
const
FieldVector
<
double
,
1
>&
quadPos
=
bendingQuad
[
pt
].
position
();
const
FieldMatrix
<
double
,
1
,
1
>&
inv
=
element
.
geometry
().
jacobianInverseTransposed
(
quadPos
);
const
double
integrationElement
=
element
.
geometry
().
integrationElement
(
quadPos
);
double
weight
=
bendingQuad
[
pt
].
weight
()
*
integrationElement
;
// Interpolate current rotation at this quadrature point
Rotation
<
RT
,
3
>
q
=
Rotation
<
RT
,
3
>::
interpolate
(
solution
[
0
].
q
,
solution
[
1
].
q
,
quadPos
[
0
]);
// Get the derivative of the rotation at the quadrature point by interpolating in $H$
Quaternion
<
double
>
q_s
=
Rotation
<
RT
,
3
>::
interpolateDerivative
(
solution
[
0
].
q
,
solution
[
1
].
q
,
quadPos
);
// Transformation from the reference element
q_s
*=
inv
[
0
][
0
];
// The current strain
FieldVector
<
double
,
blocksize
>
strain
=
getStrain
(
solution
,
element
,
quadPos
);
// The reference strain
FieldVector
<
double
,
blocksize
>
referenceStrain
=
getStrain
(
localReferenceConfiguration
,
element
,
quadPos
);
// First derivatives of the position
std
::
array
<
Quaternion
<
double
>
,
6
>
dq_dwij
;
interpolationDerivative
(
solution
[
0
].
q
,
solution
[
1
].
q
,
quadPos
,
dq_dwij
);
std
::
array
<
Quaternion
<
double
>
,
6
>
dq_ds_dwij
;
interpolationVelocityDerivative
(
solution
[
0
].
q
,
solution
[
1
].
q
,
quadPos
[
0
]
*
intervalLength
,
intervalLength
,
dq_ds_dwij
);
// /////////////////////////////////////////////
// Sum it all up
// /////////////////////////////////////////////
for
(
int
i
=
0
;
i
<
numOfBaseFct
;
i
++
)
{
// /////////////////////////////////////////////
// The rotational part
// /////////////////////////////////////////////
// \partial \bar{W}_v / \partial v^i_j
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
for
(
int
m
=
0
;
m
<
3
;
m
++
)
{
// Compute derivative of the strain
/** \todo Is this formula correct? It seems strange to call
B(m) for a _derivative_ of a rotation */
double
du_dvij_m
=
2
*
(
dq_dwij
[
i
*
3
+
j
].
B
(
m
)
*
q_s
)
+
2
*
(
q
.
B
(
m
)
*
dq_ds_dwij
[
i
*
3
+
j
]);
// Sum it up
gradient
[
i
][
3
+
j
]
+=
weight
*
K_
[
m
]
*
(
strain
[
m
+
3
]
-
referenceStrain
[
m
+
3
])
*
du_dvij_m
;
}
}
}
}
}
#endif
Loading