#ifndef GLOBAL_GEODESIC_FE_ASSEMBLER_HH #define GLOBAL_GEODESIC_FE_ASSEMBLER_HH #include <dune/istl/bcrsmatrix.hh> #include <dune/common/fmatrix.hh> #include <dune/istl/matrixindexset.hh> #include <dune/istl/matrix.hh> #include "localgeodesicfestiffness.hh" /** \brief A global FE assembler for problems involving functions that map into non-Euclidean spaces */ template <class Basis, class TargetSpace> class GeodesicFEAssembler { typedef typename Basis::GridView GridView; typedef typename GridView::template Codim<0>::template Partition<Dune::Interior_Partition>::Iterator ElementIterator; //! Dimension of the grid. enum { gridDim = GridView::dimension }; //! Dimension of a tangent space enum { blocksize = TargetSpace::TangentVector::dimension }; //! typedef Dune::FieldMatrix<double, blocksize, blocksize> MatrixBlock; public: const Basis basis_; const typename Basis::IndexSet basisIndexSet_; protected: LocalGeodesicFEStiffness<Basis,TargetSpace>* localStiffness_; public: /** \brief Constructor for a given grid */ GeodesicFEAssembler(const Basis& basis, LocalGeodesicFEStiffness<Basis, TargetSpace>* localStiffness) : basis_(basis), basisIndexSet_(basis_.indexSet()), localStiffness_(localStiffness) {} /** \brief Assemble the tangent stiffness matrix and the functional gradient together * * This is more efficient than computing them separately, because you need the gradient * anyway to compute the Riemannian Hessian. */ virtual void assembleGradientAndHessian(const std::vector<TargetSpace>& sol, Dune::BlockVector<Dune::FieldVector<double, blocksize> >& gradient, Dune::BCRSMatrix<MatrixBlock>& hessian, bool computeOccupationPattern=true) const; /** \brief Assemble the gradient */ virtual void assembleGradient(const std::vector<TargetSpace>& sol, Dune::BlockVector<Dune::FieldVector<double, blocksize> >& grad) const; /** \brief Compute the energy of a deformation state */ virtual double computeEnergy(const std::vector<TargetSpace>& sol) const; //protected: void getNeighborsPerVertex(Dune::MatrixIndexSet& nb) const; }; // end class template <class Basis, class TargetSpace> void GeodesicFEAssembler<Basis,TargetSpace>:: getNeighborsPerVertex(Dune::MatrixIndexSet& nb) const { auto n = basisIndexSet_.size(); nb.resize(n, n); // A view on the FE basis on a single element auto localView = basis_.localView(); auto localIndexSet = basisIndexSet_.localIndexSet(); ElementIterator it = basis_.gridView().template begin<0,Dune::Interior_Partition>(); ElementIterator endit = basis_.gridView().template end<0,Dune::Interior_Partition> (); for (; it!=endit; ++it) { // Bind the local FE basis view to the current element localView.bind(*it); localIndexSet.bind(localView); const auto& lfe = localView.tree().finiteElement(); for (size_t i=0; i<lfe.size(); i++) { for (size_t j=0; j<lfe.size(); j++) { auto iIdx = localIndexSet.index(i)[0]; auto jIdx = localIndexSet.index(j)[0]; nb.add(iIdx, jIdx); } } } } template <class Basis, class TargetSpace> void GeodesicFEAssembler<Basis,TargetSpace>:: assembleGradientAndHessian(const std::vector<TargetSpace>& sol, Dune::BlockVector<Dune::FieldVector<double, blocksize> >& gradient, Dune::BCRSMatrix<MatrixBlock>& hessian, bool computeOccupationPattern) const { if (computeOccupationPattern) { Dune::MatrixIndexSet neighborsPerVertex; getNeighborsPerVertex(neighborsPerVertex); neighborsPerVertex.exportIdx(hessian); } hessian = 0; gradient.resize(sol.size()); gradient = 0; // A view on the FE basis on a single element auto localView = basis_.localView(); auto localIndexSet = basisIndexSet_.localIndexSet(); ElementIterator it = basis_.gridView().template begin<0,Dune::Interior_Partition>(); ElementIterator endit = basis_.gridView().template end<0,Dune::Interior_Partition> (); for( ; it != endit; ++it ) { localView.bind(*it); localIndexSet.bind(localView); const int numOfBaseFct = localView.tree().size(); // Extract local solution std::vector<TargetSpace> localSolution(numOfBaseFct); for (int i=0; i<numOfBaseFct; i++) localSolution[i] = sol[localIndexSet.index(i)[0]]; std::vector<Dune::FieldVector<double,blocksize> > localGradient(numOfBaseFct); // setup local matrix and gradient localStiffness_->assembleGradientAndHessian(*it, localView.tree().finiteElement(), localSolution, localGradient); // Add element matrix to global stiffness matrix for(int i=0; i<numOfBaseFct; i++) { auto row = localIndexSet.index(i)[0]; for (int j=0; j<numOfBaseFct; j++ ) { auto col = localIndexSet.index(j)[0]; hessian[row][col] += localStiffness_->A_[i][j]; } } // Add local gradient to global gradient for (int i=0; i<numOfBaseFct; i++) gradient[localIndexSet.index(i)[0]] += localGradient[i]; } } template <class Basis, class TargetSpace> void GeodesicFEAssembler<Basis,TargetSpace>:: assembleGradient(const std::vector<TargetSpace>& sol, Dune::BlockVector<Dune::FieldVector<double, blocksize> >& grad) const { if (sol.size()!=basisIndexSet_.size()) DUNE_THROW(Dune::Exception, "Solution vector doesn't match the grid!"); grad.resize(sol.size()); grad = 0; // A view on the FE basis on a single element auto localView = basis_.localView(); auto localIndexSet = basisIndexSet_.localIndexSet(); ElementIterator it = basis_.gridView().template begin<0,Dune::Interior_Partition>(); ElementIterator endIt = basis_.gridView().template end<0,Dune::Interior_Partition>(); // Loop over all elements for (; it!=endIt; ++it) { localView.bind(*it); localIndexSet.bind(localView); // A 1d grid has two vertices const auto nDofs = localView.tree().size(); // Extract local solution std::vector<TargetSpace> localSolution(nDofs); for (size_t i=0; i<nDofs; i++) localSolution[i] = sol[localIndexSet.index(i)[0]]; // Assemble local gradient std::vector<Dune::FieldVector<double,blocksize> > localGradient(nDofs); localStiffness_->assembleGradient(*it, localView.tree().finiteElement(), localSolution, localGradient); // Add to global gradient for (size_t i=0; i<nDofs; i++) grad[localIndexSet.index(i)[0]] += localGradient[i]; } } template <class Basis, class TargetSpace> double GeodesicFEAssembler<Basis, TargetSpace>:: computeEnergy(const std::vector<TargetSpace>& sol) const { double energy = 0; if (sol.size() != basisIndexSet_.size()) DUNE_THROW(Dune::Exception, "Coefficient vector doesn't match the function space basis!"); // A view on the FE basis on a single element auto localView = basis_.localView(); auto localIndexSet = basisIndexSet_.localIndexSet(); ElementIterator it = basis_.gridView().template begin<0,Dune::Interior_Partition>(); ElementIterator endIt = basis_.gridView().template end<0,Dune::Interior_Partition>(); // Loop over all elements for (; it!=endIt; ++it) { localView.bind(*it); localIndexSet.bind(localView); // Number of degrees of freedom on this element size_t nDofs = localView.tree().size(); std::vector<TargetSpace> localSolution(nDofs); for (size_t i=0; i<nDofs; i++) localSolution[i] = sol[localIndexSet.index(i)[0]]; energy += localStiffness_->energy(*it, localView.tree().finiteElement(), localSolution); } return energy; } #endif