#include <config.h> #include <dune/gfe/unitvector.hh> #include <dune/gfe/realtuple.hh> #include <dune/gfe/rotation.hh> #include "valuefactory.hh" using Dune::FieldVector; /** \file \brief Unit tests for classes that implement value manifolds for geodesic FE functions */ using namespace Dune; const double eps = 1e-4; template <class TargetSpace> double energy(const TargetSpace& a, const TargetSpace& b) { return TargetSpace::distance(a,b) * TargetSpace::distance(a,b); } template <class TargetSpace, int dim> double energy(const TargetSpace& a, const FieldVector<double,dim>& b) { return TargetSpace::distance(a,b) * TargetSpace::distance(a,b); } template <class TargetSpace, int dim> double energy(const FieldVector<double,dim>& a, const FieldVector<double,dim>& b) { return TargetSpace::distance(a,b) * TargetSpace::distance(a,b); } /** \brief Compute the Riemannian Hessian of the squared distance function in global coordinates The formula for the Riemannian Hessian has been taken from Absil, Mahony, Sepulchre: 'Optimization algorithms on matrix manifolds', page 107 */ template <class TargetSpace, int worldDim> FieldMatrix<double,worldDim,worldDim> getSecondDerivativeOfSecondArgumentFD(const TargetSpace& a, const TargetSpace& b) { const size_t spaceDim = TargetSpace::dim; // finite-difference approximation FieldMatrix<double,spaceDim,spaceDim> d2d2_fd(0); FieldMatrix<double,spaceDim,worldDim> B = b.orthonormalFrame(); for (size_t i=0; i<spaceDim; i++) { for (size_t j=0; j<spaceDim; j++) { FieldVector<double,worldDim> epsXi = B[i]; epsXi *= eps; FieldVector<double,worldDim> epsEta = B[j]; epsEta *= eps; FieldVector<double,worldDim> minusEpsXi = epsXi; minusEpsXi *= -1; FieldVector<double,worldDim> minusEpsEta = epsEta; minusEpsEta *= -1; double forwardValue = energy(a,TargetSpace::exp(b,epsXi+epsEta)) - energy(a, TargetSpace::exp(b,epsXi)) - energy(a,TargetSpace::exp(b,epsEta)); double centerValue = energy(a,b) - energy(a,b) - energy(a,b); double backwardValue = energy(a,TargetSpace::exp(b,minusEpsXi + minusEpsEta)) - energy(a, TargetSpace::exp(b,minusEpsXi)) - energy(a,TargetSpace::exp(b,minusEpsEta)); d2d2_fd[i][j] = 0.5 * (forwardValue - 2*centerValue + backwardValue) / (eps*eps); } } //B.invert(); FieldMatrix<double,worldDim,spaceDim> BT; for (int i=0; i<worldDim; i++) for (size_t j=0; j<spaceDim; j++) BT[i][j] = B[j][i]; FieldMatrix<double,spaceDim,worldDim> ret1; FMatrixHelp::multMatrix(d2d2_fd,B,ret1); FieldMatrix<double,worldDim,worldDim> ret2; FMatrixHelp::multMatrix(BT,ret1,ret2); return ret2; } template <class TargetSpace> void testOrthonormalFrame(const TargetSpace& a) { const size_t spaceDim = TargetSpace::dim; const size_t embeddedDim = TargetSpace::embeddedDim; FieldMatrix<double,spaceDim,embeddedDim> B = a.orthonormalFrame(); for (size_t i=0; i<spaceDim; i++) for (size_t j=0; j<spaceDim; j++) assert( std::fabs(B[i]*B[j] - (i==j)) < 1e-10 ); } template <class TargetSpace> void testDerivativeOfSquaredDistance(const TargetSpace& a, const TargetSpace& b) { static const size_t embeddedDim = TargetSpace::embeddedDim; /////////////////////////////////////////////////////////////////// // Test derivative with respect to second argument /////////////////////////////////////////////////////////////////// typename TargetSpace::EmbeddedTangentVector d2 = TargetSpace::derivativeOfDistanceSquaredWRTSecondArgument(a, b); // finite-difference approximation typename TargetSpace::EmbeddedTangentVector d2_fd; for (size_t i=0; i<embeddedDim; i++) { FieldVector<double,embeddedDim> bPlus = b.globalCoordinates(); FieldVector<double,embeddedDim> bMinus = b.globalCoordinates(); bPlus[i] += eps; bMinus[i] -= eps; d2_fd[i] = (energy(a,bPlus) - energy(a,bMinus)) / (2*eps); } if ( (d2 - d2_fd).infinity_norm() > 100*eps ) { std::cout << className(a) << ": Analytical gradient does not match fd approximation." << std::endl; std::cout << "d2 Analytical: " << d2 << std::endl; std::cout << "d2 FD : " << d2_fd << std::endl; } } template <class TargetSpace> void testHessianOfSquaredDistance(const TargetSpace& a, const TargetSpace& b) { static const int embeddedDim = TargetSpace::embeddedDim; /////////////////////////////////////////////////////////////////// // Test second derivative with respect to second argument /////////////////////////////////////////////////////////////////// FieldMatrix<double,embeddedDim,embeddedDim> d2d2 = TargetSpace::secondDerivativeOfDistanceSquaredWRTSecondArgument(a, b); // finite-difference approximation FieldMatrix<double,embeddedDim,embeddedDim> d2d2_fd = getSecondDerivativeOfSecondArgumentFD<TargetSpace,embeddedDim>(a,b); FieldMatrix<double,embeddedDim,embeddedDim> d2d2_diff = d2d2; d2d2_diff -= d2d2_fd; if ( (d2d2_diff).infinity_norm() > 100*eps) { std::cout << className(a) << ": Analytical second derivative does not match fd approximation." << std::endl; std::cout << "d2d2 Analytical:" << std::endl << d2d2 << std::endl; std::cout << "d2d2 FD :" << std::endl << d2d2_fd << std::endl; } } template <class TargetSpace> void testMixedDerivativesOfSquaredDistance(const TargetSpace& a, const TargetSpace& b) { static const size_t embeddedDim = TargetSpace::embeddedDim; ////////////////////////////////////////////////////////////////////////////// // Test mixed second derivative with respect to first and second argument ////////////////////////////////////////////////////////////////////////////// FieldMatrix<double,embeddedDim,embeddedDim> d1d2 = TargetSpace::secondDerivativeOfDistanceSquaredWRTFirstAndSecondArgument(a, b); // finite-difference approximation FieldMatrix<double,embeddedDim,embeddedDim> d1d2_fd; for (size_t i=0; i<embeddedDim; i++) { for (size_t j=0; j<embeddedDim; j++) { FieldVector<double,embeddedDim> aPlus = a.globalCoordinates(); FieldVector<double,embeddedDim> aMinus = a.globalCoordinates(); aPlus[i] += eps; aMinus[i] -= eps; FieldVector<double,embeddedDim> bPlus = b.globalCoordinates(); FieldVector<double,embeddedDim> bMinus = b.globalCoordinates(); bPlus[j] += eps; bMinus[j] -= eps; d1d2_fd[i][j] = (energy<TargetSpace>(aPlus,bPlus) + energy<TargetSpace>(aMinus,bMinus) - energy<TargetSpace>(aPlus,bMinus) - energy<TargetSpace>(aMinus,bPlus)) / (4*eps*eps); } } FieldMatrix<double,embeddedDim,embeddedDim> d1d2_diff = d1d2; d1d2_diff -= d1d2_fd; if ( (d1d2_diff).infinity_norm() > 100*eps ) { std::cout << className(a) << ": Analytical mixed second derivative does not match fd approximation." << std::endl; std::cout << "d1d2 Analytical:" << std::endl << d1d2 << std::endl; std::cout << "d1d2 FD :" << std::endl << d1d2_fd << std::endl; } } template <class TargetSpace> void testDerivativeOfHessianOfSquaredDistance(const TargetSpace& a, const TargetSpace& b) { static const size_t embeddedDim = TargetSpace::embeddedDim; ///////////////////////////////////////////////////////////////////////////////////////////// // Test mixed third derivative with respect to first (once) and second (twice) argument ///////////////////////////////////////////////////////////////////////////////////////////// Tensor3<double,embeddedDim,embeddedDim,embeddedDim> d2d2d2 = TargetSpace::thirdDerivativeOfDistanceSquaredWRTSecondArgument(a, b); Tensor3<double,embeddedDim,embeddedDim,embeddedDim> d2d2d2_fd; for (size_t i=0; i<embeddedDim; i++) { FieldVector<double,embeddedDim> bPlus = b.globalCoordinates(); FieldVector<double,embeddedDim> bMinus = b.globalCoordinates(); bPlus[i] += eps; bMinus[i] -= eps; FieldMatrix<double,embeddedDim,embeddedDim> hPlus = getSecondDerivativeOfSecondArgumentFD<TargetSpace,embeddedDim>(a,TargetSpace(bPlus)); FieldMatrix<double,embeddedDim,embeddedDim> hMinus = getSecondDerivativeOfSecondArgumentFD<TargetSpace,embeddedDim>(a,TargetSpace(bMinus)); d2d2d2_fd[i] = hPlus; d2d2d2_fd[i] -= hMinus; d2d2d2_fd[i] /= 2*eps; } if ( (d2d2d2 - d2d2d2_fd).infinity_norm() > 100*eps) { std::cout << className(a) << ": Analytical third derivative does not match fd approximation." << std::endl; std::cout << "d2d2d2 Analytical:" << std::endl << d2d2d2 << std::endl; std::cout << "d2d2d2 FD :" << std::endl << d2d2d2_fd << std::endl; } } template <class TargetSpace> void testMixedDerivativeOfHessianOfSquaredDistance(const TargetSpace& a, const TargetSpace& b) { static const size_t embeddedDim = TargetSpace::embeddedDim; ///////////////////////////////////////////////////////////////////////////////////////////// // Test mixed third derivative with respect to first (once) and second (twice) argument ///////////////////////////////////////////////////////////////////////////////////////////// Tensor3<double,embeddedDim,embeddedDim,embeddedDim> d1d2d2 = TargetSpace::thirdDerivativeOfDistanceSquaredWRTFirst1AndSecond2Argument(a, b); Tensor3<double,embeddedDim,embeddedDim,embeddedDim> d1d2d2_fd; for (size_t i=0; i<embeddedDim; i++) { FieldVector<double,embeddedDim> aPlus = a.globalCoordinates(); FieldVector<double,embeddedDim> aMinus = a.globalCoordinates(); aPlus[i] += eps; aMinus[i] -= eps; FieldMatrix<double,embeddedDim,embeddedDim> hPlus = getSecondDerivativeOfSecondArgumentFD<TargetSpace,embeddedDim>(TargetSpace(aPlus),b); FieldMatrix<double,embeddedDim,embeddedDim> hMinus = getSecondDerivativeOfSecondArgumentFD<TargetSpace,embeddedDim>(TargetSpace(aMinus),b); d1d2d2_fd[i] = hPlus; d1d2d2_fd[i] -= hMinus; d1d2d2_fd[i] /= 2*eps; } if ( (d1d2d2 - d1d2d2_fd).infinity_norm() > 100*eps ) { std::cout << className(a) << ": Analytical mixed third derivative does not match fd approximation." << std::endl; std::cout << "d1d2d2 Analytical:" << std::endl << d1d2d2 << std::endl; std::cout << "d1d2d2 FD :" << std::endl << d1d2d2_fd << std::endl; } } template <class TargetSpace> void testDerivativesOfSquaredDistance(const TargetSpace& a, const TargetSpace& b) { /////////////////////////////////////////////////////////////////// // Test derivative with respect to second argument /////////////////////////////////////////////////////////////////// testDerivativeOfSquaredDistance<TargetSpace>(a,b); /////////////////////////////////////////////////////////////////// // Test second derivative with respect to second argument /////////////////////////////////////////////////////////////////// testHessianOfSquaredDistance<TargetSpace>(a,b); ////////////////////////////////////////////////////////////////////////////// // Test mixed second derivative with respect to first and second argument ////////////////////////////////////////////////////////////////////////////// testMixedDerivativesOfSquaredDistance<TargetSpace>(a,b); ///////////////////////////////////////////////////////////////////////////////////////////// // Test third derivative with respect to second argument ///////////////////////////////////////////////////////////////////////////////////////////// testDerivativeOfHessianOfSquaredDistance<TargetSpace>(a,b); ///////////////////////////////////////////////////////////////////////////////////////////// // Test mixed third derivative with respect to first (once) and second (twice) argument ///////////////////////////////////////////////////////////////////////////////////////////// testMixedDerivativeOfHessianOfSquaredDistance<TargetSpace>(a,b); } template <class TargetSpace> void test() { std::cout << "Testing class " << className<TargetSpace>() << std::endl; std::vector<TargetSpace> testPoints; ValueFactory<TargetSpace>::get(testPoints); int nTestPoints = testPoints.size(); // Test each element in the list for (int i=0; i<nTestPoints; i++) { testOrthonormalFrame<TargetSpace>(testPoints[i]); for (int j=0; j<nTestPoints; j++) { testDerivativesOfSquaredDistance<TargetSpace>(testPoints[i], testPoints[j]); } } } int main() try { test<UnitVector<2> >(); test<UnitVector<3> >(); test<UnitVector<4> >(); test<Rotation<3> >(); } catch (Exception e) { std::cout << e << std::endl; }