#ifndef DUNE_GFE_HARMONICENERGY_HH #define DUNE_GFE_HARMONICENERGY_HH #include <dune/common/fmatrix.hh> #include <dune/geometry/quadraturerules.hh> #include <dune/gfe/localenergy.hh> template<class Basis, class LocalInterpolationRule, class TargetSpace> class HarmonicEnergy : public Dune::GFE::LocalEnergy<Basis,TargetSpace> { // grid types typedef typename Basis::GridView GridView; typedef typename GridView::ctype DT; typedef typename TargetSpace::ctype RT; // some other sizes enum {gridDim=GridView::dimension}; public: /** \brief Assemble the energy for a single element */ RT energy (const typename Basis::LocalView& localView, const std::vector<TargetSpace>& localSolution) const override; }; template <class Basis, class LocalInterpolationRule, class TargetSpace> typename HarmonicEnergy<Basis, LocalInterpolationRule, TargetSpace>::RT HarmonicEnergy<Basis, LocalInterpolationRule, TargetSpace>:: energy(const typename Basis::LocalView& localView, const std::vector<TargetSpace>& localSolution) const { RT energy = 0; const auto& localFiniteElement = localView.tree().finiteElement(); LocalInterpolationRule localInterpolationRule(localFiniteElement,localSolution); int quadOrder = (localFiniteElement.type().isSimplex()) ? (localFiniteElement.localBasis().order()-1) * 2 : (localFiniteElement.localBasis().order() * gridDim - 1) * 2; const auto element = localView.element(); const auto& quad = Dune::QuadratureRules<double, gridDim>::rule(localFiniteElement.type(), quadOrder); for (size_t pt=0; pt<quad.size(); pt++) { // Local position of the quadrature point const Dune::FieldVector<double,gridDim>& quadPos = quad[pt].position(); const auto integrationElement = element.geometry().integrationElement(quadPos); const auto jacobianInverseTransposed = element.geometry().jacobianInverseTransposed(quadPos); auto weight = quad[pt].weight() * integrationElement; // The derivative of the local function defined on the reference element auto referenceDerivative = localInterpolationRule.evaluateDerivative(quadPos); // Compute the Frobenius norm squared of the derivative. This is the correct term // if both domain and target space use the metric inherited from an embedding. for (size_t i=0; i<jacobianInverseTransposed.N(); i++) for (int j=0; j<TargetSpace::embeddedDim; j++) { RT entry = 0; for (size_t k=0; k<jacobianInverseTransposed.M(); k++) entry += jacobianInverseTransposed[i][k] * referenceDerivative[j][k]; energy += weight * entry * entry; } } return 0.5 * energy; } #endif