#ifndef HYPERBOLIC_HALF_SPACE_POINT_HH #define HYPERBOLIC_HALF_SPACE_POINT_HH #include <dune/common/fvector.hh> #include <dune/common/fmatrix.hh> #include <dune/common/power.hh> #include <dune/istl/scaledidmatrix.hh> #include <dune/gfe/tensor3.hh> /** \brief A point in the hyperbolic half-space H^N \tparam N Dimension of the hyperbolic half-space \tparam T The type used for individual coordinates */ template <class T, int N> class HyperbolicHalfspacePoint { static_assert(N>=2, "A hyperbolic half-space needs to be at least two-dimensional!"); /** \brief Compute the derivative of arccosh^2 without getting unstable for x close to 1 */ static T derivativeOfArcCosHSquared(const T& x) { const T eps = 1e-4; if (x < 1+eps) { // regular expression is unstable, use the series expansion instead return 2 - 2*(x-1)/3 + 4/15*(x-1)*(x-1); } else return 2*std::acosh(x) / std::sqrt(x*x-1); } /** \brief Compute the second derivative of arccosh^2 without getting unstable for x close to 1 */ static T secondDerivativeOfArcCosHSquared(const T& x) { const T eps = 1e-4; if (x < 1+eps) { // regular expression is unstable, use the series expansion instead return -2.0/3 + 8*(x-1)/15; } else return 2/(x*x-1) - 2*x*std::acosh(x) / std::pow(x*x-1,1.5); } /** \brief Compute the third derivative of arccos^2 without getting unstable for x close to 1 */ static T thirdDerivativeOfArcCosHSquared(const T& x) { const T eps = 1e-4; if (x < 1+eps) { // regular expression is unstable, use the series expansion instead return 8.0/15 - 24*(x-1)/35; } else { T d = x*x-1; return -6*x/(d*d) + (4*x*x+2)*std::acosh(x)/(std::pow(d,2.5)); } } /** \brief Compute derivative of $F(p,q) = 1 + ||p-q||^2 / 2p_nq_n with respect to p \param[in] diffNormSquared Expected to be ||p-q||^2, taken from the caller for efficiency reasons */ static Dune::FieldVector<T,N> computeDFdp(const HyperbolicHalfspacePoint& p, const HyperbolicHalfspacePoint& q, const T& diffNormSquared) { Dune::FieldVector<T,N> result; for (size_t i=0; i<N-1; i++) result[i] = ( p.data_[i] - q.data_[i] ) / (q.data_[N-1] * p.data_[N-1]); result[N-1] = - diffNormSquared / (2*p.data_[N-1]*p.data_[N-1]*q.data_[N-1]) + (p.data_[N-1] - q.data_[N-1]) / (p.data_[N-1]*q.data_[N-1]); return result; } /** \brief Compute derivative of $F(p,q) = 1 + ||p-q||^2 / 2p_nq_n with respect to q \param[in] diffNormSquared Expected to be ||p-q||^2, taken from the caller for efficiency reasons */ static Dune::FieldVector<T,N> computeDFdq(const HyperbolicHalfspacePoint& p, const HyperbolicHalfspacePoint& q, const T& diffNormSquared) { Dune::FieldVector<T,N> result; for (size_t i=0; i<N-1; i++) result[i] = ( q.data_[i] - p.data_[i] ) / (q.data_[N-1] * p.data_[N-1]); result[N-1] = - diffNormSquared / (2*p.data_[N-1]*q.data_[N-1]*q.data_[N-1]) - (p.data_[N-1] - q.data_[N-1]) / (p.data_[N-1]*q.data_[N-1]); return result; } /** \brief Compute second derivative of $F(p,q) = 1 + ||p-q||^2 / 2p_nq_n with respect to p and q \param[in] diffNormSquared Expected to be ||p-q||^2, taken from the caller for efficiency reasons */ static Dune::FieldMatrix<T,N,N> computeDFdpdq(const HyperbolicHalfspacePoint& a, const HyperbolicHalfspacePoint& b, const T& diffNormSquared) { // abbreviate notation const Dune::FieldVector<T,N>& p = a.data_; const Dune::FieldVector<T,N>& q = b.data_; Dune::FieldMatrix<T,N,N> dFdpdq; for (size_t i=0; i<N; i++) { for (size_t j=0; j<N; j++) { if (i!=N-1 and j!=N-1) { dFdpdq[i][j] = -(i==j) / (p[N-1]*q[N-1]); } else if (i!=N-1 and j==N-1) { dFdpdq[i][j] = -(p[i] - q[i]) / (p[N-1]*q[N-1]*q[N-1]); } else if (i==N-1 and j!=N-1) { dFdpdq[i][j] = (p[j] - q[j]) / (p[N-1]*p[N-1]*q[N-1]); } else if (i==N-1 and j==N-1) { dFdpdq[i][j] = -1/(p[N-1]*q[N-1]) - (p[N-1]-q[N-1]) / (p[N-1]*q[N-1]*q[N-1]) + (p[N-1]-q[N-1]) / (p[N-1]*p[N-1]*q[N-1]) + diffNormSquared / (2*p[N-1]*p[N-1]*q[N-1]*q[N-1]); } } } return dFdpdq; } /** \brief Compute second derivative of $F(p,q) = 1 + ||p-q||^2 / 2p_nq_n with respect to q \param[in] diffNormSquared Expected to be ||p-q||^2, taken from the caller for efficiency reasons */ static Dune::FieldMatrix<T,N,N> computeDFdqdq(const HyperbolicHalfspacePoint& a, const HyperbolicHalfspacePoint& b, const T& diffNormSquared) { // abbreviate notation const Dune::FieldVector<T,N>& p = a.data_; const Dune::FieldVector<T,N>& q = b.data_; Dune::FieldMatrix<T,N,N> dFdqdq; for (size_t i=0; i<N; i++) { for (size_t j=0; j<N; j++) { if (i!=N-1 and j!=N-1) { dFdqdq[i][j] = (i==j) / (p[N-1]*q[N-1]); } else if (i!=N-1 and j==N-1) { dFdqdq[i][j] = (p[i] - q[i]) / (p[N-1]*q[N-1]*q[N-1]); } else if (i==N-1 and j!=N-1) { dFdqdq[i][j] = (p[j] - q[j]) / (p[N-1]*q[N-1]*q[N-1]); } else if (i==N-1 and j==N-1) { dFdqdq[i][j] = 1/(q[N-1]*q[N-1]) + (p[N-1]-q[N-1]) / (p[N-1]*q[N-1]*q[N-1]) + diffNormSquared / (p[N-1]*q[N-1]*q[N-1]*q[N-1]); } } } return dFdqdq; } public: /** \brief The type used for coordinates */ typedef T ctype; /** \brief The type used for global coordinates */ typedef Dune::FieldVector<T,N> CoordinateType; /** \brief Dimension of the manifold */ static const int dim = N; /** \brief Dimension of the Euclidean space the manifold is embedded in */ static const int embeddedDim = N; /** \brief Type of a tangent vector in local coordinates */ typedef Dune::FieldVector<T,N> TangentVector; /** \brief Type of a tangent vector in the embedding space */ typedef Dune::FieldVector<T,N> EmbeddedTangentVector; /** \brief The global convexity radius of the hyberbolic plane */ static constexpr T convexityRadius = std::numeric_limits<T>::infinity(); /** \brief Default constructor */ HyperbolicHalfspacePoint() {} /** \brief Constructor from a vector. The vector gets normalized */ HyperbolicHalfspacePoint(const Dune::FieldVector<T,N>& vector) : data_(vector) { assert(vector[N-1]>0); } /** \brief Constructor from an array. The array gets normalized */ HyperbolicHalfspacePoint(const std::array<T,N>& vector) { assert(vector.back()>0); for (int i=0; i<N; i++) data_[i] = vector[i]; } /** \brief The exponential map */ static HyperbolicHalfspacePoint exp(const HyperbolicHalfspacePoint& p, const TangentVector& v) { assert (N==2); T vNorm = v.two_norm(); // we compute geodesics by applying an isometry to a fixed unit-speed geodesic. // Hence we need a unit velocity vector. if (vNorm <= 0) return p; TangentVector vUnit = v; vUnit /= vNorm; // Compute the coefficients a,b,c,d of the Moebius transform that transforms // the unit speed upward geodesic to the one through p with direction vUnit. // We expect the Moebius transform to be an isometry, i.e. ad-bc = 1. T cc = 1/(2*p.data_[N-1]) - vUnit[N-1] / (2*p.data_[N-1]*p.data_[N-1]); T dd = 1/(2*p.data_[N-1]) + vUnit[N-1] / (2*p.data_[N-1]*p.data_[N-1]); T ac = vUnit[0] / (2*p.data_[N-1]) + p.data_[0]*cc; T bd = p.data_[0] / p.data_[N-1] - ac; HyperbolicHalfspacePoint result; // vertical part result.data_[1] = std::exp(vNorm) / (cc*std::exp(2*vNorm) + dd); // horizontal part result.data_[0] = (ac*std::exp(2*vNorm) + bd) / (cc*std::exp(2*vNorm) + dd); return result; } /** \brief Hyperbolic distance between two points * * \f dist(a,b) = arccosh ( 1 + ||a-b||^2 / (2a_n b_n) \f */ static T distance(const HyperbolicHalfspacePoint& a, const HyperbolicHalfspacePoint& b) { T result(0); for (size_t i=0; i<N; i++) result += (a.data_[i]-b.data_[i])*(a.data_[i]-b.data_[i]); return std::acosh(1 + result / (2*a.data_[N-1]*b.data_[N-1])); } /** \brief Compute the gradient of the squared distance function keeping the first argument fixed Unlike the distance itself the squared distance is differentiable at zero */ static EmbeddedTangentVector derivativeOfDistanceSquaredWRTSecondArgument(const HyperbolicHalfspacePoint& a, const HyperbolicHalfspacePoint& b) { T diffNormSquared(0); for (size_t i=0; i<N; i++) diffNormSquared += (a.data_[i]-b.data_[i])*(a.data_[i]-b.data_[i]); TangentVector result = computeDFdq(a,b,diffNormSquared); T x = 1 + diffNormSquared/ (2*a.data_[N-1]*b.data_[N-1]); result *= derivativeOfArcCosHSquared(x); return result; } /** \brief Compute the Hessian of the squared distance function keeping the first argument fixed Unlike the distance itself the squared distance is differentiable at zero */ static Dune::FieldMatrix<T,N,N> secondDerivativeOfDistanceSquaredWRTSecondArgument(const HyperbolicHalfspacePoint& a, const HyperbolicHalfspacePoint& b) { T diffNormSquared = (a.data_-b.data_).two_norm2(); // Compute first derivative of F Dune::FieldVector<T,N> dFdq = computeDFdq(a,b,diffNormSquared); // Compute second derivatives of F Dune::FieldMatrix<T,N,N> dFdqdq = computeDFdqdq(a,b,diffNormSquared); // T x = 1 + diffNormSquared/ (2*a.data_[N-1]*b.data_[N-1]); T alphaPrime = derivativeOfArcCosHSquared(x); T alphaPrimePrime = secondDerivativeOfArcCosHSquared(x); // Sum it all together Dune::FieldMatrix<T,N,N> result; for (size_t i=0; i<N; i++) for (size_t j=0; j<N; j++) result[i][j] = alphaPrimePrime * dFdq[i] * dFdq[j] + alphaPrime * dFdqdq[i][j]; return result; } /** \brief Compute the mixed second derivative \partial d^2 / \partial da db */ static Dune::FieldMatrix<T,N,N> secondDerivativeOfDistanceSquaredWRTFirstAndSecondArgument(const HyperbolicHalfspacePoint& a, const HyperbolicHalfspacePoint& b) { // abbreviate notation const Dune::FieldVector<T,N>& p = a.data_; const Dune::FieldVector<T,N>& q = b.data_; T diffNormSquared = (p-q).two_norm2(); // Compute first derivatives of F with respect to p and q Dune::FieldVector<T,N> dFdp = computeDFdp(a,b,diffNormSquared); Dune::FieldVector<T,N> dFdq = computeDFdq(a,b,diffNormSquared); // Compute second derivatives of F Dune::FieldMatrix<T,N,N> dFdpdq = computeDFdpdq(a,b,diffNormSquared); // T x = 1 + diffNormSquared/ (2*p[N-1]*q[N-1]); T alphaPrime = derivativeOfArcCosHSquared(x); T alphaPrimePrime = secondDerivativeOfArcCosHSquared(x); // Sum it all together Dune::FieldMatrix<T,N,N> result; for (size_t i=0; i<N; i++) for (size_t j=0; j<N; j++) result[i][j] = alphaPrimePrime * dFdp[i] * dFdq[j] + alphaPrime * dFdpdq[i][j]; return result; } /** \brief Compute the third derivative \partial d^3 / \partial dq^3 Unlike the distance itself the squared distance is differentiable at zero */ static Tensor3<T,N,N,N> thirdDerivativeOfDistanceSquaredWRTSecondArgument(const HyperbolicHalfspacePoint& a, const HyperbolicHalfspacePoint& b) { Tensor3<T,N,N,N> result; // abbreviate notation const Dune::FieldVector<T,N>& p = a.data_; const Dune::FieldVector<T,N>& q = b.data_; T diffNormSquared = (p-q).two_norm2(); // Compute first derivative of F Dune::FieldVector<T,N> dFdq = computeDFdq(a,b,diffNormSquared); // Compute second derivatives of F Dune::FieldMatrix<T,N,N> dFdqdq = computeDFdqdq(a,b,diffNormSquared); // Compute third derivatives of F Tensor3<T,N,N,N> dFdqdqdq; for (size_t i=0; i<N; i++) { for (size_t j=0; j<N; j++) { for (size_t k=0; k<N; k++) { if (i!=N-1 and j!=N-1 and k!=N-1) { dFdqdqdq[i][j][k] = 0; } else if (i!=N-1 and j!=N-1 and k==N-1) { dFdqdqdq[i][j][k] = -(i==j) / (p[N-1]*q[N-1]*q[N-1]); } else if (i!=N-1 and j==N-1 and k!=N-1) { dFdqdqdq[i][j][k] = -(i==k) / (p[N-1]*q[N-1]*q[N-1]); } else if (i!=N-1 and j==N-1 and k==N-1) { dFdqdqdq[i][j][k] = -2*(p[i] - q[i]) / (p[N-1]*Dune::Power<3>::eval(q[N-1])); } else if (i==N-1 and j!=N-1 and k!=N-1) { dFdqdqdq[i][j][k] = - (j==k) / (p[N-1]*q[N-1]*q[N-1]); } else if (i==N-1 and j!=N-1 and k==N-1) { dFdqdqdq[i][j][k] = -2*(p[j] - q[j]) / (p[N-1]*Dune::Power<3>::eval(q[N-1])); } else if (i==N-1 and j==N-1 and k!=N-1) { dFdqdqdq[i][j][k] = -2*(p[k] - q[k]) / (p[N-1]*Dune::Power<3>::eval(q[N-1])); } else if (i==N-1 and j==N-1 and k==N-1) { dFdqdqdq[i][j][k] = -2/Dune::Power<3>::eval(q[N-1]) - 1/(p[N-1]*q[N-1]*q[N-1]) - 4*(p[N-1]-q[N-1])/(p[N-1]*Dune::Power<3>::eval(q[N-1])) - 3*diffNormSquared / (p[N-1]*Dune::Power<4>::eval(q[N-1])); } } } } // T x = 1 + diffNormSquared/ (2*p[N-1]*q[N-1]); T alphaPrime = derivativeOfArcCosHSquared(x); T alphaPrimePrime = secondDerivativeOfArcCosHSquared(x); T alphaPrimePrimePrime = thirdDerivativeOfArcCosHSquared(x); // Sum it all together for (size_t i=0; i<N; i++) for (size_t j=0; j<N; j++) for (size_t k=0; k<N; k++) result[i][j][k] = alphaPrimePrimePrime * dFdq[i] * dFdq[j] * dFdq[k] + alphaPrimePrime * (dFdqdq[i][j] * dFdq[k] + dFdqdq[i][k] * dFdq[j] + dFdqdq[j][k] * dFdq[i]) + alphaPrime * dFdqdqdq[i][j][k]; return result; } /** \brief Compute the mixed third derivative \partial d^3 / \partial da db^2 */ static Tensor3<T,N,N,N> thirdDerivativeOfDistanceSquaredWRTFirst1AndSecond2Argument(const HyperbolicHalfspacePoint& a, const HyperbolicHalfspacePoint& b) { Tensor3<T,N,N,N> result; // abbreviate notation const Dune::FieldVector<T,N>& p = a.data_; const Dune::FieldVector<T,N>& q = b.data_; T diffNormSquared = (p-q).two_norm2(); // Compute first derivatives of F with respect to p and q Dune::FieldVector<T,N> dFdp = computeDFdp(a,b,diffNormSquared); Dune::FieldVector<T,N> dFdq = computeDFdq(a,b,diffNormSquared); // Compute second derivatives of F Dune::FieldMatrix<T,N,N> dFdqdq = computeDFdqdq(a,b,diffNormSquared); Dune::FieldMatrix<T,N,N> dFdpdq = computeDFdpdq(a,b,diffNormSquared); // Compute third derivatives of F Tensor3<T,N,N,N> dFdpdqdq; for (size_t i=0; i<N; i++) { for (size_t j=0; j<N; j++) { for (size_t k=0; k<N; k++) { if (i!=N-1 and j!=N-1 and k!=N-1) { dFdpdqdq[i][j][k] = 0; } else if (i!=N-1 and j!=N-1 and k==N-1) { dFdpdqdq[i][j][k] = (i==j) / (p[N-1]*q[N-1]*q[N-1]); } else if (i!=N-1 and j==N-1 and k!=N-1) { dFdpdqdq[i][j][k] = (i==k) / (p[N-1]*q[N-1]*q[N-1]); } else if (i!=N-1 and j==N-1 and k==N-1) { dFdpdqdq[i][j][k] = 2*(p[i] - q[i]) / (p[N-1]*Dune::Power<3>::eval(q[N-1])); } else if (i==N-1 and j!=N-1 and k!=N-1) { dFdpdqdq[i][j][k] = -(j==k) / (p[N-1]*p[N-1]*q[N-1]); } else if (i==N-1 and j!=N-1 and k==N-1) { dFdpdqdq[i][j][k] = -(p[j] - q[j]) / (p[N-1]*p[N-1]*Dune::Power<2>::eval(q[N-1])); } else if (i==N-1 and j==N-1 and k!=N-1) { dFdpdqdq[i][j][k] = -(p[k] - q[k]) / (p[N-1]*p[N-1]*Dune::Power<2>::eval(q[N-1])); } else if (i==N-1 and j==N-1 and k==N-1) { dFdpdqdq[i][j][k] = 1.0/(p[N-1]*q[N-1]*q[N-1]) + 2*(p[N-1]-q[N-1])/(p[N-1]*Dune::Power<3>::eval(q[N-1])) - (p[N-1]-q[N-1])/(p[N-1]*p[N-1]*q[N-1]*q[N-1]) - diffNormSquared / (p[N-1]*p[N-1]*Dune::Power<3>::eval(q[N-1])); } } } } // T x = 1 + diffNormSquared/ (2*p[N-1]*q[N-1]); T alphaPrime = derivativeOfArcCosHSquared(x); T alphaPrimePrime = secondDerivativeOfArcCosHSquared(x); T alphaPrimePrimePrime = thirdDerivativeOfArcCosHSquared(x); // Sum it all together for (size_t i=0; i<N; i++) for (size_t j=0; j<N; j++) for (size_t k=0; k<N; k++) result[i][j][k] = alphaPrimePrimePrime * dFdp[i] * dFdq[j] * dFdq[k] + alphaPrimePrime * (dFdpdq[i][j] * dFdq[k] + dFdpdq[i][k] * dFdq[j] + dFdqdq[j][k] * dFdp[i]) + alphaPrime * dFdpdqdq[i][j][k]; return result; } /** \brief Project tangent vector of R^n onto the tangent space. For H^m this is the identity */ EmbeddedTangentVector projectOntoTangentSpace(const EmbeddedTangentVector& v) const { return v; } /** \brief The global coordinates, if you really want them */ const CoordinateType& globalCoordinates() const { return data_; } /** \brief Compute an orthonormal basis of the tangent space of H^N. */ Dune::FieldMatrix<T,N,N> orthonormalFrame() const { Dune::ScaledIdentityMatrix<T,N> result( data_[N-1] ); return Dune::FieldMatrix<T,N,N>(result); } /** \brief Scalar product of two tangent vectors */ T metric(const TangentVector& v, const TangentVector& w) const { return v*w/(data_[N-1]*data_[N-1]); } /** \brief Write unit vector object to output stream */ friend std::ostream& operator<< (std::ostream& s, const HyperbolicHalfspacePoint& p) { return s << p.data_; } private: Dune::FieldVector<T,N> data_; }; #endif