#include <config.h> #include <fenv.h> #define RIGIDBODYMOTION3 #include <dune/common/bitsetvector.hh> #include <dune/common/parametertree.hh> #include <dune/common/parametertreeparser.hh> #include <dune/grid/uggrid.hh> #include <dune/grid/onedgrid.hh> #include <dune/grid/geometrygrid.hh> #include <dune/grid/utility/structuredgridfactory.hh> #include <dune/grid/io/file/amirameshreader.hh> #include <dune/grid/io/file/amirameshwriter.hh> #include <dune/solvers/solvers/iterativesolver.hh> #include <dune/solvers/norms/energynorm.hh> #include <dune/gfe/rotation.hh> #include <dune/gfe/unitvector.hh> #include <dune/gfe/realtuple.hh> #include <dune/gfe/cosseratenergystiffness.hh> #include <dune/gfe/geodesicfeassembler.hh> #include <dune/gfe/riemanniantrsolver.hh> // grid dimension const int dim = 2; // Image space of the geodesic fe functions #ifdef RIGIDBODYMOTION3 typedef RigidBodyMotion<3> TargetSpace; #endif // Tangent vector of the image space const int blocksize = TargetSpace::TangentVector::size; using namespace Dune; template <class HostGridView> class DeformationFunction : public Dune :: DiscreteCoordFunction< double, 3, DeformationFunction<HostGridView> > { typedef DeformationFunction<HostGridView> This; typedef Dune :: DiscreteCoordFunction< double, 3, This > Base; public: DeformationFunction(const HostGridView& gridView, const std::vector<RigidBodyMotion<3> >& deformedPosition) : gridView_(gridView), deformedPosition_(deformedPosition) {} void evaluate ( const typename HostGridView::template Codim<dim>::Entity& hostEntity, unsigned int corner, FieldVector<double,3> &y ) const { const typename HostGridView::IndexSet& indexSet = gridView_.indexSet(); int idx = indexSet.index(hostEntity); y = deformedPosition_[idx].r; } void evaluate ( const typename HostGridView::template Codim<0>::Entity& hostEntity, unsigned int corner, FieldVector<double,3> &y ) const { const typename HostGridView::IndexSet& indexSet = gridView_.indexSet(); int idx = indexSet.subIndex(hostEntity, corner,dim); y = deformedPosition_[idx].r; } private: HostGridView gridView_; const std::vector<RigidBodyMotion<3> > deformedPosition_; }; int main (int argc, char *argv[]) try { //feenableexcept(FE_INVALID); typedef std::vector<TargetSpace> SolutionType; // parse data file ParameterTree parameterSet; if (argc==2) ParameterTreeParser::readINITree(argv[1], parameterSet); else ParameterTreeParser::readINITree("cosserat-continuum.parset", parameterSet); // read solver settings const int numLevels = parameterSet.get<int>("numLevels"); const double tolerance = parameterSet.get<double>("tolerance"); const int maxTrustRegionSteps = parameterSet.get<int>("maxTrustRegionSteps"); const double initialTrustRegionRadius = parameterSet.get<double>("initialTrustRegionRadius"); const int multigridIterations = parameterSet.get<int>("numIt"); const int nu1 = parameterSet.get<int>("nu1"); const int nu2 = parameterSet.get<int>("nu2"); const int mu = parameterSet.get<int>("mu"); const int baseIterations = parameterSet.get<int>("baseIt"); const double mgTolerance = parameterSet.get<double>("mgTolerance"); const double baseTolerance = parameterSet.get<double>("baseTolerance"); const bool instrumented = parameterSet.get<bool>("instrumented"); std::string resultPath = parameterSet.get("resultPath", ""); // read problem settings std::string path = parameterSet.get<std::string>("path"); std::string gridFile = parameterSet.get<std::string>("gridFile"); // /////////////////////////////////////// // Create the grid // /////////////////////////////////////// typedef std::conditional<dim==1,OneDGrid,UGGrid<dim> >::type GridType; array<unsigned int,dim> elements; elements.fill(1); elements[0] = 3; FieldVector<double,dim> upper(1); upper[0] = 3; shared_ptr<GridType> gridPtr = StructuredGridFactory<GridType>::createSimplexGrid(FieldVector<double,dim>(0), upper, elements); GridType& grid = *gridPtr.get(); grid.globalRefine(numLevels-1); SolutionType x(grid.size(dim)); // ///////////////////////////////////////// // Read Dirichlet values // ///////////////////////////////////////// #if 0 BitSetVector<1> allNodes(grid.size(dim)); allNodes.setAll(); BoundaryPatch<GridType::LeafGridView> dirichletBoundary(grid.leafView(), allNodes); BitSetVector<blocksize> dirichletNodes(grid.size(dim), false); for (int i=0; i<dirichletNodes.size(); i++) { // Only translation dofs are Dirichlet if (dirichletBoundary.containsVertex(i)) for (int j=0; j<3; j++) dirichletNodes[i][j] = true; } #else BitSetVector<blocksize> dirichletNodes(grid.size(dim), false); GridType::Codim<dim>::LeafIterator vIt = grid.leafbegin<dim>(); GridType::Codim<dim>::LeafIterator vEndIt = grid.leafend<dim>(); for (; vIt!=vEndIt; ++vIt) { if (vIt->geometry().corner(0)[0] < 1e-3 or vIt->geometry().corner(0)[0] > upper[0]-1e-3) { // Only translation dofs are Dirichlet for (int j=0; j<3; j++) dirichletNodes[grid.leafIndexSet().index(*vIt)][j] = true; } } #endif // ////////////////////////// // Initial solution // ////////////////////////// FieldVector<double,3> yAxis(0); yAxis[1] = 1; /* GridType::LeafGridView::Codim<dim>::Iterator vIt = grid.leafbegin<dim>(); GridType::LeafGridView::Codim<dim>::Iterator vEndIt = grid.leafend<dim>();*/ vIt = grid.leafbegin<dim>(); for (; vIt!=vEndIt; ++vIt) { int idx = grid.leafIndexSet().index(*vIt); x[idx].r = 0; for (int i=0; i<dim; i++) x[idx].r[i] = vIt->geometry().corner(0)[i]; // x[idx].q is the identity, set by the default constructor if (dirichletNodes[idx][0] and vIt->geometry().corner(0)[0] > upper[0]-1e-3) { // Only the positions have Dirichlet values x[idx].r[0] = 1.5; } } // backup for error measurement later SolutionType initialIterate = x; // //////////////////////////////////////////////////////////// // Create an assembler for the energy functional // //////////////////////////////////////////////////////////// const ParameterTree& materialParameters = parameterSet.sub("materialParameters"); CosseratEnergyLocalStiffness<GridType::LeafGridView,3> cosseratEnergyLocalStiffness(materialParameters); GeodesicFEAssembler<GridType::LeafGridView,TargetSpace> assembler(grid.leafView(), &cosseratEnergyLocalStiffness); // ///////////////////////////////////////////////// // Create a Riemannian trust-region solver // ///////////////////////////////////////////////// RiemannianTrustRegionSolver<GridType,TargetSpace> solver; solver.setup(grid, &assembler, x, dirichletNodes, tolerance, maxTrustRegionSteps, initialTrustRegionRadius, multigridIterations, mgTolerance, mu, nu1, nu2, baseIterations, baseTolerance, instrumented); // ///////////////////////////////////////////////////// // Solve! // ///////////////////////////////////////////////////// std::cout << "Energy: " << assembler.computeEnergy(x) << std::endl; //exit(0); solver.setInitialSolution(x); solver.solve(); x = solver.getSol(); // ////////////////////////////// // Output result // ////////////////////////////// typedef GeometryGrid<GridType,DeformationFunction<GridType::LeafGridView> > DeformedGridType; DeformationFunction<GridType::LeafGridView> deformationFunction(grid.leafView(),x); DeformedGridType deformedGrid(grid, deformationFunction); if (dim==2) LeafAmiraMeshWriter<DeformedGridType>::writeSurfaceGrid(deformedGrid.leafView(), "cosseratGrid"); else { LeafAmiraMeshWriter<DeformedGridType> amiramesh(deformedGrid); amiramesh.write("cosseratGrid"); } // Make three vector fields containing the directors // I don't think there is a simpler way to get the data into vanilla Amira for (int i=0; i<3; i++) { std::vector<FieldVector<double,3> > director(x.size()); for (size_t j=0; j<x.size(); j++) director[j] = x[j].q.director(i); LeafAmiraMeshWriter<DeformedGridType> amiramesh; amiramesh.addVertexData(director, deformedGrid.leafView()); std::stringstream iAsAscii; iAsAscii << i; amiramesh.write("cosseratOrientation"+iAsAscii.str(), true); } // ////////////////////////////// } catch (Exception e) { std::cout << e << std::endl; }