#include <dune/istl/bcrsmatrix.hh> #include <dune/common/fmatrix.hh> #include <dune/istl/matrixindexset.hh> #include <dune/istl/matrix.hh> #include <dune/grid/common/quadraturerules.hh> #include <dune/disc/shapefunctions/lagrangeshapefunctions.hh> template <class GridType, class RT> RT RodLocalStiffness<GridType, RT>:: energy(const Entity& element, const Dune::array<Configuration,2>& localSolution, const Dune::array<Configuration,2>& localReferenceConfiguration, int k) { RT energy = 0; // /////////////////////////////////////////////////////////////////////////////// // The following two loops are a reduced integration scheme. We integrate // the transverse shear and extensional energy with a first-order quadrature // formula, even though it should be second order. This prevents shear-locking. // /////////////////////////////////////////////////////////////////////////////// const Dune::QuadratureRule<double, 1>& shearingQuad = Dune::QuadratureRules<double, 1>::rule(element.type(), shearQuadOrder); for (size_t pt=0; pt<shearingQuad.size(); pt++) { // Local position of the quadrature point const Dune::FieldVector<double,1>& quadPos = shearingQuad[pt].position(); const double integrationElement = element.geometry().integrationElement(quadPos); double weight = shearingQuad[pt].weight() * integrationElement; Dune::FieldVector<double,6> strain = getStrain(localSolution, element, quadPos); // The reference strain Dune::FieldVector<double,6> referenceStrain = getStrain(localReferenceConfiguration, element, quadPos); for (int i=0; i<3; i++) energy += weight * 0.5 * A_[i] * (strain[i] - referenceStrain[i]) * (strain[i] - referenceStrain[i]); } // Get quadrature rule const Dune::QuadratureRule<double, 1>& bendingQuad = Dune::QuadratureRules<double, 1>::rule(element.type(), bendingQuadOrder); for (size_t pt=0; pt<bendingQuad.size(); pt++) { // Local position of the quadrature point const Dune::FieldVector<double,1>& quadPos = bendingQuad[pt].position(); double weight = bendingQuad[pt].weight() * element.geometry().integrationElement(quadPos); Dune::FieldVector<double,6> strain = getStrain(localSolution, element, quadPos); // The reference strain Dune::FieldVector<double,6> referenceStrain = getStrain(localReferenceConfiguration, element, quadPos); // Part II: the bending and twisting energy for (int i=0; i<3; i++) energy += weight * 0.5 * K_[i] * (strain[i+3] - referenceStrain[i+3]) * (strain[i+3] - referenceStrain[i+3]); } return energy; } template <class GridType, class RT> void RodLocalStiffness<GridType, RT>:: interpolationDerivative(const Quaternion<RT>& q0, const Quaternion<RT>& q1, double s, Dune::array<Quaternion<double>,6>& grad) { // Clear output array for (int i=0; i<6; i++) grad[i] = 0; // The derivatives with respect to w^1 // Compute q_1^{-1}q_0 Quaternion<RT> q1InvQ0 = q1; q1InvQ0.invert(); q1InvQ0 = q1InvQ0.mult(q0); { // Compute v = (1-s) \exp^{-1} ( q_1^{-1} q_0) Dune::FieldVector<RT,3> v = Quaternion<RT>::expInv(q1InvQ0); v *= (1-s); Dune::FieldMatrix<RT,4,3> dExp_v = Quaternion<RT>::Dexp(v); Dune::FieldMatrix<RT,3,4> dExpInv = Quaternion<RT>::DexpInv(q1InvQ0); Dune::FieldMatrix<RT,4,4> mat(0); for (int i=0; i<4; i++) for (int j=0; j<4; j++) for (int k=0; k<3; k++) mat[i][j] += (1-s) * dExp_v[i][k] * dExpInv[k][j]; for (int i=0; i<3; i++) { Quaternion<RT> dw; for (int j=0; j<4; j++) dw[j] = 0.5 * (i==j); // dExp[j][i] at v=0 dw = q1InvQ0.mult(dw); mat.umv(dw,grad[i]); grad[i] = q1.mult(grad[i]); } } // The derivatives with respect to w^1 // Compute q_0^{-1} Quaternion<RT> q0InvQ1 = q0; q0InvQ1.invert(); q0InvQ1 = q0InvQ1.mult(q1); { // Compute v = s \exp^{-1} ( q_0^{-1} q_1) Dune::FieldVector<RT,3> v = Quaternion<RT>::expInv(q0InvQ1); v *= s; Dune::FieldMatrix<RT,4,3> dExp_v = Quaternion<RT>::Dexp(v); Dune::FieldMatrix<RT,3,4> dExpInv = Quaternion<RT>::DexpInv(q0InvQ1); Dune::FieldMatrix<RT,4,4> mat(0); for (int i=0; i<4; i++) for (int j=0; j<4; j++) for (int k=0; k<3; k++) mat[i][j] += s * dExp_v[i][k] * dExpInv[k][j]; for (int i=3; i<6; i++) { Quaternion<RT> dw; for (int j=0; j<4; j++) dw[j] = 0.5 * ((i-3)==j); // dExp[j][i-3] at v=0 dw = q0InvQ1.mult(dw); mat.umv(dw,grad[i]); grad[i] = q0.mult(grad[i]); } } } template <class GridType, class RT> void RodLocalStiffness<GridType, RT>:: interpolationVelocityDerivative(const Quaternion<RT>& q0, const Quaternion<RT>& q1, double s, double intervalLength, Dune::array<Quaternion<double>,6>& grad) { // Clear output array for (int i=0; i<6; i++) grad[i] = 0; // Compute q_0^{-1} Quaternion<RT> q0Inv = q0; q0Inv.invert(); // Compute v = s \exp^{-1} ( q_0^{-1} q_1) Dune::FieldVector<RT,3> v = Quaternion<RT>::expInv(q0Inv.mult(q1)); v *= s/intervalLength; Dune::FieldMatrix<RT,4,3> dExp_v = Quaternion<RT>::Dexp(v); Dune::array<Dune::FieldMatrix<RT,3,3>, 4> ddExp; Quaternion<RT>::DDexp(v, ddExp); Dune::FieldMatrix<RT,3,4> dExpInv = Quaternion<RT>::DexpInv(q0Inv.mult(q1)); Dune::FieldMatrix<RT,4,4> mat(0); for (int i=0; i<4; i++) for (int j=0; j<4; j++) for (int k=0; k<3; k++) mat[i][j] += 1/intervalLength * dExp_v[i][k] * dExpInv[k][j]; // ///////////////////////////////////////////////// // The derivatives with respect to w^0 // ///////////////////////////////////////////////// for (int i=0; i<3; i++) { // \partial exp \partial w^1_j at 0 Quaternion<RT> dw; for (int j=0; j<4; j++) dw[j] = 0.5*(i==j); // dExp_v_0[j][i]; // \xi = \exp^{-1} q_0^{-1} q_1 Dune::FieldVector<RT,3> xi = Quaternion<RT>::expInv(q0Inv.mult(q1)); Quaternion<RT> addend0; addend0 = 0; dExp_v.umv(xi,addend0); addend0 = dw.mult(addend0); addend0 /= intervalLength; // \parder{\xi}{w^1_j} = ... Quaternion<RT> dwConj = dw; dwConj.conjugate(); //dwConj[3] -= 2 * dExp_v_0[3][i]; the last row of dExp_v_0 is zero dwConj = dwConj.mult(q0Inv.mult(q1)); Dune::FieldVector<RT,3> dxi(0); Quaternion<RT>::DexpInv(q0Inv.mult(q1)).umv(dwConj, dxi); Quaternion<RT> vHv; for (int j=0; j<4; j++) { vHv[j] = 0; // vHv[j] = dxi * DDexp * xi for (int k=0; k<3; k++) for (int l=0; l<3; l++) vHv[j] += ddExp[j][k][l]*dxi[k]*xi[l]; } vHv *= s/intervalLength/intervalLength; // Third addend mat.umv(dwConj,grad[i]); // add up grad[i] += addend0; grad[i] += vHv; grad[i] = q0.mult(grad[i]); } // ///////////////////////////////////////////////// // The derivatives with respect to w^1 // ///////////////////////////////////////////////// for (int i=3; i<6; i++) { // \partial exp \partial w^1_j at 0 Quaternion<RT> dw; for (int j=0; j<4; j++) dw[j] = 0.5 * ((i-3)==j); // dw[j] = dExp_v_0[j][i-3]; // \xi = \exp^{-1} q_0^{-1} q_1 Dune::FieldVector<RT,3> xi = Quaternion<RT>::expInv(q0Inv.mult(q1)); // \parder{\xi}{w^1_j} = ... Dune::FieldVector<RT,3> dxi(0); dExpInv.umv(q0Inv.mult(q1.mult(dw)), dxi); Quaternion<RT> vHv; for (int j=0; j<4; j++) { // vHv[j] = dxi * DDexp * xi vHv[j] = 0; for (int k=0; k<3; k++) for (int l=0; l<3; l++) vHv[j] += ddExp[j][k][l]*dxi[k]*xi[l]; } vHv *= s/intervalLength/intervalLength; // /////////////////////////////////// // second addend // /////////////////////////////////// dw = q0Inv.mult(q1.mult(dw)); mat.umv(dw,grad[i]); grad[i] += vHv; grad[i] = q0.mult(grad[i]); } } template <class GridType, class RT> Dune::FieldVector<double, 6> RodLocalStiffness<GridType, RT>:: getStrain(const Dune::array<Configuration,2>& localSolution, const Entity& element, const Dune::FieldVector<double,1>& pos) const { if (!element.isLeaf()) DUNE_THROW(Dune::NotImplemented, "Only for leaf elements"); assert(localSolution.size() == 2); // Strain defined on each element Dune::FieldVector<double, 6> strain(0); // Extract local solution on this element const Dune::LagrangeShapeFunctionSet<double, double, 1> & baseSet = Dune::LagrangeShapeFunctions<double, double, 1>::general(element.type(), 1); int numOfBaseFct = baseSet.size(); const Dune::FieldMatrix<double,1,1>& inv = element.geometry().jacobianInverseTransposed(pos); // /////////////////////////////////////// // Compute deformation gradient // /////////////////////////////////////// Dune::FieldVector<double,1> shapeGrad[numOfBaseFct]; for (int dof=0; dof<numOfBaseFct; dof++) { for (int i=0; i<1; i++) shapeGrad[dof][i] = baseSet[dof].evaluateDerivative(0,i,pos); // multiply with jacobian inverse Dune::FieldVector<double,1> tmp(0); inv.umv(shapeGrad[dof], tmp); shapeGrad[dof] = tmp; } // ////////////////////////////////// // Interpolate // ////////////////////////////////// Dune::FieldVector<double,3> r_s; for (int i=0; i<3; i++) r_s[i] = localSolution[0].r[i]*shapeGrad[0][0] + localSolution[1].r[i]*shapeGrad[1][0]; // Interpolate the rotation at the quadrature point Quaternion<double> q = Quaternion<double>::interpolate(localSolution[0].q, localSolution[1].q, pos); // Get the derivative of the rotation at the quadrature point by interpolating in $H$ Quaternion<double> q_s = Quaternion<double>::interpolateDerivative(localSolution[0].q, localSolution[1].q, pos); // Transformation from the reference element q_s *= inv[0][0]; // ///////////////////////////////////////////// // Sum it all up // ///////////////////////////////////////////// // Part I: the shearing and stretching strain strain[0] = r_s * q.director(0); // shear strain strain[1] = r_s * q.director(1); // shear strain strain[2] = r_s * q.director(2); // stretching strain // Part II: the Darboux vector Dune::FieldVector<double,3> u = darboux(q, q_s); strain[3] = u[0]; strain[4] = u[1]; strain[5] = u[2]; return strain; } template <class GridType, class RT> void RodLocalStiffness<GridType, RT>:: assembleGradient(const Entity& element, const Dune::array<Configuration,2>& solution, const Dune::array<Configuration,2>& referenceConfiguration, Dune::array<Dune::FieldVector<double,6>, 2>& gradient) const { using namespace Dune; // Extract local solution on this element const Dune::LagrangeShapeFunctionSet<double, double, 1> & baseSet = Dune::LagrangeShapeFunctions<double, double, 1>::general(element.type(), 1); // first order const int numOfBaseFct = baseSet.size(); // init for (size_t i=0; i<gradient.size(); i++) gradient[i] = 0; double intervalLength = element.geometry()[1][0] - element.geometry()[0][0]; // /////////////////////////////////////////////////////////////////////////////////// // Reduced integration to avoid locking: assembly is split into a shear part // and a bending part. Different quadrature rules are used for the two parts. // This avoids locking. // /////////////////////////////////////////////////////////////////////////////////// // Get quadrature rule const QuadratureRule<double, 1>& shearingQuad = QuadratureRules<double, 1>::rule(element.type(), shearQuadOrder); for (int pt=0; pt<shearingQuad.size(); pt++) { // Local position of the quadrature point const FieldVector<double,1>& quadPos = shearingQuad[pt].position(); const FieldMatrix<double,1,1>& inv = element.geometry().jacobianInverseTransposed(quadPos); const double integrationElement = element.geometry().integrationElement(quadPos); double weight = shearingQuad[pt].weight() * integrationElement; // /////////////////////////////////////// // Compute deformation gradient // /////////////////////////////////////// double shapeGrad[numOfBaseFct]; for (int dof=0; dof<numOfBaseFct; dof++) { shapeGrad[dof] = baseSet[dof].evaluateDerivative(0,0,quadPos); // multiply with jacobian inverse FieldVector<double,1> tmp(0); inv.umv(shapeGrad[dof], tmp); shapeGrad[dof] = tmp; } // ////////////////////////////////// // Interpolate // ////////////////////////////////// FieldVector<double,3> r_s; for (int i=0; i<3; i++) r_s[i] = solution[0].r[i]*shapeGrad[0] + solution[1].r[i]*shapeGrad[1]; // Interpolate current rotation at this quadrature point Quaternion<double> q = Quaternion<double>::interpolate(solution[0].q, solution[1].q,quadPos[0]); // The current strain FieldVector<double,blocksize> strain = getStrain(solution, element, quadPos); // The reference strain FieldVector<double,blocksize> referenceStrain = getStrain(referenceConfiguration, element, quadPos); // dd_dvij[m][i][j] = \parder {(d_k)_i} {q} array<FieldMatrix<double,3 , 4>, 3> dd_dq; q.getFirstDerivativesOfDirectors(dd_dq); // First derivatives of the position array<Quaternion<double>,6> dq_dwij; interpolationDerivative(solution[0].q, solution[1].q, quadPos, dq_dwij); // ///////////////////////////////////////////// // Sum it all up // ///////////////////////////////////////////// for (int i=0; i<numOfBaseFct; i++) { // ///////////////////////////////////////////// // The translational part // ///////////////////////////////////////////// // \partial \bar{W} / \partial r^i_j for (int j=0; j<3; j++) { for (int m=0; m<3; m++) gradient[i][j] += weight * ( A_[m] * (strain[m] - referenceStrain[m]) * shapeGrad[i] * q.director(m)[j]); } // \partial \bar{W}_v / \partial v^i_j for (int j=0; j<3; j++) { for (int m=0; m<3; m++) { FieldVector<double,3> tmp(0); dd_dq[m].umv(dq_dwij[3*i+j], tmp); gradient[i][3+j] += weight * A_[m] * (strain[m] - referenceStrain[m]) * (r_s*tmp); } } } } // ///////////////////////////////////////////////////// // Now: the bending/torsion part // ///////////////////////////////////////////////////// // Get quadrature rule const QuadratureRule<double, 1>& bendingQuad = QuadratureRules<double, 1>::rule(element.type(), bendingQuadOrder); for (int pt=0; pt<bendingQuad.size(); pt++) { // Local position of the quadrature point const FieldVector<double,1>& quadPos = bendingQuad[pt].position(); const FieldMatrix<double,1,1>& inv = element.geometry().jacobianInverseTransposed(quadPos); const double integrationElement = element.geometry().integrationElement(quadPos); double weight = bendingQuad[pt].weight() * integrationElement; // Interpolate current rotation at this quadrature point Quaternion<double> q = Quaternion<double>::interpolate(solution[0].q, solution[1].q,quadPos[0]); // Get the derivative of the rotation at the quadrature point by interpolating in $H$ Quaternion<double> q_s = Quaternion<double>::interpolateDerivative(solution[0].q, solution[1].q, quadPos); // Transformation from the reference element q_s *= inv[0][0]; // The current strain FieldVector<double,blocksize> strain = getStrain(solution, element, quadPos); // The reference strain FieldVector<double,blocksize> referenceStrain = getStrain(referenceConfiguration, element, quadPos); // First derivatives of the position array<Quaternion<double>,6> dq_dwij; interpolationDerivative(solution[0].q, solution[1].q, quadPos, dq_dwij); array<Quaternion<double>,6> dq_ds_dwij; interpolationVelocityDerivative(solution[0].q, solution[1].q, quadPos[0]*intervalLength, intervalLength, dq_ds_dwij); // ///////////////////////////////////////////// // Sum it all up // ///////////////////////////////////////////// for (int i=0; i<numOfBaseFct; i++) { // ///////////////////////////////////////////// // The rotational part // ///////////////////////////////////////////// // \partial \bar{W}_v / \partial v^i_j for (int j=0; j<3; j++) { for (int m=0; m<3; m++) { // Compute derivative of the strain double du_dvij_m = 2 * (dq_dwij[i*3+j].B(m) * q_s) + 2* ( q.B(m) * dq_ds_dwij[i*3+j]); // Sum it up gradient[i][3+j] += weight * K_[m] * (strain[m+3]-referenceStrain[m+3]) * du_dvij_m; } } } } } template <class GridType> void RodAssembler<GridType>:: getNeighborsPerVertex(Dune::MatrixIndexSet& nb) const { const int gridDim = GridType::dimension; const typename GridType::Traits::LevelIndexSet& indexSet = grid_->levelIndexSet(grid_->maxLevel()); int i, j; int n = grid_->size(grid_->maxLevel(), gridDim); nb.resize(n, n); ElementIterator it = grid_->template lbegin<0>( grid_->maxLevel() ); ElementIterator endit = grid_->template lend<0> ( grid_->maxLevel() ); for (; it!=endit; ++it) { for (i=0; i<it->template count<gridDim>(); i++) { for (j=0; j<it->template count<gridDim>(); j++) { int iIdx = indexSet.template subIndex<gridDim>(*it,i); int jIdx = indexSet.template subIndex<gridDim>(*it,j); nb.add(iIdx, jIdx); } } } } template <class GridType> void RodAssembler<GridType>:: assembleMatrix(const std::vector<Configuration>& sol, Dune::BCRSMatrix<MatrixBlock>& matrix) const { using namespace Dune; const typename GridType::Traits::LevelIndexSet& indexSet = grid_->levelIndexSet(grid_->maxLevel()); MatrixIndexSet neighborsPerVertex; getNeighborsPerVertex(neighborsPerVertex); matrix = 0; ElementIterator it = grid_->template lbegin<0>( grid_->maxLevel() ); ElementIterator endit = grid_->template lend<0> ( grid_->maxLevel() ); Matrix<MatrixBlock> mat; for( ; it != endit; ++it ) { const LagrangeShapeFunctionSet<double, double, gridDim> & baseSet = Dune::LagrangeShapeFunctions<double, double, gridDim>::general(it->type(), elementOrder); const int numOfBaseFct = baseSet.size(); mat.setSize(numOfBaseFct, numOfBaseFct); // Extract local solution std::vector<Configuration> localSolution(numOfBaseFct); for (int i=0; i<numOfBaseFct; i++) localSolution[i] = sol[indexSet.template subIndex<gridDim>(*it,i)]; // setup matrix //getLocalMatrix( it, localSolution, sol, numOfBaseFct, mat); DUNE_THROW(NotImplemented, "getLocalMatrix"); // Add element matrix to global stiffness matrix for(int i=0; i<numOfBaseFct; i++) { int row = indexSet.template subIndex<gridDim>(*it,i); for (int j=0; j<numOfBaseFct; j++ ) { int col = indexSet.template subIndex<gridDim>(*it,j); matrix[row][col] += mat[i][j]; } } } } template <class GridType> void RodAssembler<GridType>:: assembleMatrixFD(const std::vector<Configuration>& sol, Dune::BCRSMatrix<MatrixBlock>& matrix) const { using namespace Dune; double eps = 1e-4; typedef typename Dune::BCRSMatrix<Dune::FieldMatrix<double,6,6> >::row_type::iterator ColumnIterator; // /////////////////////////////////////////////////////////// // Compute gradient by finite-difference approximation // /////////////////////////////////////////////////////////// std::vector<Configuration> forwardSolution = sol; std::vector<Configuration> backwardSolution = sol; std::vector<Configuration> forwardForwardSolution = sol; std::vector<Configuration> forwardBackwardSolution = sol; std::vector<Configuration> backwardForwardSolution = sol; std::vector<Configuration> backwardBackwardSolution = sol; // //////////////////////////////////////////////////// // Create local assembler // //////////////////////////////////////////////////// Dune::array<double,3> K = {K_[0], K_[1], K_[2]}; Dune::array<double,3> A = {A_[0], A_[1], A_[2]}; RodLocalStiffness<GridType,double> localStiffness(K, A); // ////////////////////////////////////////////////////////////////// // Store pointers to all elements so we can access them by index // ////////////////////////////////////////////////////////////////// const typename GridType::Traits::LeafIndexSet& indexSet = grid_->leafIndexSet(); std::vector<EntityPointer> elements(grid_->size(0),grid_->template leafbegin<0>()); typename GridType::template Codim<0>::LeafIterator eIt = grid_->template leafbegin<0>(); typename GridType::template Codim<0>::LeafIterator eEndIt = grid_->template leafend<0>(); for (; eIt!=eEndIt; ++eIt) elements[indexSet.index(*eIt)] = eIt; Dune::array<Configuration,2> localReferenceConfiguration; Dune::array<Configuration,2> localSolution; // /////////////////////////////////////////////////////////////// // Loop over all blocks of the outer matrix // /////////////////////////////////////////////////////////////// for (int i=0; i<matrix.N(); i++) { ColumnIterator cIt = matrix[i].begin(); ColumnIterator cEndIt = matrix[i].end(); for (; cIt!=cEndIt; ++cIt) { // compute only the upper right triangular matrix if (cIt.index() < i) continue; // //////////////////////////////////////////////////////////////////////////// // Compute a finite-difference approximation of this hessian matrix block // //////////////////////////////////////////////////////////////////////////// for (int j=0; j<6; j++) { for (int k=0; k<6; k++) { // compute only the upper right triangular matrix if (i==cIt.index() && k<j) continue; if (i==cIt.index() && j==k) { double forwardEnergy = 0; double solutionEnergy = 0; double backwardEnergy = 0; infinitesimalVariation(forwardSolution[i], eps, j); infinitesimalVariation(backwardSolution[i], -eps, j); if (i != grid_->size(1)-1) { localReferenceConfiguration[0] = referenceConfiguration_[i]; localReferenceConfiguration[1] = referenceConfiguration_[i+1]; localSolution[0] = forwardSolution[i]; localSolution[1] = forwardSolution[i+1]; forwardEnergy += localStiffness.energy(*elements[i], localSolution, localReferenceConfiguration); localSolution[0] = sol[i]; localSolution[1] = sol[i+1]; solutionEnergy += localStiffness.energy(*elements[i], localSolution, localReferenceConfiguration); localSolution[0] = backwardSolution[i]; localSolution[1] = backwardSolution[i+1]; backwardEnergy += localStiffness.energy(*elements[i], localSolution, localReferenceConfiguration); } if (i != 0) { localReferenceConfiguration[0] = referenceConfiguration_[i-1]; localReferenceConfiguration[1] = referenceConfiguration_[i]; localSolution[0] = forwardSolution[i-1]; localSolution[1] = forwardSolution[i]; forwardEnergy += localStiffness.energy(*elements[i-1], localSolution, localReferenceConfiguration); localSolution[0] = sol[i-1]; localSolution[1] = sol[i]; solutionEnergy += localStiffness.energy(*elements[i-1], localSolution, localReferenceConfiguration); localSolution[0] = backwardSolution[i-1]; localSolution[1] = backwardSolution[i]; backwardEnergy += localStiffness.energy(*elements[i-1], localSolution, localReferenceConfiguration); } // Second derivative (*cIt)[j][k] = (forwardEnergy - 2*solutionEnergy + backwardEnergy) / (eps*eps); forwardSolution[i] = sol[i]; backwardSolution[i] = sol[i]; } else { double forwardForwardEnergy = 0; double forwardBackwardEnergy = 0; double backwardForwardEnergy = 0; double backwardBackwardEnergy = 0; infinitesimalVariation(forwardForwardSolution[i], eps, j); infinitesimalVariation(forwardForwardSolution[cIt.index()], eps, k); infinitesimalVariation(forwardBackwardSolution[i], eps, j); infinitesimalVariation(forwardBackwardSolution[cIt.index()], -eps, k); infinitesimalVariation(backwardForwardSolution[i], -eps, j); infinitesimalVariation(backwardForwardSolution[cIt.index()], eps, k); infinitesimalVariation(backwardBackwardSolution[i], -eps, j); infinitesimalVariation(backwardBackwardSolution[cIt.index()],-eps, k); std::set<int> elementsInvolved; if (i>0) elementsInvolved.insert(i-1); if (i<grid_->size(1)-1) elementsInvolved.insert(i); if (cIt.index()>0) elementsInvolved.insert(cIt.index()-1); if (cIt.index()<grid_->size(1)-1) elementsInvolved.insert(cIt.index()); for (typename std::set<int>::iterator it = elementsInvolved.begin(); it != elementsInvolved.end(); ++it) { localReferenceConfiguration[0] = referenceConfiguration_[*it]; localReferenceConfiguration[1] = referenceConfiguration_[*it+1]; localSolution[0] = forwardForwardSolution[*it]; localSolution[1] = forwardForwardSolution[*it+1]; forwardForwardEnergy += localStiffness.energy(*elements[*it], localSolution, localReferenceConfiguration); localSolution[0] = forwardBackwardSolution[*it]; localSolution[1] = forwardBackwardSolution[*it+1]; forwardBackwardEnergy += localStiffness.energy(*elements[*it], localSolution, localReferenceConfiguration); localSolution[0] = backwardForwardSolution[*it]; localSolution[1] = backwardForwardSolution[*it+1]; backwardForwardEnergy += localStiffness.energy(*elements[*it], localSolution, localReferenceConfiguration); localSolution[0] = backwardBackwardSolution[*it]; localSolution[1] = backwardBackwardSolution[*it+1]; backwardBackwardEnergy += localStiffness.energy(*elements[*it], localSolution, localReferenceConfiguration); } (*cIt)[j][k] = (forwardForwardEnergy + backwardBackwardEnergy - forwardBackwardEnergy - backwardForwardEnergy) / (4*eps*eps); forwardForwardSolution[i] = sol[i]; forwardForwardSolution[cIt.index()] = sol[cIt.index()]; forwardBackwardSolution[i] = sol[i]; forwardBackwardSolution[cIt.index()] = sol[cIt.index()]; backwardForwardSolution[i] = sol[i]; backwardForwardSolution[cIt.index()] = sol[cIt.index()]; backwardBackwardSolution[i] = sol[i]; backwardBackwardSolution[cIt.index()] = sol[cIt.index()]; } } } } } // /////////////////////////////////////////////////////////////// // Symmetrize the matrix // This is possible expensive, but I want to be absolute sure // that the matrix is symmetric. // /////////////////////////////////////////////////////////////// for (int i=0; i<matrix.N(); i++) { ColumnIterator cIt = matrix[i].begin(); ColumnIterator cEndIt = matrix[i].end(); for (; cIt!=cEndIt; ++cIt) { if (cIt.index()>i) continue; if (cIt.index()==i) { for (int j=1; j<6; j++) for (int k=0; k<j; k++) (*cIt)[j][k] = (*cIt)[k][j]; } else { const FieldMatrix<double,6,6>& other = matrix[cIt.index()][i]; for (int j=0; j<6; j++) for (int k=0; k<6; k++) (*cIt)[j][k] = other[k][j]; } } } } template <class GridType> void RodAssembler<GridType>:: assembleGradient(const std::vector<Configuration>& sol, Dune::BlockVector<Dune::FieldVector<double, blocksize> >& grad) const { using namespace Dune; const typename GridType::Traits::LevelIndexSet& indexSet = grid_->levelIndexSet(grid_->maxLevel()); const int maxlevel = grid_->maxLevel(); if (sol.size()!=grid_->size(maxlevel, gridDim)) DUNE_THROW(Exception, "Solution vector doesn't match the grid!"); // //////////////////////////////////////////////////// // Create local assembler // //////////////////////////////////////////////////// Dune::array<double,3> K = {K_[0], K_[1], K_[2]}; Dune::array<double,3> A = {A_[0], A_[1], A_[2]}; RodLocalStiffness<GridType,double> localStiffness(K, A); grad.resize(sol.size()); grad = 0; ElementIterator it = grid_->template lbegin<0>(maxlevel); ElementIterator endIt = grid_->template lend<0>(maxlevel); // Loop over all elements for (; it!=endIt; ++it) { // A 1d grid has two vertices const int nDofs = 2; // Extract local solution array<Configuration,nDofs> localSolution; for (int i=0; i<nDofs; i++) localSolution[i] = sol[indexSet.template subIndex<gridDim>(*it,i)]; // Extract local reference configuration array<Configuration,nDofs> localReferenceConfiguration; for (int i=0; i<nDofs; i++) localReferenceConfiguration[i] = referenceConfiguration_[indexSet.template subIndex<gridDim>(*it,i)]; // Assemble local gradient array<FieldVector<double,blocksize>, nDofs> localGradient; localStiffness.assembleGradient(*it, localSolution, localReferenceConfiguration, localGradient); // Add to global gradient for (int i=0; i<nDofs; i++) grad[indexSet.template subIndex<gridDim>(*it,i)] += localGradient[i]; } } template <class GridType> double RodAssembler<GridType>:: computeEnergy(const std::vector<Configuration>& sol) const { using namespace Dune; double energy = 0; const typename GridType::Traits::LeafIndexSet& indexSet = grid_->leafIndexSet(); if (sol.size()!=indexSet.size(gridDim)) DUNE_THROW(Exception, "Solution vector doesn't match the grid!"); // //////////////////////////////////////////////////// // Create local assembler // //////////////////////////////////////////////////// Dune::array<double,3> K = {K_[0], K_[1], K_[2]}; Dune::array<double,3> A = {A_[0], A_[1], A_[2]}; RodLocalStiffness<GridType,double> localStiffness(K, A); Dune::array<Configuration,2> localReferenceConfiguration; Dune::array<Configuration,2> localSolution; ElementLeafIterator it = grid_->template leafbegin<0>(); ElementLeafIterator endIt = grid_->template leafend<0>(); // Loop over all elements for (; it!=endIt; ++it) { for (int i=0; i<2; i++) { localReferenceConfiguration[i] = referenceConfiguration_[indexSet.template subIndex<gridDim>(*it,i)]; localSolution[i] = sol[indexSet.template subIndex<gridDim>(*it,i)]; } energy += localStiffness.energy(*it, localSolution, localReferenceConfiguration); } return energy; } template <class GridType> void RodAssembler<GridType>:: getStrain(const std::vector<Configuration>& sol, Dune::BlockVector<Dune::FieldVector<double, blocksize> >& strain) const { using namespace Dune; const typename GridType::Traits::LeafIndexSet& indexSet = grid_->leafIndexSet(); if (sol.size()!=indexSet.size(gridDim)) DUNE_THROW(Exception, "Solution vector doesn't match the grid!"); // //////////////////////////////////////////////////// // Create local assembler // //////////////////////////////////////////////////// Dune::array<double,3> K = {K_[0], K_[1], K_[2]}; Dune::array<double,3> A = {A_[0], A_[1], A_[2]}; RodLocalStiffness<GridType,double> localStiffness(K, A); // Strain defined on each element strain.resize(indexSet.size(0)); strain = 0; ElementLeafIterator it = grid_->template leafbegin<0>(); ElementLeafIterator endIt = grid_->template leafend<0>(); // Loop over all elements for (; it!=endIt; ++it) { int elementIdx = indexSet.index(*it); // Extract local solution on this element const LagrangeShapeFunctionSet<double, double, gridDim> & baseSet = Dune::LagrangeShapeFunctions<double, double, gridDim>::general(it->type(), elementOrder); int numOfBaseFct = baseSet.size(); array<Configuration,2> localSolution; for (int i=0; i<numOfBaseFct; i++) localSolution[i] = sol[indexSet.template subIndex<gridDim>(*it,i)]; // Get quadrature rule const int polOrd = 2; const QuadratureRule<double, gridDim>& quad = QuadratureRules<double, gridDim>::rule(it->type(), polOrd); for (int pt=0; pt<quad.size(); pt++) { // Local position of the quadrature point const FieldVector<double,gridDim>& quadPos = quad[pt].position(); double weight = quad[pt].weight() * it->geometry().integrationElement(quadPos); FieldVector<double,blocksize> localStrain = localStiffness.getStrain(localSolution, *it, quad[pt].position()); // Sum it all up strain[elementIdx].axpy(weight, localStrain); } // ///////////////////////////////////////////////////////////////////////// // We want the average strain per element. Therefore we have to divide // the integral we just computed by the element volume. // ///////////////////////////////////////////////////////////////////////// // we know the element is a line, therefore the integration element is the volume FieldVector<double,1> dummyPos(0.5); strain[elementIdx] /= it->geometry().integrationElement(dummyPos); } } template <class GridType> void RodAssembler<GridType>:: getStress(const std::vector<Configuration>& sol, Dune::BlockVector<Dune::FieldVector<double, blocksize> >& stress) const { // Get the strain getStrain(sol,stress); // Get reference strain Dune::BlockVector<Dune::FieldVector<double, blocksize> > referenceStrain; getStrain(referenceConfiguration_, referenceStrain); // Linear diagonal constitutive law for (size_t i=0; i<stress.size(); i++) { for (int j=0; j<3; j++) { stress[i][j] = (stress[i][j] - referenceStrain[i][j]) * A_[j]; stress[i][j+3] = (stress[i][j+3] - referenceStrain[i][j+3]) * K_[j]; } } } template <class GridType> Dune::FieldVector<double,3> RodAssembler<GridType>:: getResultantForce(const BoundaryPatch<GridType>& boundary, const std::vector<Configuration>& sol, Dune::FieldVector<double,3>& canonicalTorque) const { using namespace Dune; if (grid_ != &boundary.getGrid()) DUNE_THROW(Dune::Exception, "The boundary patch has to match the grid of the assembler!"); const typename GridType::Traits::LeafIndexSet& indexSet = grid_->leafIndexSet(); if (sol.size()!=indexSet.size(gridDim)) DUNE_THROW(Exception, "Solution vector doesn't match the grid!"); /** \todo Eigentlich sollte das BoundaryPatch ein LeafBoundaryPatch sein */ if (boundary.level() != grid_->maxLevel()) DUNE_THROW(Exception, "The boundary patch has to refer to the max level!"); FieldVector<double,3> canonicalStress(0); canonicalTorque = 0; // Loop over the given boundary ElementLeafIterator eIt = grid_->template leafbegin<0>(); ElementLeafIterator eEndIt = grid_->template leafend<0>(); for (; eIt!=eEndIt; ++eIt) { typename EntityType::LeafIntersectionIterator nIt = eIt->ileafbegin(); typename EntityType::LeafIntersectionIterator nEndIt = eIt->ileafend(); for (; nIt!=nEndIt; ++nIt) { if (!boundary.contains(*eIt, nIt->numberInSelf())) continue; // ////////////////////////////////////////////// // Compute force across this boundary face // ////////////////////////////////////////////// // Create local assembler Dune::array<double,3> K = {K_[0], K_[1], K_[2]}; Dune::array<double,3> A = {A_[0], A_[1], A_[2]}; RodLocalStiffness<GridType,double> localStiffness(K, A); double pos = nIt->intersectionSelfLocal()[0]; Dune::array<Configuration,2> localSolution = {sol[indexSet.template subIndex<1>(*eIt,0)], sol[indexSet.template subIndex<1>(*eIt,1)]}; Dune::array<Configuration,2> localRefConf = {referenceConfiguration_[indexSet.template subIndex<1>(*eIt,0)], referenceConfiguration_[indexSet.template subIndex<1>(*eIt,1)]}; FieldVector<double, blocksize> strain = localStiffness.getStrain(localSolution, *eIt, pos); FieldVector<double, blocksize> referenceStrain = localStiffness.getStrain(localRefConf, *eIt, pos); FieldVector<double,3> localStress; for (int i=0; i<3; i++) localStress[i] = (strain[i] - referenceStrain[i]) * A_[i]; FieldVector<double,3> localTorque; for (int i=0; i<3; i++) localTorque[i] = (strain[i+3] - referenceStrain[i+3]) * K_[i]; // Transform stress given with respect to the basis given by the three directors to // the canonical basis of R^3 FieldMatrix<double,3,3> orientationMatrix; sol[indexSet.template subIndex<1>(*eIt,nIt->numberInSelf())].q.matrix(orientationMatrix); orientationMatrix.umv(localStress, canonicalStress); orientationMatrix.umv(localTorque, canonicalTorque); // Reverse transformation to make sure we did the correct thing // assert( std::abs(localStress[0]-canonicalStress*sol[0].q.director(0)) < 1e-6 ); // assert( std::abs(localStress[1]-canonicalStress*sol[0].q.director(1)) < 1e-6 ); // assert( std::abs(localStress[2]-canonicalStress*sol[0].q.director(2)) < 1e-6 ); // Multiply force times boundary normal to get the transmitted force /** \todo The minus sign comes from the coupling conditions. It should really be in the Dirichlet-Neumann code. */ canonicalStress *= -nIt->unitOuterNormal(FieldVector<double,0>(0))[0]; canonicalTorque *= -nIt->unitOuterNormal(FieldVector<double,0>(0))[0]; } } return canonicalStress; }