#ifndef ROTATION_HH #define ROTATION_HH /** \file \brief Define rotations in Euclidean spaces */ #include <dune/common/fvector.hh> #include <dune/common/array.hh> #include <dune/common/fmatrix.hh> #include <dune/common/exceptions.hh> #include "quaternion.hh" #include <dune/gfe/tensor3.hh> #include <dune/gfe/unitvector.hh> #include <dune/gfe/skewmatrix.hh> template <int dim, class T=double> class Rotation { }; /** \brief Specialization for dim==2 \tparam T The type used for coordinates */ template <class T> class Rotation<2,T> { public: /** \brief The type used for coordinates */ typedef T ctype; /** \brief Member of the corresponding Lie algebra. This really is a skew-symmetric matrix */ typedef Dune::FieldVector<T,1> TangentVector; /** \brief Member of the corresponding Lie algebra. This really is a skew-symmetric matrix This vector is not really embedded in anything. I have to make my notation more consistent! */ typedef Dune::FieldVector<T,1> EmbeddedTangentVector; /** \brief Default constructor, create the identity rotation */ Rotation() : angle_(0) {} Rotation(const T& angle) : angle_(angle) {} /** \brief Return the identity element */ static Rotation<2,T> identity() { // Default constructor creates an identity Rotation<2,T> id; return id; } static T distance(const Rotation<2,T>& a, const Rotation<2,T>& b) { T dist = a.angle_ - b.angle_; while (dist < 0) dist += 2*M_PI; while (dist > 2*M_PI) dist -= 2*M_PI; return (dist <= M_PI) ? dist : 2*M_PI - dist; } /** \brief The exponential map from a given point $p \in SO(3)$. */ static Rotation<2,T> exp(const Rotation<2,T>& p, const TangentVector& v) { Rotation<2,T> result = p; result.angle_ += v; return result; } /** \brief The exponential map from \f$ \mathfrak{so}(2) \f$ to \f$ SO(2) \f$ */ static Rotation<2,T> exp(const Dune::FieldVector<T,1>& v) { Rotation<2,T> result; result.angle_ = v[0]; return result; } static TangentVector derivativeOfDistanceSquaredWRTSecondArgument(const Rotation<2,T>& a, const Rotation<2,T>& b) { // This assertion is here to remind me of the following laziness: // The difference has to be computed modulo 2\pi assert( std::fabs(a.angle_ - b.angle_) <= M_PI ); return -2 * (a.angle_ - b.angle_); } static Dune::FieldMatrix<T,1,1> secondDerivativeOfDistanceSquaredWRTSecondArgument(const Rotation<2,T>& a, const Rotation<2,T>& b) { return 2; } /** \brief Right multiplication */ Rotation<2,T> mult(const Rotation<2,T>& other) const { Rotation<2,T> q = *this; q.angle_ += other.angle_; return q; } /** \brief Compute an orthonormal basis of the tangent space of SO(3). This basis is of course not globally continuous. */ Dune::FieldMatrix<T,1,1> orthonormalFrame() const { return Dune::FieldMatrix<T,1,1>(1); } //private: // We store the rotation as an angle T angle_; }; //! Send configuration to output stream template <class T> std::ostream& operator<< (std::ostream& s, const Rotation<2,T>& c) { return s << "[" << c.angle_ << " (" << std::sin(c.angle_) << " " << std::cos(c.angle_) << ") ]"; } /** \brief Specialization for dim==3 Uses unit quaternion coordinates. */ template <class T> class Rotation<3,T> : public Quaternion<T> { /** \brief Computes sin(x/2) / x without getting unstable for small x */ static T sincHalf(const T& x) { return (x < 1e-4) ? 0.5 - (x*x/48) : std::sin(x/2)/x; } /** \brief Compute the derivative of arccos^2 without getting unstable for x close to 1 */ static T derivativeOfArcCosSquared(const T& x) { const T eps = 1e-12; if (x > 1-eps) { // regular expression is unstable, use the series expansion instead return -2 + 2*(x-1)/3 - 4/15*(x-1)*(x-1) + 4/35*(x-1)*(x-1)*(x-1); } else if (x < -1+eps) { // The function is not differentiable DUNE_THROW(Dune::Exception, "arccos^2 is not differentiable at x==-1!"); } else return -2*std::acos(x) / std::sqrt(1-x*x); } public: /** \brief The type used for coordinates */ typedef T ctype; /** \brief The type used for global coordinates */ typedef Dune::FieldVector<T,4> CoordinateType; /** \brief Dimension of the manifold formed by the 3d rotations */ static const int dim = 3; /** \brief Member of the corresponding Lie algebra. This really is a skew-symmetric matrix */ typedef Dune::FieldVector<T,3> TangentVector; /** \brief A tangent vector as a vector in the surrounding coordinate space */ typedef Quaternion<T> EmbeddedTangentVector; /** \brief Default constructor creates the identity element */ Rotation() : Quaternion<T>(0,0,0,1) {} Rotation<3,T>(const Dune::array<T,4>& c) { for (int i=0; i<4; i++) (*this)[i] = c[i]; *this /= this->two_norm(); } Rotation<3,T>(const Dune::FieldVector<T,4>& c) : Quaternion<T>(c) { *this /= this->two_norm(); } Rotation<3,T>(Dune::FieldVector<T,3> axis, T angle) : Quaternion<T>(axis, angle) {} /** \brief Return the identity element */ static Rotation<3,T> identity() { // Default constructor creates an identity Rotation<3,T> id; return id; } /** \brief Right multiplication */ Rotation<3,T> mult(const Rotation<3,T>& other) const { Rotation<3,T> q; q[0] = (*this)[3]*other[0] - (*this)[2]*other[1] + (*this)[1]*other[2] + (*this)[0]*other[3]; q[1] = (*this)[2]*other[0] + (*this)[3]*other[1] - (*this)[0]*other[2] + (*this)[1]*other[3]; q[2] = - (*this)[1]*other[0] + (*this)[0]*other[1] + (*this)[3]*other[2] + (*this)[2]*other[3]; q[3] = - (*this)[0]*other[0] - (*this)[1]*other[1] - (*this)[2]*other[2] + (*this)[3]*other[3]; return q; } /** \brief The exponential map from \f$ \mathfrak{so}(3) \f$ to \f$ SO(3) \f$ */ static Rotation<3,T> exp(const SkewMatrix<T,3>& v) { Rotation<3,T> q; Dune::FieldVector<T,3> vAxial = v.axial(); T normV = vAxial.two_norm(); // Stabilization for small |v| due to Grassia T sin = sincHalf(normV); // if normV == 0 then q = (0,0,0,1) assert(!isnan(sin)); q[0] = sin * vAxial[0]; q[1] = sin * vAxial[1]; q[2] = sin * vAxial[2]; q[3] = std::cos(normV/2); return q; } /** \brief The exponential map from a given point $p \in SO(3)$. */ static Rotation<3,T> exp(const Rotation<3,T>& p, const SkewMatrix<T,3>& v) { Rotation<3,T> corr = exp(v); return p.mult(corr); } /** \brief The exponential map from a given point $p \in SO(3)$. There may be a more direct way to implement this \param v A tangent vector in quaternion coordinates */ static Rotation<3,T> exp(const Rotation<3,T>& p, const EmbeddedTangentVector& v) { assert( std::fabs(p*v) < 1e-8 ); // The vector v as a quaternion Quaternion<T> vQuat(v); // left multiplication by the inverse base point yields a tangent vector at the identity Quaternion<T> vAtIdentity = p.inverse().mult(vQuat); assert( std::fabs(vAtIdentity[3]) < 1e-8 ); // vAtIdentity as a skew matrix SkewMatrix<T,3> vMatrix; vMatrix.axial()[0] = 2*vAtIdentity[0]; vMatrix.axial()[1] = 2*vAtIdentity[1]; vMatrix.axial()[2] = 2*vAtIdentity[2]; // The actual exponential map return exp(p, vMatrix); } /** \brief Compute tangent vector from given basepoint and skew symmetric matrix. */ static TangentVector skewToTangentVector(const Rotation<3,T>& p, const SkewMatrix<T,3>& v ) { // embedded tangent vector at identity Quaternion<T> vAtIdentity(0); vAtIdentity[0] = 0.5*v.axial()[0]; vAtIdentity[1] = 0.5*v.axial()[1]; vAtIdentity[2] = 0.5*v.axial()[2]; // multiply with base point to get real embedded tangent vector Quaternion<T> vQuat = ((Quaternion<T>) p).mult(vAtIdentity); //get basis of the tangent space Dune::FieldMatrix<T,3,4> basis = p.orthonormalFrame(); // transform coordinates TangentVector tang; basis.mv(vQuat,tang); return tang; } /** \brief Compute skew matrix from given basepoint and tangent vector. */ static SkewMatrix<T,3> tangentToSkew(const Rotation<3,T>& p, const TangentVector& tangent) { // embedded tangent vector Dune::FieldMatrix<T,3,4> basis = p.orthonormalFrame(); Quaternion<T> embeddedTangent; basis.mtv(tangent, embeddedTangent); tangentToSkew(p,embeddedTangent); } /** \brief Compute skew matrix from given basepoint and an embedded tangent vector. */ static SkewMatrix<T,3> tangentToSkew(const Rotation<3,T>& p, const EmbeddedTangentVector& q) { // left multiplication by the inverse base point yields a tangent vector at the identity Quaternion<T> vAtIdentity = p.inverse().mult(q); assert( std::fabs(vAtIdentity[3]) < 1e-8 ); SkewMatrix<T,3> skew; skew.axial()[0] = 2*vAtIdentity[0]; skew.axial()[1] = 2*vAtIdentity[1]; skew.axial()[2] = 2*vAtIdentity[2]; return skew; } static Rotation<3,T> exp(const Rotation<3,T>& p, const Dune::FieldVector<T,4>& v) { assert( std::fabs(p*v) < 1e-8 ); // The vector v as a quaternion Quaternion<T> vQuat(v); // left multiplication by the inverse base point yields a tangent vector at the identity Quaternion<T> vAtIdentity = p.inverse().mult(vQuat); assert( std::fabs(vAtIdentity[3]) < 1e-8 ); // vAtIdentity as a skew matrix SkewMatrix<T,3> vMatrix; vMatrix.axial()[0] = 2*vAtIdentity[0]; vMatrix.axial()[1] = 2*vAtIdentity[1]; vMatrix.axial()[2] = 2*vAtIdentity[2]; // The actual exponential map return exp(p, vMatrix); } static Dune::FieldMatrix<T,4,3> Dexp(const SkewMatrix<T,3>& v) { Dune::FieldMatrix<T,4,3> result(0); Dune::FieldVector<T,3> vAxial = v.axial(); T norm = vAxial.two_norm(); for (int i=0; i<3; i++) { for (int m=0; m<3; m++) { result[m][i] = (norm<1e-10) /** \todo Isn't there a better way to implement this stably? */ ? 0.5 * (i==m) : 0.5 * std::cos(norm/2) * vAxial[i] * vAxial[m] / (norm*norm) + sincHalf(norm) * ( (i==m) - vAxial[i]*vAxial[m]/(norm*norm)); } result[3][i] = - 0.5 * sincHalf(norm) * vAxial[i]; } return result; } static void DDexp(const Dune::FieldVector<T,3>& v, Dune::array<Dune::FieldMatrix<T,3,3>, 4>& result) { T norm = v.two_norm(); if (norm<=1e-10) { for (int m=0; m<4; m++) result[m] = 0; for (int i=0; i<3; i++) result[3][i][i] = -0.25; } else { for (int i=0; i<3; i++) { for (int j=0; j<3; j++) { for (int m=0; m<3; m++) { result[m][i][j] = -0.25*std::sin(norm/2)*v[i]*v[j]*v[m]/(norm*norm*norm) + ((i==j)*v[m] + (j==m)*v[i] + (i==m)*v[j] - 3*v[i]*v[j]*v[m]/(norm*norm)) * (0.5*std::cos(norm/2) - sincHalf(norm)) / (norm*norm); } result[3][i][j] = -0.5/(norm*norm) * ( 0.5*std::cos(norm/2)*v[i]*v[j] + std::sin(norm/2) * ((i==j)*norm - v[i]*v[j]/norm)); } } } } /** \brief The inverse of the exponential map */ static Dune::FieldVector<T,3> expInv(const Rotation<3,T>& q) { // Compute v = exp^{-1} q // Due to numerical dirt, q[3] may be larger than 1. // In that case, use 1 instead of q[3]. Dune::FieldVector<T,3> v; if (q[3] > 1.0) { v = 0; } else { T invSinc = 1/sincHalf(2*std::acos(q[3])); v[0] = q[0] * invSinc; v[1] = q[1] * invSinc; v[2] = q[2] * invSinc; } return v; } /** \brief The derivative of the inverse of the exponential map, evaluated at q */ static Dune::FieldMatrix<T,3,4> DexpInv(const Rotation<3,T>& q) { // Compute v = exp^{-1} q Dune::FieldVector<T,3> v = expInv(q); // The derivative of exp at v Dune::FieldMatrix<T,4,3> A = Dexp(v); // Compute the Moore-Penrose pseudo inverse A^+ = (A^T A)^{-1} A^T Dune::FieldMatrix<T,3,3> ATA; for (int i=0; i<3; i++) for (int j=0; j<3; j++) { ATA[i][j] = 0; for (int k=0; k<4; k++) ATA[i][j] += A[k][i] * A[k][j]; } ATA.invert(); Dune::FieldMatrix<T,3,4> APseudoInv; for (int i=0; i<3; i++) for (int j=0; j<4; j++) { APseudoInv[i][j] = 0; for (int k=0; k<3; k++) APseudoInv[i][j] += ATA[i][k] * A[j][k]; } return APseudoInv; } /** \brief The cayley mapping from \f$ \mathfrak{so}(3) \f$ to \f$ SO(3) \f$. */ static Rotation<3,T> cayley(const SkewMatrix<T,3>& s) { Rotation<3,T> q; Dune::FieldVector<T,3> vAxial = s.axial(); T norm = 0.25*vAxial.two_norm2() + 1; Dune::FieldMatrix<T,3,3> mat = s.toMatrix(); mat *= 0.5; Dune::FieldMatrix<T,3,3> skewSquare = mat.rightmultiply(mat); mat += skewSquare; mat *= 2/norm; for (int i=0;i<3;i++) mat[i][i] += 1; q.set(mat); return q; } /** \brief The inverse of the Cayley mapping. */ static SkewMatrix<T,3> cayleyInv(const Rotation<3,T> q) { Dune::FieldMatrix<T,3,3> mat; // compute the trace of the rotation matrix double trace = -q[0]*q[0] -q[1]*q[1] -q[2]*q[2]+3*q[3]*q[3]; if ( (trace+1)>1e-6 && (trace+1)<-1e-6) { // if this term doesn't vanish we can use a direct formula q.matrix(mat); Dune::FieldMatrix<T,3,3> matT; Rotation<3,T>(q.inverse()).matrix(matT); mat -= matT; mat *= 1/(1+trace); } else { // use the formula that involves the computation of an inverse Dune::FieldMatrix<T,3,3> inv; q.matrix(inv); Dune::FieldMatrix<T,3,3> notInv = inv; for (int i=0;i<3;i++) { inv[i][i] +=1; notInv[i][i] -=1; } inv.invert(); mat = notInv.leftmultiply(inv); mat *= 2; } // result is a skew symmetric matrix SkewMatrix<T,3> res; res.axial()[0] = mat[2][1]; res.axial()[1] = mat[0][2]; res.axial()[2] = mat[1][0]; return res; } static T distance(const Rotation<3,T>& a, const Rotation<3,T>& b) { Quaternion<T> diff = a; diff.invert(); diff = diff.mult(b); // Compute the geodesical distance between a and b on SO(3) // Due to numerical dirt, diff[3] may be larger than 1. // In that case, use 1 instead of diff[3]. return (diff[3] > 1.0) ? 0 : 2*std::acos( std::min(diff[3],1.0) ); } /** \brief Compute the vector in T_aSO(3) that is mapped by the exponential map to the geodesic from a to b */ static SkewMatrix<T,3> difference(const Rotation<3,T>& a, const Rotation<3,T>& b) { Quaternion<T> diff = a; diff.invert(); diff = diff.mult(b); // Compute the geodesical distance between a and b on SO(3) // Due to numerical dirt, diff[3] may be larger than 1. // In that case, use 1 instead of diff[3]. Dune::FieldVector<T,3> v; if (diff[3] > 1.0) { v = 0; } else { T dist = 2*std::acos( std::min(diff[3],1.0) ); T invSinc = 1/sincHalf(dist); // Compute difference on T_a SO(3) v[0] = diff[0] * invSinc; v[1] = diff[1] * invSinc; v[2] = diff[2] * invSinc; } return SkewMatrix<T,3>(v); } /** \brief Compute the derivatives of the director vectors with respect to the quaternion coordinates * * Let \f$ d_k(q) = (d_{k,1}, d_{k,2}, d_{k,3})\f$ be the k-th director vector at \f$ q \f$. * Then the return value of this method is * \f[ A_{ijk} = \frac{\partial d_{i,j}}{\partial q_k} \f] */ void getFirstDerivativesOfDirectors(Tensor3<double,3, 3, 4>& dd_dq) const { const Quaternion<T>& q = (*this); dd_dq[0][0][0] = 2*q[0]; dd_dq[0][0][1] = -2*q[1]; dd_dq[0][0][2] = -2*q[2]; dd_dq[0][0][3] = 2*q[3]; dd_dq[0][1][0] = 2*q[1]; dd_dq[0][1][1] = 2*q[0]; dd_dq[0][1][2] = 2*q[3]; dd_dq[0][1][3] = 2*q[2]; dd_dq[0][2][0] = 2*q[2]; dd_dq[0][2][1] = -2*q[3]; dd_dq[0][2][2] = 2*q[0]; dd_dq[0][2][3] = -2*q[1]; dd_dq[1][0][0] = 2*q[1]; dd_dq[1][0][1] = 2*q[0]; dd_dq[1][0][2] = -2*q[3]; dd_dq[1][0][3] = -2*q[2]; dd_dq[1][1][0] = -2*q[0]; dd_dq[1][1][1] = 2*q[1]; dd_dq[1][1][2] = -2*q[2]; dd_dq[1][1][3] = 2*q[3]; dd_dq[1][2][0] = 2*q[3]; dd_dq[1][2][1] = 2*q[2]; dd_dq[1][2][2] = 2*q[1]; dd_dq[1][2][3] = 2*q[0]; dd_dq[2][0][0] = 2*q[2]; dd_dq[2][0][1] = 2*q[3]; dd_dq[2][0][2] = 2*q[0]; dd_dq[2][0][3] = 2*q[1]; dd_dq[2][1][0] = -2*q[3]; dd_dq[2][1][1] = 2*q[2]; dd_dq[2][1][2] = 2*q[1]; dd_dq[2][1][3] = -2*q[0]; dd_dq[2][2][0] = -2*q[0]; dd_dq[2][2][1] = -2*q[1]; dd_dq[2][2][2] = 2*q[2]; dd_dq[2][2][3] = 2*q[3]; } static EmbeddedTangentVector derivativeOfDistanceSquaredWRTSecondArgument(const Rotation<3,T>& p, const Rotation<3,T>& q) { Rotation<3,T> pInv = p; pInv.invert(); // the forth component of pInv times q T pInvq_4 = - pInv[0]*q[0] - pInv[1]*q[1] - pInv[2]*q[2] + pInv[3]*q[3]; T arccosSquaredDer_pInvq_4 = derivativeOfArcCosSquared(pInvq_4); EmbeddedTangentVector result; result[0] = -4 * arccosSquaredDer_pInvq_4 * pInv[0]; result[1] = -4 * arccosSquaredDer_pInvq_4 * pInv[1]; result[2] = -4 * arccosSquaredDer_pInvq_4 * pInv[2]; result[3] = 4 * arccosSquaredDer_pInvq_4 * pInv[3]; // project onto the tangent space at q EmbeddedTangentVector projectedResult = result; projectedResult.axpy(-1*(q*result), q); assert(std::fabs(projectedResult * q) < 1e-7); return projectedResult; } /** \brief Compute the Hessian of the squared distance function keeping the first argument fixed Unlike the distance itself the squared distance is differentiable at zero */ static Dune::FieldMatrix<T,4,4> secondDerivativeOfDistanceSquaredWRTSecondArgument(const Rotation<3,T>& p, const Rotation<3,T>& q) { // use the functionality from the unitvector class Dune::FieldMatrix<T,4,4> result = UnitVector<4>::secondDerivativeOfDistanceSquaredWRTSecondArgument(p.globalCoordinates(), q.globalCoordinates()); // for some reason that I don't really understand, the distance we have defined for the rotations (== Unit quaternions) // is twice the corresponding distance on the unit quaternions seen as a sphere. Hence the derivative of the // squared distance needs to be multiplied by 4. result *= 4; return result; } /** \brief Compute the mixed second derivate \partial d^2 / \partial da db Unlike the distance itself the squared distance is differentiable at zero */ static Dune::FieldMatrix<T,4,4> secondDerivativeOfDistanceSquaredWRTFirstAndSecondArgument(const Rotation<3,T>& p, const Rotation<3,T>& q) { // use the functionality from the unitvector class Dune::FieldMatrix<T,4,4> result = UnitVector<4>::secondDerivativeOfDistanceSquaredWRTFirstAndSecondArgument(p.globalCoordinates(), q.globalCoordinates()); // for some reason that I don't really understand, the distance we have defined for the rotations (== Unit quaternions) // is twice the corresponding distance on the unit quaternions seen as a sphere. Hence the derivative of the // squared distance needs to be multiplied by 4. result *= 4; return result; } /** \brief Compute the third derivative \partial d^3 / \partial dq^3 Unlike the distance itself the squared distance is differentiable at zero */ static Tensor3<T,4,4,4> thirdDerivativeOfDistanceSquaredWRTSecondArgument(const Rotation<3,T>& p, const Rotation<3,T>& q) { // use the functionality from the unitvector class Tensor3<T,4,4,4> result = UnitVector<4>::thirdDerivativeOfDistanceSquaredWRTSecondArgument(p.globalCoordinates(), q.globalCoordinates()); // for some reason that I don't really understand, the distance we have defined for the rotations (== Unit quaternions) // is twice the corresponding distance on the unit quaternions seen as a sphere. Hence the derivative of the // squared distance needs to be multiplied by 4. result *= 4; return result; } /** \brief Compute the mixed third derivative \partial d^3 / \partial da db^2 Unlike the distance itself the squared distance is differentiable at zero */ static Tensor3<T,4,4,4> thirdDerivativeOfDistanceSquaredWRTFirst1AndSecond2Argument(const Rotation<3,T>& p, const Rotation<3,T>& q) { // use the functionality from the unitvector class Tensor3<T,4,4,4> result = UnitVector<4>::thirdDerivativeOfDistanceSquaredWRTFirst1AndSecond2Argument(p.globalCoordinates(), q.globalCoordinates()); // for some reason that I don't really understand, the distance we have defined for the rotations (== Unit quaternions) // is twice the corresponding distance on the unit quaternions seen as a sphere. Hence the derivative of the // squared distance needs to be multiplied by 4. result *= 4; return result; } /** \brief Interpolate between two rotations */ static Rotation<3,T> interpolate(const Rotation<3,T>& a, const Rotation<3,T>& b, T omega) { // Compute difference on T_a SO(3) SkewMatrix<T,3> v = difference(a,b); v *= omega; return a.mult(exp(v)); } /** \brief Interpolate between two rotations \param omega must be between 0 and 1 */ static Quaternion<T> interpolateDerivative(const Rotation<3,T>& a, const Rotation<3,T>& b, T omega) { Quaternion<T> result(0); // Compute difference on T_a SO(3) SkewMatrix<T,3> xi = difference(a,b); SkewMatrix<T,3> v = xi; v *= omega; // ////////////////////////////////////////////////////////////// // v now contains the derivative at 'a'. The derivative at // the requested site is v pushed forward by Dexp. // ///////////////////////////////////////////////////////////// Dune::FieldMatrix<T,4,3> diffExp = Dexp(v); diffExp.umv(xi.axial(),result); return a.Quaternion<T>::mult(result); } /** \brief Return the corresponding orthogonal matrix */ void matrix(Dune::FieldMatrix<T,3,3>& m) const { m[0][0] = (*this)[0]*(*this)[0] - (*this)[1]*(*this)[1] - (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3]; m[0][1] = 2 * ( (*this)[0]*(*this)[1] - (*this)[2]*(*this)[3] ); m[0][2] = 2 * ( (*this)[0]*(*this)[2] + (*this)[1]*(*this)[3] ); m[1][0] = 2 * ( (*this)[0]*(*this)[1] + (*this)[2]*(*this)[3] ); m[1][1] = - (*this)[0]*(*this)[0] + (*this)[1]*(*this)[1] - (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3]; m[1][2] = 2 * ( -(*this)[0]*(*this)[3] + (*this)[1]*(*this)[2] ); m[2][0] = 2 * ( (*this)[0]*(*this)[2] - (*this)[1]*(*this)[3] ); m[2][1] = 2 * ( (*this)[0]*(*this)[3] + (*this)[1]*(*this)[2] ); m[2][2] = - (*this)[0]*(*this)[0] - (*this)[1]*(*this)[1] + (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3]; } /** \brief Set rotation from orthogonal matrix We tacitly assume that the matrix really is orthogonal */ void set(const Dune::FieldMatrix<T,3,3>& m) { // Easier writing Dune::FieldVector<T,4>& p = (*this); // The following equations for the derivation of a unit quaternion from a rotation // matrix comes from 'E. Salamin, Application of Quaternions to Computation with // Rotations, Technical Report, Stanford, 1974' p[0] = (1 + m[0][0] - m[1][1] - m[2][2]) / 4; p[1] = (1 - m[0][0] + m[1][1] - m[2][2]) / 4; p[2] = (1 - m[0][0] - m[1][1] + m[2][2]) / 4; p[3] = (1 + m[0][0] + m[1][1] + m[2][2]) / 4; // avoid rounding problems if (p[0] >= p[1] && p[0] >= p[2] && p[0] >= p[3]) { p[0] = std::sqrt(p[0]); // r_x r_y = (R_12 + R_21) / 4 p[1] = (m[0][1] + m[1][0]) / 4 / p[0]; // r_x r_z = (R_13 + R_31) / 4 p[2] = (m[0][2] + m[2][0]) / 4 / p[0]; // r_0 r_x = (R_32 - R_23) / 4 p[3] = (m[2][1] - m[1][2]) / 4 / p[0]; } else if (p[1] >= p[0] && p[1] >= p[2] && p[1] >= p[3]) { p[1] = std::sqrt(p[1]); // r_x r_y = (R_12 + R_21) / 4 p[0] = (m[0][1] + m[1][0]) / 4 / p[1]; // r_y r_z = (R_23 + R_32) / 4 p[2] = (m[1][2] + m[2][1]) / 4 / p[1]; // r_0 r_y = (R_13 - R_31) / 4 p[3] = (m[0][2] - m[2][0]) / 4 / p[1]; } else if (p[2] >= p[0] && p[2] >= p[1] && p[2] >= p[3]) { p[2] = std::sqrt(p[2]); // r_x r_z = (R_13 + R_31) / 4 p[0] = (m[0][2] + m[2][0]) / 4 / p[2]; // r_y r_z = (R_23 + R_32) / 4 p[1] = (m[1][2] + m[2][1]) / 4 / p[2]; // r_0 r_z = (R_21 - R_12) / 4 p[3] = (m[1][0] - m[0][1]) / 4 / p[2]; } else { p[3] = std::sqrt(p[3]); // r_0 r_x = (R_32 - R_23) / 4 p[0] = (m[2][1] - m[1][2]) / 4 / p[3]; // r_0 r_y = (R_13 - R_31) / 4 p[1] = (m[0][2] - m[2][0]) / 4 / p[3]; // r_0 r_z = (R_21 - R_12) / 4 p[2] = (m[1][0] - m[0][1]) / 4 / p[3]; } } /** \brief Create three vectors which form an orthonormal basis of \mathbb{H} together with this one. This is used to compute the strain in rod problems. See: Dichmann, Li, Maddocks, 'Hamiltonian Formulations and Symmetries in Rod Mechanics', page 83 */ Quaternion<T> B(int m) const { assert(m>=0 && m<3); Quaternion<T> r; if (m==0) { r[0] = (*this)[3]; r[1] = (*this)[2]; r[2] = -(*this)[1]; r[3] = -(*this)[0]; } else if (m==1) { r[0] = -(*this)[2]; r[1] = (*this)[3]; r[2] = (*this)[0]; r[3] = -(*this)[1]; } else { r[0] = (*this)[1]; r[1] = -(*this)[0]; r[2] = (*this)[3]; r[3] = -(*this)[2]; } return r; } /** \brief Project tangent vector of R^n onto the tangent space */ EmbeddedTangentVector projectOntoTangentSpace(const EmbeddedTangentVector& v) const { EmbeddedTangentVector result = v; EmbeddedTangentVector data = *this; result.axpy(-1*(data*result), data); return result; } /** \brief The global coordinates, if you really want them */ const CoordinateType& globalCoordinates() const { return *this; } /** \brief Compute an orthonormal basis of the tangent space of SO(3). */ Dune::FieldMatrix<T,3,4> orthonormalFrame() const { Dune::FieldMatrix<T,3,4> result; for (int i=0; i<3; i++) result[i] = B(i); return result; } }; #endif