#include <config.h> // Includes for the ADOL-C automatic differentiation library // Need to come before (almost) all others. #include <adolc/adouble.h> #include <adolc/drivers/drivers.h> // use of "Easy to Use" drivers #include <adolc/taping.h> #include <dune/gfe/adolcnamespaceinjections.hh> #include <dune/common/bitsetvector.hh> #include <dune/common/parametertree.hh> #include <dune/common/parametertreeparser.hh> #include <dune/grid/uggrid.hh> #include <dune/grid/utility/structuredgridfactory.hh> #include <dune/grid/io/file/gmshreader.hh> #include <dune/grid/io/file/vtk.hh> #include <dune/fufem/boundarypatch.hh> #include <dune/fufem/functions/vtkbasisgridfunction.hh> #include <dune/fufem/functiontools/boundarydofs.hh> #include <dune/fufem/functiontools/basisinterpolator.hh> #include <dune/fufem/functionspacebases/p1nodalbasis.hh> #include <dune/fufem/functionspacebases/p2nodalbasis.hh> #include <dune/fufem/dunepython.hh> #include <dune/solvers/solvers/iterativesolver.hh> #include <dune/solvers/norms/energynorm.hh> #include <dune/gfe/localadolcstiffness.hh> #include <dune/gfe/stvenantkirchhoffenergy.hh> #include <dune/gfe/feassembler.hh> #include <dune/gfe/trustregionsolver.hh> // grid dimension const int dim = 3; using namespace Dune; /** \brief A constant vector-valued function, for simple Neumann boundary values */ struct NeumannFunction : public Dune::VirtualFunction<FieldVector<double,dim>, FieldVector<double,3> > { NeumannFunction(const FieldVector<double,3> values, double homotopyParameter) : values_(values), homotopyParameter_(homotopyParameter) {} void evaluate(const FieldVector<double, dim>& x, FieldVector<double,3>& out) const { out = 0; out.axpy(-homotopyParameter_, values_); } FieldVector<double,3> values_; double homotopyParameter_; }; int main (int argc, char *argv[]) try { // initialize MPI, finalize is done automatically on exit Dune::MPIHelper& mpiHelper = MPIHelper::instance(argc, argv); // Start Python interpreter Python::start(); Python::Reference main = Python::import("__main__"); Python::run("import math"); //feenableexcept(FE_INVALID); Python::runStream() << std::endl << "import sys" << std::endl << "sys.path.append('/home/sander/dune/dune-gfe/')" << std::endl; typedef std::vector<FieldVector<double,dim> > SolutionType; // parse data file ParameterTree parameterSet; // if (argc != 2) // DUNE_THROW(Exception, "Usage: ./hencky-material <parameter file>"); ParameterTreeParser::readINITree(argv[1], parameterSet); ParameterTreeParser::readOptions(argc, argv, parameterSet); // read solver settings const int numLevels = parameterSet.get<int>("numLevels"); int numHomotopySteps = parameterSet.get<int>("numHomotopySteps"); const double tolerance = parameterSet.get<double>("tolerance"); const int maxTrustRegionSteps = parameterSet.get<int>("maxTrustRegionSteps"); const double initialTrustRegionRadius = parameterSet.get<double>("initialTrustRegionRadius"); const int multigridIterations = parameterSet.get<int>("numIt"); const int nu1 = parameterSet.get<int>("nu1"); const int nu2 = parameterSet.get<int>("nu2"); const int mu = parameterSet.get<int>("mu"); const int baseIterations = parameterSet.get<int>("baseIt"); const double mgTolerance = parameterSet.get<double>("mgTolerance"); const double baseTolerance = parameterSet.get<double>("baseTolerance"); const bool instrumented = parameterSet.get<bool>("instrumented"); std::string resultPath = parameterSet.get("resultPath", ""); // /////////////////////////////////////// // Create the grid // /////////////////////////////////////// typedef UGGrid<dim> GridType; shared_ptr<GridType> grid; FieldVector<double,dim> lower(0), upper(1); if (parameterSet.get<bool>("structuredGrid")) { lower = parameterSet.get<FieldVector<double,dim> >("lower"); upper = parameterSet.get<FieldVector<double,dim> >("upper"); array<unsigned int,dim> elements = parameterSet.get<array<unsigned int,dim> >("elements"); grid = StructuredGridFactory<GridType>::createCubeGrid(lower, upper, elements); } else { std::string path = parameterSet.get<std::string>("path"); std::string gridFile = parameterSet.get<std::string>("gridFile"); grid = shared_ptr<GridType>(GmshReader<GridType>::read(path + "/" + gridFile)); } grid->globalRefine(numLevels-1); grid->loadBalance(); if (mpiHelper.rank()==0) std::cout << "There are " << grid->leafGridView().comm().size() << " processes" << std::endl; typedef GridType::LeafGridView GridView; GridView gridView = grid->leafGridView(); // typedef P1NodalBasis<GridView,double> FEBasis; typedef P2NodalBasis<GridView,double> FEBasis; FEBasis feBasis(gridView); // ///////////////////////////////////////// // Read Dirichlet values // ///////////////////////////////////////// BitSetVector<1> dirichletVertices(gridView.size(dim), false); BitSetVector<1> neumannVertices(gridView.size(dim), false); GridType::Codim<dim>::LeafIterator vIt = gridView.begin<dim>(); GridType::Codim<dim>::LeafIterator vEndIt = gridView.end<dim>(); const GridView::IndexSet& indexSet = gridView.indexSet(); // Make Python function that computes which vertices are on the Dirichlet boundary, // based on the vertex positions. std::string lambda = std::string("lambda x: (") + parameterSet.get<std::string>("dirichletVerticesPredicate") + std::string(")"); PythonFunction<FieldVector<double,dim>, bool> pythonDirichletVertices(Python::evaluate(lambda)); // Same for the Neumann boundary lambda = std::string("lambda x: (") + parameterSet.get<std::string>("neumannVerticesPredicate", "0") + std::string(")"); PythonFunction<FieldVector<double,dim>, bool> pythonNeumannVertices(Python::evaluate(lambda)); for (; vIt!=vEndIt; ++vIt) { bool isDirichlet; pythonDirichletVertices.evaluate(vIt->geometry().corner(0), isDirichlet); dirichletVertices[indexSet.index(*vIt)] = isDirichlet; bool isNeumann; pythonNeumannVertices.evaluate(vIt->geometry().corner(0), isNeumann); neumannVertices[indexSet.index(*vIt)] = isNeumann; } BoundaryPatch<GridView> dirichletBoundary(gridView, dirichletVertices); BoundaryPatch<GridView> neumannBoundary(gridView, neumannVertices); if (mpiHelper.rank()==0) std::cout << "Neumann boundary has " << neumannBoundary.numFaces() << " faces\n"; BitSetVector<1> dirichletNodes(feBasis.size(), false); constructBoundaryDofs(dirichletBoundary,feBasis,dirichletNodes); BitSetVector<1> neumannNodes(feBasis.size(), false); constructBoundaryDofs(neumannBoundary,feBasis,neumannNodes); BitSetVector<dim> dirichletDofs(feBasis.size(), false); for (size_t i=0; i<feBasis.size(); i++) if (dirichletNodes[i][0]) for (int j=0; j<dim; j++) dirichletDofs[i][j] = true; // ////////////////////////// // Initial iterate // ////////////////////////// SolutionType x(feBasis.size()); lambda = std::string("lambda x: (") + parameterSet.get<std::string>("initialDeformation") + std::string(")"); PythonFunction<FieldVector<double,dim>, FieldVector<double,3> > pythonInitialDeformation(Python::evaluate(lambda)); std::vector<FieldVector<double,3> > v; Functions::interpolate(feBasis, v, pythonInitialDeformation); for (size_t i=0; i<x.size(); i++) x[i] = v[i]; lambda = std::string("lambda x: (") + parameterSet.get<std::string>("identity") + std::string(")"); PythonFunction<FieldVector<double,dim>, FieldVector<double,3> > pythonIdentity(Python::evaluate(lambda)); SolutionType identity; Functions::interpolate(feBasis, identity, pythonIdentity); //////////////////////////////////////////////////////// // Main homotopy loop //////////////////////////////////////////////////////// // Output initial iterate (of homotopy loop) VTKWriter<GridType::LeafGridView> vtkWriter(grid->leafGridView()); BlockVector<FieldVector<double,3> > displacement(x.size()); for (auto it = grid->leafGridView().template begin<dim>(); it != grid->leafGridView().template end<dim>(); ++it) { size_t idx = grid->leafGridView().indexSet().index(*it); displacement[idx] = x[idx] - it->geometry().corner(0); //std::cout << "idx: " << idx << " coordinate: " << it->geometry().corner(0) << std::endl; } Dune::shared_ptr<VTKBasisGridFunction<FEBasis,BlockVector<FieldVector<double,3> > > > vtkDisplacement = Dune::make_shared<VTKBasisGridFunction<FEBasis,BlockVector<FieldVector<double,3> > > > (feBasis, displacement, "Displacement"); vtkWriter.addVertexData(vtkDisplacement); vtkWriter.write(resultPath + "hencky_homotopy_0"); for (int i=0; i<numHomotopySteps; i++) { double homotopyParameter = (i+1)*(1.0/numHomotopySteps); if (mpiHelper.rank()==0) std::cout << "Homotopy step: " << i << ", parameter: " << homotopyParameter << std::endl; // //////////////////////////////////////////////////////////// // Create an assembler for the energy functional // //////////////////////////////////////////////////////////// const ParameterTree& materialParameters = parameterSet.sub("materialParameters"); shared_ptr<NeumannFunction> neumannFunction; if (parameterSet.hasKey("neumannValues")) neumannFunction = make_shared<NeumannFunction>(parameterSet.get<FieldVector<double,3> >("neumannValues"), homotopyParameter); std::cout << "Neumann values: " << parameterSet.get<FieldVector<double,3> >("neumannValues") << std::endl; if (mpiHelper.rank() == 0) { std::cout << "Material parameters:" << std::endl; materialParameters.report(); } // Assembler using ADOL-C StVenantKirchhoffEnergy<GridView, FEBasis::LocalFiniteElement, adouble> henckyEnergy(materialParameters, &neumannBoundary, neumannFunction.get()); LocalADOLCStiffness<GridView, FEBasis::LocalFiniteElement, SolutionType> localADOLCStiffness(&henckyEnergy); FEAssembler<FEBasis,SolutionType> assembler(gridView, &localADOLCStiffness); std::vector<FieldVector<double,3> > pointLoads(x.size()); std::fill(pointLoads.begin(), pointLoads.end(), 0); // pointLoads[1372] = parameterSet.get<FieldVector<double,3> >("neumannValues"); // pointLoads[1372] *= 0.5; // ///////////////////////////////////////////////// // Create a Riemannian trust-region solver // ///////////////////////////////////////////////// TrustRegionSolver<FEBasis,SolutionType> solver; solver.setup(*grid, &assembler, x, dirichletDofs, tolerance, maxTrustRegionSteps, initialTrustRegionRadius, multigridIterations, mgTolerance, mu, nu1, nu2, baseIterations, baseTolerance, pointLoads ); solver.identity_ = identity; //////////////////////////////////////////////////////// // Set Dirichlet values //////////////////////////////////////////////////////// Python::Reference dirichletValuesClass = Python::import(parameterSet.get<std::string>("problem") + "-dirichlet-values"); Python::Callable C = dirichletValuesClass.get("DirichletValues"); // Call a constructor. Python::Reference dirichletValuesPythonObject = C(homotopyParameter); // Extract object member functions as Dune functions PythonFunction<FieldVector<double,dim>, FieldVector<double,3> > dirichletValues(dirichletValuesPythonObject.get("dirichletValues")); std::vector<FieldVector<double,3> > ddV; Functions::interpolate(feBasis, ddV, dirichletValues, dirichletDofs); for (size_t j=0; j<x.size(); j++) if (dirichletNodes[j][0]) x[j] = ddV[j]; // ///////////////////////////////////////////////////// // Solve! // ///////////////////////////////////////////////////// solver.setInitialIterate(x); solver.solve(); x = solver.getSol(); // Output result of each homotopy step VTKWriter<GridType::LeafGridView> vtkWriter(grid->leafGridView()); BlockVector<FieldVector<double,3> > displacement(x.size()); for (auto it = grid->leafGridView().template begin<dim>(); it != grid->leafGridView().template end<dim>(); ++it) { size_t idx = grid->leafGridView().indexSet().index(*it); displacement[idx] = x[idx] - it->geometry().corner(0); } Dune::shared_ptr<VTKBasisGridFunction<FEBasis,BlockVector<FieldVector<double,3> > > > vtkDisplacement = Dune::make_shared<VTKBasisGridFunction<FEBasis,BlockVector<FieldVector<double,3> > > > (feBasis, displacement, "Displacement"); vtkWriter.addVertexData(vtkDisplacement); vtkWriter.write(resultPath + "hencky_homotopy_" + std::to_string(i+1)); } // ////////////////////////////// // Output result // ////////////////////////////// // finally: compute the average deformation of the Neumann boundary // That is what we need for the locking tests FieldVector<double,3> averageDef(0); for (size_t i=0; i<x.size(); i++) if (neumannNodes[i][0]) { averageDef += x[i]; std::cout << "i: " << i << ", pos: " << x[i] << std::endl; } averageDef /= neumannNodes.count(); if (mpiHelper.rank()==0) { std::cout << "Neumann value = " << parameterSet.get<std::string>("neumannValues") << std::endl; std::cout << "Neumann value = " << parameterSet.get<FieldVector<double,dim> >("neumannValues") << " " << ", average deflection: " << averageDef << std::endl; } } catch (Exception e) { std::cout << e << std::endl; }