#include <config.h> #include <fenv.h> // Includes for the ADOL-C automatic differentiation library // Need to come before (almost) all others. #include <adolc/adouble.h> #include <adolc/drivers/drivers.h> // use of "Easy to Use" drivers #include <adolc/taping.h> #include <dune/fufem/utilities/adolcnamespaceinjections.hh> #include <array> #include <dune/common/bitsetvector.hh> #include <dune/common/parametertree.hh> #include <dune/common/parametertreeparser.hh> #include <dune/grid/uggrid.hh> #include <dune/grid/onedgrid.hh> #include <dune/grid/utility/structuredgridfactory.hh> #include <dune/grid/io/file/gmshreader.hh> #include <dune/functions/common/tuplevector.hh> #include <dune/functions/functionspacebases/pqknodalbasis.hh> #include <dune/functions/functionspacebases/compositebasis.hh> #include <dune/fufem/boundarypatch.hh> #include <dune/fufem/functiontools/boundarydofs.hh> #include <dune/fufem/functiontools/basisinterpolator.hh> #include <dune/fufem/functionspacebases/dunefunctionsbasis.hh> #include <dune/fufem/dunepython.hh> #include <dune/solvers/solvers/iterativesolver.hh> #include <dune/solvers/norms/energynorm.hh> #include <dune/gfe/rigidbodymotion.hh> #include <dune/gfe/mixedlocalgfeadolcstiffness.hh> #include <dune/gfe/cosseratenergystiffness.hh> #include <dune/gfe/cosseratvtkwriter.hh> #include <dune/gfe/mixedgfeassembler.hh> #include <dune/gfe/mixedriemanniantrsolver.hh> // grid dimension const int dim = 2; using namespace Dune; /** \brief A constant vector-valued function, for simple Neumann boundary values */ struct NeumannFunction : public Dune::VirtualFunction<FieldVector<double,dim>, FieldVector<double,3> > { NeumannFunction(const FieldVector<double,3> values, double homotopyParameter) : values_(values), homotopyParameter_(homotopyParameter) {} void evaluate(const FieldVector<double, dim>& x, FieldVector<double,3>& out) const { out = 0; out.axpy(homotopyParameter_, values_); } FieldVector<double,3> values_; double homotopyParameter_; }; int main (int argc, char *argv[]) try { // initialize MPI, finalize is done automatically on exit Dune::MPIHelper& mpiHelper = MPIHelper::instance(argc, argv); // Start Python interpreter Python::start(); Python::Reference main = Python::import("__main__"); Python::run("import math"); //feenableexcept(FE_INVALID); Python::runStream() << std::endl << "import sys" << std::endl << "sys.path.append('/home/sander/dune/dune-gfe/problems/')" << std::endl; using namespace Dune::TypeTree::Indices; typedef Dune::Functions::TupleVector<std::vector<RealTuple<double,3> >, std::vector<Rotation<double,3> > > SolutionType; // parse data file ParameterTree parameterSet; if (argc < 2) DUNE_THROW(Exception, "Usage: ./mixed-cosserat-continuum <parameter file>"); ParameterTreeParser::readINITree(argv[1], parameterSet); ParameterTreeParser::readOptions(argc, argv, parameterSet); // read solver settings const int numLevels = parameterSet.get<int>("numLevels"); int numHomotopySteps = parameterSet.get<int>("numHomotopySteps"); const double tolerance = parameterSet.get<double>("tolerance"); const int maxTrustRegionSteps = parameterSet.get<int>("maxTrustRegionSteps"); const double initialTrustRegionRadius = parameterSet.get<double>("initialTrustRegionRadius"); const int multigridIterations = parameterSet.get<int>("numIt"); const int nu1 = parameterSet.get<int>("nu1"); const int nu2 = parameterSet.get<int>("nu2"); const int mu = parameterSet.get<int>("mu"); const int baseIterations = parameterSet.get<int>("baseIt"); const double mgTolerance = parameterSet.get<double>("mgTolerance"); const double baseTolerance = parameterSet.get<double>("baseTolerance"); const bool instrumented = parameterSet.get<bool>("instrumented"); std::string resultPath = parameterSet.get("resultPath", ""); // /////////////////////////////////////// // Create the grid // /////////////////////////////////////// typedef std::conditional<dim==1,OneDGrid,UGGrid<dim> >::type GridType; shared_ptr<GridType> grid; FieldVector<double,dim> lower(0), upper(1); if (parameterSet.get<bool>("structuredGrid")) { lower = parameterSet.get<FieldVector<double,dim> >("lower"); upper = parameterSet.get<FieldVector<double,dim> >("upper"); auto elements = parameterSet.get<std::array<unsigned int,dim> >("elements"); grid = StructuredGridFactory<GridType>::createCubeGrid(lower, upper, elements); } else { std::string path = parameterSet.get<std::string>("path"); std::string gridFile = parameterSet.get<std::string>("gridFile"); grid = shared_ptr<GridType>(GmshReader<GridType>::read(path + "/" + gridFile)); } grid->globalRefine(numLevels-1); grid->loadBalance(); if (mpiHelper.rank()==0) std::cout << "There are " << grid->leafGridView().comm().size() << " processes" << std::endl; typedef GridType::LeafGridView GridView; GridView gridView = grid->leafGridView(); using namespace Dune::Functions::BasisBuilder; auto compositeBasis = makeBasis( gridView, composite( pq<2>(), pq<1>() ) ); typedef Dune::Functions::PQkNodalBasis<GridView,2> DeformationFEBasis; typedef Dune::Functions::PQkNodalBasis<GridView,1> OrientationFEBasis; DeformationFEBasis deformationFEBasis(gridView); OrientationFEBasis orientationFEBasis(gridView); // Construct fufem-style function space bases to ease the transition to dune-functions typedef DuneFunctionsBasis<DeformationFEBasis> FufemDeformationFEBasis; FufemDeformationFEBasis fufemDeformationFEBasis(deformationFEBasis); typedef DuneFunctionsBasis<OrientationFEBasis> FufemOrientationFEBasis; FufemOrientationFEBasis fufemOrientationFEBasis(orientationFEBasis); std::cout << "Deformation: " << deformationFEBasis.size() << ", orientation: " << orientationFEBasis.size() << std::endl; // ///////////////////////////////////////// // Read Dirichlet values // ///////////////////////////////////////// BitSetVector<1> dirichletVertices(gridView.size(dim), false); BitSetVector<1> neumannVertices(gridView.size(dim), false); GridType::Codim<dim>::LeafIterator vIt = gridView.begin<dim>(); GridType::Codim<dim>::LeafIterator vEndIt = gridView.end<dim>(); const GridView::IndexSet& indexSet = gridView.indexSet(); // Make Python function that computes which vertices are on the Dirichlet boundary, // based on the vertex positions. std::string lambda = std::string("lambda x: (") + parameterSet.get<std::string>("dirichletVerticesPredicate") + std::string(")"); PythonFunction<FieldVector<double,dim>, bool> pythonDirichletVertices(Python::evaluate(lambda)); // Same for the Neumann boundary lambda = std::string("lambda x: (") + parameterSet.get<std::string>("neumannVerticesPredicate", "0") + std::string(")"); PythonFunction<FieldVector<double,dim>, bool> pythonNeumannVertices(Python::evaluate(lambda)); for (; vIt!=vEndIt; ++vIt) { bool isDirichlet; pythonDirichletVertices.evaluate(vIt->geometry().corner(0), isDirichlet); dirichletVertices[indexSet.index(*vIt)] = isDirichlet; bool isNeumann; pythonNeumannVertices.evaluate(vIt->geometry().corner(0), isNeumann); neumannVertices[indexSet.index(*vIt)] = isNeumann; } BoundaryPatch<GridView> dirichletBoundary(gridView, dirichletVertices); BoundaryPatch<GridView> neumannBoundary(gridView, neumannVertices); BitSetVector<1> neumannNodes(deformationFEBasis.size(), false); constructBoundaryDofs(neumannBoundary,fufemDeformationFEBasis,neumannNodes); if (mpiHelper.rank()==0) std::cout << "Neumann boundary has " << neumannBoundary.numFaces() << " faces\n"; BitSetVector<1> deformationDirichletNodes(deformationFEBasis.size(), false); constructBoundaryDofs(dirichletBoundary,fufemDeformationFEBasis,deformationDirichletNodes); BitSetVector<3> deformationDirichletDofs(deformationFEBasis.size(), false); for (size_t i=0; i<deformationFEBasis.size(); i++) if (deformationDirichletNodes[i][0]) for (int j=0; j<3; j++) deformationDirichletDofs[i][j] = true; BitSetVector<1> orientationDirichletNodes(orientationFEBasis.size(), false); constructBoundaryDofs(dirichletBoundary,fufemOrientationFEBasis,orientationDirichletNodes); BitSetVector<3> orientationDirichletDofs(orientationFEBasis.size(), false); for (size_t i=0; i<orientationFEBasis.size(); i++) if (orientationDirichletNodes[i][0]) for (int j=0; j<3; j++) orientationDirichletDofs[i][j] = true; // ////////////////////////// // Initial iterate // ////////////////////////// SolutionType x; x[_0].resize(deformationFEBasis.size()); lambda = std::string("lambda x: (") + parameterSet.get<std::string>("initialDeformation") + std::string(")"); PythonFunction<FieldVector<double,dim>, FieldVector<double,3> > pythonInitialDeformation(Python::evaluate(lambda)); std::vector<FieldVector<double,3> > v; ::Functions::interpolate(fufemDeformationFEBasis, v, pythonInitialDeformation); for (size_t i=0; i<x[_0].size(); i++) x[_0][i] = v[i]; x[_1].resize(orientationFEBasis.size()); #if 0 lambda = std::string("lambda x: (") + parameterSet.get<std::string>("initialDeformation") + std::string(")"); PythonFunction<FieldVector<double,dim>, FieldVector<double,3> > pythonInitialDeformation(Python::evaluate(lambda)); std::vector<FieldVector<double,3> > v; Functions::interpolate(feBasis, v, pythonInitialDeformation); for (size_t i=0; i<x.size(); i++) xDisp[i] = v[i]; #endif //////////////////////////////////////////////////////// // Main homotopy loop //////////////////////////////////////////////////////// // Output initial iterate (of homotopy loop) CosseratVTKWriter<GridType>::writeMixed<DeformationFEBasis,OrientationFEBasis>(deformationFEBasis,x[_0], orientationFEBasis,x[_1], resultPath + "mixed-cosserat_homotopy_0"); for (int i=0; i<numHomotopySteps; i++) { double homotopyParameter = (i+1)*(1.0/numHomotopySteps); if (mpiHelper.rank()==0) std::cout << "Homotopy step: " << i << ", parameter: " << homotopyParameter << std::endl; // //////////////////////////////////////////////////////////// // Create an assembler for the energy functional // //////////////////////////////////////////////////////////// const ParameterTree& materialParameters = parameterSet.sub("materialParameters"); shared_ptr<NeumannFunction> neumannFunction; if (parameterSet.hasKey("neumannValues")) neumannFunction = make_shared<NeumannFunction>(parameterSet.get<FieldVector<double,3> >("neumannValues"), homotopyParameter); if (mpiHelper.rank() == 0) { std::cout << "Material parameters:" << std::endl; materialParameters.report(); } // Assembler using ADOL-C CosseratEnergyLocalStiffness<decltype(compositeBasis), 3,adouble> cosseratEnergyADOLCLocalStiffness(materialParameters, &neumannBoundary, neumannFunction, nullptr); MixedLocalGFEADOLCStiffness<decltype(compositeBasis), RealTuple<double,3>, Rotation<double,3> > localGFEADOLCStiffness(&cosseratEnergyADOLCLocalStiffness); MixedGFEAssembler<decltype(compositeBasis), RealTuple<double,3>, Rotation<double,3> > assembler(compositeBasis, &localGFEADOLCStiffness); // ///////////////////////////////////////////////// // Create a Riemannian trust-region solver // ///////////////////////////////////////////////// MixedRiemannianTrustRegionSolver<GridType, decltype(compositeBasis), DeformationFEBasis, RealTuple<double,3>, OrientationFEBasis, Rotation<double,3> > solver; solver.setup(*grid, &assembler, deformationFEBasis, orientationFEBasis, x, deformationDirichletDofs, orientationDirichletDofs, tolerance, maxTrustRegionSteps, initialTrustRegionRadius, multigridIterations, mgTolerance, mu, nu1, nu2, baseIterations, baseTolerance, instrumented); solver.setScaling(parameterSet.get<FieldVector<double,6> >("trustRegionScaling")); //////////////////////////////////////////////////////// // Set Dirichlet values //////////////////////////////////////////////////////// Python::Reference dirichletValuesClass = Python::import(parameterSet.get<std::string>("problem") + "-dirichlet-values"); Python::Callable C = dirichletValuesClass.get("DirichletValues"); // Call a constructor. Python::Reference dirichletValuesPythonObject = C(homotopyParameter); // Extract object member functions as Dune functions PythonFunction<FieldVector<double,dim>, FieldVector<double,3> > deformationDirichletValues(dirichletValuesPythonObject.get("deformation")); PythonFunction<FieldVector<double,dim>, FieldMatrix<double,3,3> > orientationDirichletValues(dirichletValuesPythonObject.get("orientation")); std::vector<FieldVector<double,3> > ddV; ::Functions::interpolate(fufemDeformationFEBasis, ddV, deformationDirichletValues, deformationDirichletDofs); std::vector<FieldMatrix<double,3,3> > dOV; ::Functions::interpolate(fufemOrientationFEBasis, dOV, orientationDirichletValues, orientationDirichletDofs); for (size_t j=0; j<x[_0].size(); j++) if (deformationDirichletNodes[j][0]) x[_0][j] = ddV[j]; for (size_t j=0; j<x[_1].size(); j++) if (orientationDirichletNodes[j][0]) x[_1][j].set(dOV[j]); // ///////////////////////////////////////////////////// // Solve! // ///////////////////////////////////////////////////// solver.setInitialIterate(x); solver.solve(); x = solver.getSol(); // Output result of each homotopy step std::stringstream iAsAscii; iAsAscii << i+1; CosseratVTKWriter<GridType>::writeMixed<DeformationFEBasis,OrientationFEBasis>(deformationFEBasis,x[_0], orientationFEBasis,x[_1], resultPath + "mixed-cosserat_homotopy_" + iAsAscii.str()); } // ////////////////////////////// // Output result // ////////////////////////////// // finally: compute the average deformation of the Neumann boundary // That is what we need for the locking tests FieldVector<double,3> averageDef(0); for (size_t i=0; i<x[_0].size(); i++) if (neumannNodes[i][0]) averageDef += x[_0][i].globalCoordinates(); averageDef /= neumannNodes.count(); if (mpiHelper.rank()==0) { std::cout << "Neumann values = " << parameterSet.get<FieldVector<double, 3> >("neumannValues") << " " << ", average deflection: " << averageDef << std::endl; } } catch (Exception e) { std::cout << e << std::endl; }