#ifndef GLOBAL_GEODESIC_FE_ASSEMBLER_HH #define GLOBAL_GEODESIC_FE_ASSEMBLER_HH #include <dune/istl/bcrsmatrix.hh> #include <dune/common/fmatrix.hh> #include <dune/istl/matrixindexset.hh> #include <dune/istl/matrix.hh> #include "localgeodesicfestiffness.hh" /** \brief A global FE assembler for problems involving functions that map into non-Euclidean spaces */ template <class Basis, class TargetSpace> class GeodesicFEAssembler { typedef typename Basis::GridView GridView; typedef typename GridView::template Codim<0>::Iterator ElementIterator; //! Dimension of the grid. enum { gridDim = GridView::dimension }; //! Dimension of a tangent space enum { blocksize = TargetSpace::TangentVector::dimension }; //! typedef Dune::FieldMatrix<double, blocksize, blocksize> MatrixBlock; protected: const Basis basis_; LocalGeodesicFEStiffness<GridView, typename Basis::LocalFiniteElement, TargetSpace>* localStiffness_; public: /** \brief Constructor for a given grid */ GeodesicFEAssembler(const Basis& basis, LocalGeodesicFEStiffness<GridView,typename Basis::LocalFiniteElement, TargetSpace>* localStiffness) : basis_(basis), localStiffness_(localStiffness) {} /** \brief Assemble the tangent stiffness matrix */ virtual void assembleMatrix(const std::vector<TargetSpace>& sol, Dune::BCRSMatrix<MatrixBlock>& matrix, bool computeOccupationPattern=true) const; /** \brief Assemble the gradient */ virtual void assembleGradient(const std::vector<TargetSpace>& sol, Dune::BlockVector<Dune::FieldVector<double, blocksize> >& grad) const; /** \brief Compute the energy of a deformation state */ virtual double computeEnergy(const std::vector<TargetSpace>& sol) const; //protected: void getNeighborsPerVertex(Dune::MatrixIndexSet& nb) const; }; // end class template <class Basis, class TargetSpace> void GeodesicFEAssembler<Basis,TargetSpace>:: getNeighborsPerVertex(Dune::MatrixIndexSet& nb) const { int n = basis_.size(); nb.resize(n, n); ElementIterator it = basis_.getGridView().template begin<0>(); ElementIterator endit = basis_.getGridView().template end<0> (); for (; it!=endit; ++it) { const typename Basis::LocalFiniteElement& lfe = basis_.getLocalFiniteElement(*it); for (int i=0; i<lfe.localBasis().size(); i++) { for (int j=0; j<lfe.localBasis().size(); j++) { int iIdx = basis_.index(*it,i); int jIdx = basis_.index(*it,j); nb.add(iIdx, jIdx); } } } } template <class Basis, class TargetSpace> void GeodesicFEAssembler<Basis,TargetSpace>:: assembleMatrix(const std::vector<TargetSpace>& sol, Dune::BCRSMatrix<MatrixBlock>& matrix, bool computeOccupationPattern) const { if (computeOccupationPattern) { Dune::MatrixIndexSet neighborsPerVertex; getNeighborsPerVertex(neighborsPerVertex); neighborsPerVertex.exportIdx(matrix); } matrix = 0; ElementIterator it = basis_.getGridView().template begin<0>(); ElementIterator endit = basis_.getGridView().template end<0> (); for( ; it != endit; ++it ) { const int numOfBaseFct = basis_.getLocalFiniteElement(*it).localBasis().size(); // Extract local solution std::vector<TargetSpace> localSolution(numOfBaseFct); for (int i=0; i<numOfBaseFct; i++) localSolution[i] = sol[basis_.index(*it,i)]; // setup matrix localStiffness_->assembleHessian(*it, basis_.getLocalFiniteElement(*it), localSolution); // Add element matrix to global stiffness matrix for(int i=0; i<numOfBaseFct; i++) { int row = basis_.index(*it,i); for (int j=0; j<numOfBaseFct; j++ ) { int col = basis_.index(*it,j); matrix[row][col] += localStiffness_->A_[i][j]; } } } } template <class Basis, class TargetSpace> void GeodesicFEAssembler<Basis,TargetSpace>:: assembleGradient(const std::vector<TargetSpace>& sol, Dune::BlockVector<Dune::FieldVector<double, blocksize> >& grad) const { if (sol.size()!=basis_.size()) DUNE_THROW(Dune::Exception, "Solution vector doesn't match the grid!"); grad.resize(sol.size()); grad = 0; ElementIterator it = basis_.getGridView().template begin<0>(); ElementIterator endIt = basis_.getGridView().template end<0>(); // Loop over all elements for (; it!=endIt; ++it) { // A 1d grid has two vertices const int nDofs = basis_.getLocalFiniteElement(*it).localBasis().size(); // Extract local solution std::vector<TargetSpace> localSolution(nDofs); for (int i=0; i<nDofs; i++) localSolution[i] = sol[basis_.index(*it,i)]; // Assemble local gradient std::vector<Dune::FieldVector<double,blocksize> > localGradient(nDofs); localStiffness_->assembleGradient(*it, basis_.getLocalFiniteElement(*it), localSolution, localGradient); // Add to global gradient for (int i=0; i<nDofs; i++) grad[basis_.index(*it,i)] += localGradient[i]; } } template <class Basis, class TargetSpace> double GeodesicFEAssembler<Basis, TargetSpace>:: computeEnergy(const std::vector<TargetSpace>& sol) const { double energy = 0; if (sol.size()!=basis_.size()) DUNE_THROW(Dune::Exception, "Solution vector doesn't match the grid!"); ElementIterator it = basis_.getGridView().template begin<0>(); ElementIterator endIt = basis_.getGridView().template end<0>(); // Loop over all elements for (; it!=endIt; ++it) { // Number of degrees of freedom on this element size_t nDofs = basis_.getLocalFiniteElement(*it).localBasis().size(); std::vector<TargetSpace> localSolution(nDofs); for (int i=0; i<nDofs; i++) localSolution[i] = sol[basis_.index(*it,i)]; energy += localStiffness_->energy(*it, basis_.getLocalFiniteElement(*it), localSolution); } return energy; } #endif