#ifndef QUATERNION_HH #define QUATERNION_HH #include <dune/common/fvector.hh> #include <dune/common/fmatrix.hh> #include <dune/common/exceptions.hh> #include <dune/gfe/tensor3.hh> template <class T> class Quaternion : public Dune::FieldVector<T,4> { public: /** \brief Default constructor */ Quaternion() {} /** \brief Constructor with the four components */ Quaternion(const T& a, const T& b, const T& c, const T& d) { (*this)[0] = a; (*this)[1] = b; (*this)[2] = c; (*this)[3] = d; } /** \brief Constructor from a single scalar */ Quaternion(const T& a) : Dune::FieldVector<T,4>(a) {} /** \brief Copy constructor */ Quaternion(const Dune::FieldVector<T,4>& other) : Dune::FieldVector<T,4>(other) {} /** \brief Assignment from a scalar */ Quaternion<T>& operator=(const T& v) { for (int i=0; i<4; i++) (*this)[i] = v; return (*this); } /** \brief Return the identity element */ static Quaternion<T> identity() { Quaternion<T> id; id[0] = 0; id[1] = 0; id[2] = 0; id[3] = 1; return id; } /** \brief Right quaternion multiplication */ Quaternion<T> mult(const Quaternion<T>& other) const { Quaternion<T> q; q[0] = (*this)[3]*other[0] - (*this)[2]*other[1] + (*this)[1]*other[2] + (*this)[0]*other[3]; q[1] = (*this)[2]*other[0] + (*this)[3]*other[1] - (*this)[0]*other[2] + (*this)[1]*other[3]; q[2] = - (*this)[1]*other[0] + (*this)[0]*other[1] + (*this)[3]*other[2] + (*this)[2]*other[3]; q[3] = - (*this)[0]*other[0] - (*this)[1]*other[1] - (*this)[2]*other[2] + (*this)[3]*other[3]; return q; } /** \brief Return the tripel of director vectors represented by a unit quaternion The formulas are taken from Dichmann, Li, Maddocks, (2.6.4), (2.6.5), (2.6.6) */ Dune::FieldVector<T,3> director(int i) const { Dune::FieldVector<T,3> d; const Dune::FieldVector<T,4>& q = *this; // simpler notation if (i==0) { d[0] = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]; d[1] = 2 * (q[0]*q[1] + q[2]*q[3]); d[2] = 2 * (q[0]*q[2] - q[1]*q[3]); } else if (i==1) { d[0] = 2 * (q[0]*q[1] - q[2]*q[3]); d[1] = -q[0]*q[0] + q[1]*q[1] - q[2]*q[2] + q[3]*q[3]; d[2] = 2 * (q[1]*q[2] + q[0]*q[3]); } else if (i==2) { d[0] = 2 * (q[0]*q[2] + q[1]*q[3]); d[1] = 2 * (q[1]*q[2] - q[0]*q[3]); d[2] = -q[0]*q[0] - q[1]*q[1] + q[2]*q[2] + q[3]*q[3]; } else DUNE_THROW(Dune::Exception, "Nonexisting director " << i << " requested!"); return d; } /** \brief Turn quaternion into a unit quaternion by dividing by its Euclidean norm */ void normalize() { (*this) /= this->two_norm(); } Dune::FieldVector<double,3> rotate(const Dune::FieldVector<double,3>& v) const { Dune::FieldVector<double,3> result; Dune::FieldVector<double,3> d0 = director(0); Dune::FieldVector<double,3> d1 = director(1); Dune::FieldVector<double,3> d2 = director(2); for (int i=0; i<3; i++) result[i] = v[0]*d0[i] + v[1]*d1[i] + v[2]*d2[i]; return result; } /** \brief Conjugate the quaternion */ void conjugate() { (*this)[0] *= -1; (*this)[1] *= -1; (*this)[2] *= -1; } /** \brief Invert the quaternion */ void invert() { conjugate(); (*this) /= this->two_norm2(); } /** \brief Yield the inverse quaternion */ Quaternion<T> inverse() const { Quaternion<T> result = *this; result.invert(); return result; } /** \brief Create three vectors which form an orthonormal basis of \mathbb{H} together with this one. This is used to compute the strain in rod problems. See: Dichmann, Li, Maddocks, 'Hamiltonian Formulations and Symmetries in Rod Mechanics', page 83 */ Quaternion<T> B(int m) const { assert(m>=0 && m<3); Quaternion<T> r; if (m==0) { r[0] = (*this)[3]; r[1] = (*this)[2]; r[2] = -(*this)[1]; r[3] = -(*this)[0]; } else if (m==1) { r[0] = -(*this)[2]; r[1] = (*this)[3]; r[2] = (*this)[0]; r[3] = -(*this)[1]; } else { r[0] = (*this)[1]; r[1] = -(*this)[0]; r[2] = (*this)[3]; r[3] = -(*this)[2]; } return r; } }; namespace Dune { /** \brief Specizalization needed to allow certain forms of matrix--quaternion multiplications */ template< class T > struct FieldTraits< Quaternion<T> > { typedef typename FieldTraits<T>::field_type field_type; typedef typename FieldTraits<T>::real_type real_type; }; } #endif