#include <config.h> #include <iostream> #include <dune/common/fmatrix.hh> #include <dune/gfe/rotation.hh> #include <dune/gfe/svd.hh> #include "valuefactory.hh" using namespace Dune; void testRotation(Rotation<double,3> q) { // Make sure it really is a unit quaternion q.normalize(); assert(std::abs(1-q.two_norm()) < 1e-12); // Turn it into a matrix FieldMatrix<double,3,3> matrix; q.matrix(matrix); // make sure it is an orthogonal matrix if (std::abs(1-matrix.determinant()) > 1e-12 ) DUNE_THROW(Exception, "Expected determinant 1, but the computed value is " << matrix.determinant()); assert( std::abs( matrix[0]*matrix[1] ) < 1e-12 ); assert( std::abs( matrix[0]*matrix[2] ) < 1e-12 ); assert( std::abs( matrix[1]*matrix[2] ) < 1e-12 ); // Turn the matrix back into a quaternion, and check whether it is the same one // Since the quaternions form a double covering of SO(3), we may either get q back // or -q. We have to check both. Rotation<double,3> newQ; newQ.set(matrix); Quaternion<double> diff = newQ; diff -= q; Quaternion<double> sum = newQ; sum += q; if (diff.infinity_norm() > 1e-12 && sum.infinity_norm() > 1e-12) DUNE_THROW(Exception, "Backtransformation failed for " << q << ". "); // ////////////////////////////////////////////////////// // Check the director vectors // ////////////////////////////////////////////////////// for (int i=0; i<3; i++) for (int j=0; j<3; j++) assert( std::abs(matrix[i][j] - q.director(j)[i]) < 1e-12 ); // ////////////////////////////////////////////////////// // Check multiplication with another unit quaternion // ////////////////////////////////////////////////////// for (int i=-2; i<2; i++) for (int j=-2; j<2; j++) for (int k=-2; k<2; k++) for (int l=-2; l<2; l++) if (i!=0 || j!=0 || k!=0 || l!=0) { Rotation<double,3> q2(Quaternion<double>(i,j,k,l)); q2.normalize(); // set up corresponding rotation matrix FieldMatrix<double,3,3> q2Matrix; q2.matrix(q2Matrix); // q2 = q2 * q Quaternion multiplication q2 = q2.mult(q); // q2 = q2 * q Matrix multiplication q2Matrix.rightmultiply(matrix); FieldMatrix<double,3,3> productMatrix; q2.matrix(productMatrix); // Make sure we got identical results productMatrix -= q2Matrix; assert(productMatrix.infinity_norm() < 1e-10); } // //////////////////////////////////////////////////////////////// // Check the operators 'B' that create an orthonormal basis of H // //////////////////////////////////////////////////////////////// Quaternion<double> Bq[4]; Bq[0] = q; Bq[1] = q.B(0); Bq[2] = q.B(1); Bq[3] = q.B(2); for (int i=0; i<4; i++) { for (int j=0; j<4; j++) { double prod = Bq[i]*Bq[j]; assert( std::abs( prod - (i==j) ) < 1e-6 ); } } } int main (int argc, char *argv[]) try { std::vector<Rotation<double,3> > testPoints; ValueFactory<Rotation<double,3> >::get(testPoints); int nTestPoints = testPoints.size(); // Test each element in the list for (int i=0; i<nTestPoints; i++) testRotation(testPoints[i]); } catch (Exception e) { std::cout << e << std::endl; }