#ifndef DUNE_GFE_LOCALPROJECTEDFEFUNCTION_HH #define DUNE_GFE_LOCALPROJECTEDFEFUNCTION_HH #include <vector> #include <dune/common/fvector.hh> #include <dune/geometry/type.hh> #include <dune/gfe/rotation.hh> #include <dune/gfe/rigidbodymotion.hh> #include <dune/gfe/linearalgebra.hh> namespace Dune { namespace GFE { /** \brief Interpolate in an embedding Euclidean space, and project back onto the Riemannian manifold * * \tparam dim Dimension of the reference element * \tparam ctype Type used for coordinates on the reference element * \tparam LocalFiniteElement A Lagrangian finite element whose shape functions define the interpolation weights * \tparam TargetSpace The manifold that the function takes its values in */ template <int dim, class ctype, class LocalFiniteElement, class TS> class LocalProjectedFEFunction { public: using TargetSpace=TS; private: typedef typename TargetSpace::ctype RT; typedef typename TargetSpace::EmbeddedTangentVector EmbeddedTangentVector; static const int embeddedDim = EmbeddedTangentVector::dimension; static const int spaceDim = TargetSpace::TangentVector::dimension; public: /** \brief The type used for derivatives */ typedef Dune::FieldMatrix<RT, embeddedDim, dim> DerivativeType; /** \brief Constructor * \param localFiniteElement A Lagrangian finite element that provides the interpolation points * \param coefficients Values of the function at the Lagrange points */ LocalProjectedFEFunction(const LocalFiniteElement& localFiniteElement, const std::vector<TargetSpace>& coefficients) : localFiniteElement_(localFiniteElement), coefficients_(coefficients) { assert(localFiniteElement_.localBasis().size() == coefficients_.size()); } /** \brief Rebind the FEFunction to another TargetSpace */ template<class U> struct rebind { using other = LocalProjectedFEFunction<dim,ctype,LocalFiniteElement,U>; }; /** \brief The number of Lagrange points */ unsigned int size() const { return localFiniteElement_.localBasis().size(); } /** \brief The type of the reference element */ Dune::GeometryType type() const { return localFiniteElement_.type(); } /** \brief Evaluate the function */ TargetSpace evaluate(const Dune::FieldVector<ctype, dim>& local) const; /** \brief Evaluate the derivative of the function */ DerivativeType evaluateDerivative(const Dune::FieldVector<ctype, dim>& local) const; /** \brief Evaluate the derivative of the function, if you happen to know the function value (much faster!) * \param local Local coordinates in the reference element where to evaluate the derivative * \param q Value of the local gfe function at 'local'. If you provide something wrong here the result will be wrong, too! */ DerivativeType evaluateDerivative(const Dune::FieldVector<ctype, dim>& local, const TargetSpace& q) const; /** \brief Get the i'th base coefficient. */ TargetSpace coefficient(int i) const { return coefficients_[i]; } private: /** \brief The scalar local finite element, which provides the weighting factors * \todo We really only need the local basis */ const LocalFiniteElement& localFiniteElement_; /** \brief The coefficient vector */ std::vector<TargetSpace> coefficients_; }; template <int dim, class ctype, class LocalFiniteElement, class TargetSpace> TargetSpace LocalProjectedFEFunction<dim,ctype,LocalFiniteElement,TargetSpace>:: evaluate(const Dune::FieldVector<ctype, dim>& local) const { // Evaluate the weighting factors---these are the Lagrangian shape function values at 'local' std::vector<Dune::FieldVector<ctype,1> > w; localFiniteElement_.localBasis().evaluateFunction(local,w); typename TargetSpace::CoordinateType c(0); for (size_t i=0; i<coefficients_.size(); i++) c.axpy(w[i][0], coefficients_[i].globalCoordinates()); return TargetSpace::projectOnto(c); } template <int dim, class ctype, class LocalFiniteElement, class TargetSpace> typename LocalProjectedFEFunction<dim,ctype,LocalFiniteElement,TargetSpace>::DerivativeType LocalProjectedFEFunction<dim,ctype,LocalFiniteElement,TargetSpace>:: evaluateDerivative(const Dune::FieldVector<ctype, dim>& local) const { // the function value at the point where we are evaluating the derivative TargetSpace q = evaluate(local); // Actually compute the derivative return evaluateDerivative(local,q); } template <int dim, class ctype, class LocalFiniteElement, class TargetSpace> typename LocalProjectedFEFunction<dim,ctype,LocalFiniteElement,TargetSpace>::DerivativeType LocalProjectedFEFunction<dim,ctype,LocalFiniteElement,TargetSpace>:: evaluateDerivative(const Dune::FieldVector<ctype, dim>& local, const TargetSpace& q) const { // Evaluate the weighting factors---these are the Lagrangian shape function values at 'local' std::vector<Dune::FieldVector<ctype,1> > w; localFiniteElement_.localBasis().evaluateFunction(local,w); std::vector<Dune::FieldMatrix<ctype,1,dim> > wDer; localFiniteElement_.localBasis().evaluateJacobian(local,wDer); typename TargetSpace::CoordinateType embeddedInterpolation(0); for (size_t i=0; i<coefficients_.size(); i++) embeddedInterpolation.axpy(w[i][0], coefficients_[i].globalCoordinates()); Dune::FieldMatrix<RT,embeddedDim,dim> derivative(0); for (size_t i=0; i<embeddedDim; i++) for (size_t j=0; j<dim; j++) for (size_t k=0; k<coefficients_.size(); k++) derivative[i][j] += wDer[k][0][j] * coefficients_[k].globalCoordinates()[i]; auto derivativeOfProjection = TargetSpace::derivativeOfProjection(embeddedInterpolation); return derivativeOfProjection*derivative; } /** \brief Interpolate in an embedding Euclidean space, and project back onto the Riemannian manifold -- specialization for SO(3) * * \tparam dim Dimension of the reference element * \tparam ctype Type used for coordinates on the reference element * \tparam LocalFiniteElement A Lagrangian finite element whose shape functions define the interpolation weights */ template <int dim, class ctype, class LocalFiniteElement, class field_type> class LocalProjectedFEFunction<dim,ctype,LocalFiniteElement,Rotation<field_type,3> > { public: typedef Rotation<field_type,3> TargetSpace; private: typedef typename TargetSpace::ctype RT; typedef typename TargetSpace::EmbeddedTangentVector EmbeddedTangentVector; static const int embeddedDim = EmbeddedTangentVector::dimension; static const int spaceDim = TargetSpace::TangentVector::dimension; static FieldMatrix<field_type,3,3> polarFactor(const FieldMatrix<field_type,3,3>& matrix) { // Use Higham's method auto polar = matrix; for (size_t i=0; i<3; i++) { auto polarInvert = polar; polarInvert.invert(); for (size_t j=0; j<polar.N(); j++) for (size_t k=0; k<polar.M(); k++) polar[j][k] = 0.5 * (polar[j][k] + polarInvert[k][j]); } return polar; } /** * \param A The argument of the projection * \param polar The image of the projection, i.e., the polar factor of A */ static std::array<std::array<FieldMatrix<field_type,3,3>, 3>, 3> derivativeOfProjection(const FieldMatrix<field_type,3,3>& A, FieldMatrix<field_type,3,3>& polar) { std::array<std::array<FieldMatrix<field_type,3,3>, 3>, 3> result; for (int i=0; i<3; i++) for (int j=0; j<3; j++) for (int k=0; k<3; k++) for (int l=0; l<3; l++) result[i][j][k][l] = (i==k) and (j==l); polar = A; // Use Heron's method const size_t maxIterations = 3; for (size_t iteration=0; iteration<maxIterations; iteration++) { auto polarInvert = polar; polarInvert.invert(); for (size_t i=0; i<polar.N(); i++) for (size_t j=0; j<polar.M(); j++) polar[i][j] = 0.5 * (polar[i][j] + polarInvert[j][i]); // Alternative name to align the code better with a description in a math text const auto& dQT = result; // Multiply from the right with Q^{-T} decltype(result) tmp2; for (int i=0; i<3; i++) for (int j=0; j<3; j++) for (int k=0; k<3; k++) for (int l=0; l<3; l++) tmp2[i][j][k][l] = 0.0; for (int i=0; i<3; i++) for (int j=0; j<3; j++) for (int k=0; k<3; k++) for (int l=0; l<3; l++) for (int m=0; m<3; m++) for (int o=0; o<3; o++) tmp2[i][j][k][l] += polarInvert[m][i] * dQT[o][m][k][l] * polarInvert[j][o]; for (int i=0; i<3; i++) for (int j=0; j<3; j++) for (int k=0; k<3; k++) for (int l=0; l<3; l++) result[i][j][k][l] = 0.5 * (result[i][j][k][l] - tmp2[i][j][k][l]); } return result; } public: /** \brief The type used for derivatives */ typedef Dune::FieldMatrix<RT, embeddedDim, dim> DerivativeType; /** \brief Constructor * \param localFiniteElement A Lagrangian finite element that provides the interpolation points * \param coefficients Values of the function at the Lagrange points */ LocalProjectedFEFunction(const LocalFiniteElement& localFiniteElement, const std::vector<TargetSpace>& coefficients) : localFiniteElement_(localFiniteElement), coefficients_(coefficients) { assert(localFiniteElement_.localBasis().size() == coefficients_.size()); } /** \brief The number of Lagrange points */ unsigned int size() const { return localFiniteElement_.size(); } /** \brief The type of the reference element */ Dune::GeometryType type() const { return localFiniteElement_.type(); } /** \brief Evaluate the function */ TargetSpace evaluate(const Dune::FieldVector<ctype, dim>& local) const { Rotation<field_type,3> result; // Evaluate the weighting factors---these are the Lagrangian shape function values at 'local' std::vector<Dune::FieldVector<ctype,1> > w; localFiniteElement_.localBasis().evaluateFunction(local,w); // Interpolate in R^{3x3} FieldMatrix<field_type,3,3> interpolatedMatrix(0); for (size_t i=0; i<coefficients_.size(); i++) { FieldMatrix<field_type,3,3> coefficientAsMatrix; coefficients_[i].matrix(coefficientAsMatrix); interpolatedMatrix.axpy(w[i][0], coefficientAsMatrix); } // Project back onto SO(3) result.set(polarFactor(interpolatedMatrix)); return result; } /** \brief Evaluate the derivative of the function */ DerivativeType evaluateDerivative(const Dune::FieldVector<ctype, dim>& local) const { // the function value at the point where we are evaluating the derivative TargetSpace q = evaluate(local); // Actually compute the derivative return evaluateDerivative(local,q); } /** \brief Evaluate the derivative of the function, if you happen to know the function value (much faster!) * \param local Local coordinates in the reference element where to evaluate the derivative * \param q Value of the local function at 'local'. If you provide something wrong here the result will be wrong, too! */ DerivativeType evaluateDerivative(const Dune::FieldVector<ctype, dim>& local, const TargetSpace& q) const { // Evaluate the weighting factors---these are the Lagrangian shape function values at 'local' std::vector<Dune::FieldVector<ctype,1> > w; localFiniteElement_.localBasis().evaluateFunction(local,w); std::vector<Dune::FieldMatrix<ctype,1,dim> > wDer; localFiniteElement_.localBasis().evaluateJacobian(local,wDer); // Compute matrix representations for all coefficients (we only have them in quaternion representation) std::vector<Dune::FieldMatrix<field_type,3,3> > coefficientsAsMatrix(coefficients_.size()); for (size_t i=0; i<coefficients_.size(); i++) coefficients_[i].matrix(coefficientsAsMatrix[i]); // Interpolate in R^{3x3} FieldMatrix<field_type,3,3> interpolatedMatrix(0); for (size_t i=0; i<coefficients_.size(); i++) interpolatedMatrix.axpy(w[i][0], coefficientsAsMatrix[i]); Tensor3<RT,dim,3,3> derivative(0); for (size_t dir=0; dir<dim; dir++) for (size_t i=0; i<3; i++) for (size_t j=0; j<3; j++) for (size_t k=0; k<coefficients_.size(); k++) derivative[dir][i][j] += wDer[k][0][dir] * coefficientsAsMatrix[k][i][j]; FieldMatrix<field_type,3,3> polarFactor; auto derivativeOfProjection = this->derivativeOfProjection(interpolatedMatrix,polarFactor); Tensor3<field_type,dim,3,3> intermediateResult(0); for (size_t dir=0; dir<dim; dir++) for (size_t i=0; i<3; i++) for (size_t j=0; j<3; j++) for (size_t k=0; k<3; k++) for (size_t l=0; l<3; l++) intermediateResult[dir][i][j] += derivativeOfProjection[i][j][k][l]*derivative[dir][k][l]; // One more application of the chain rule: we need to go from orthogonal matrices to quaternions Tensor3<field_type,4,3,3> derivativeOfMatrixToQuaternion = Rotation<field_type,3>::derivativeOfMatrixToQuaternion(polarFactor); DerivativeType result(0); for (size_t dir0=0; dir0<4; dir0++) for (size_t dir1=0; dir1<dim; dir1++) for (size_t i=0; i<3; i++) for (size_t j=0; j<3; j++) result[dir0][dir1] += derivativeOfMatrixToQuaternion[dir0][i][j] * intermediateResult[dir1][i][j]; return result; } /** \brief Get the i'th base coefficient. */ TargetSpace coefficient(int i) const { return coefficients_[i]; } private: /** \brief The scalar local finite element, which provides the weighting factors * \todo We really only need the local basis */ const LocalFiniteElement& localFiniteElement_; /** \brief The coefficient vector */ std::vector<TargetSpace> coefficients_; }; /** \brief Interpolate in an embedding Euclidean space, and project back onto the Riemannian manifold -- specialization for R^3 x SO(3) * * \tparam dim Dimension of the reference element * \tparam ctype Type used for coordinates on the reference element * \tparam LocalFiniteElement A Lagrangian finite element whose shape functions define the interpolation weights */ template <int dim, class ctype, class LocalFiniteElement, class field_type> class LocalProjectedFEFunction<dim,ctype,LocalFiniteElement,RigidBodyMotion<field_type,3> > { public: typedef RigidBodyMotion<field_type,3> TargetSpace; private: typedef typename TargetSpace::ctype RT; typedef typename TargetSpace::EmbeddedTangentVector EmbeddedTangentVector; static const int embeddedDim = EmbeddedTangentVector::dimension; static const int spaceDim = TargetSpace::TangentVector::dimension; public: /** \brief The type used for derivatives */ typedef Dune::FieldMatrix<RT, embeddedDim, dim> DerivativeType; /** \brief Constructor * \param localFiniteElement A Lagrangian finite element that provides the interpolation points * \param coefficients Values of the function at the Lagrange points */ LocalProjectedFEFunction(const LocalFiniteElement& localFiniteElement, const std::vector<TargetSpace>& coefficients) : localFiniteElement_(localFiniteElement), translationCoefficients_(coefficients.size()) { assert(localFiniteElement.localBasis().size() == coefficients.size()); for (size_t i=0; i<coefficients.size(); i++) translationCoefficients_[i] = coefficients[i].r; std::vector<Rotation<field_type,3> > orientationCoefficients(coefficients.size()); for (size_t i=0; i<coefficients.size(); i++) orientationCoefficients[i] = coefficients[i].q; orientationFunction_ = std::make_unique<LocalProjectedFEFunction<dim,ctype,LocalFiniteElement,Rotation<field_type,3> > > (localFiniteElement,orientationCoefficients); } /** \brief Rebind the FEFunction to another TargetSpace */ template<class U> struct rebind { using other = LocalProjectedFEFunction<dim,ctype,LocalFiniteElement,U>; }; /** \brief The number of Lagrange points */ unsigned int size() const { return localFiniteElement_.size(); } /** \brief The type of the reference element */ Dune::GeometryType type() const { return localFiniteElement_.type(); } /** \brief Evaluate the function */ TargetSpace evaluate(const Dune::FieldVector<ctype, dim>& local) const { RigidBodyMotion<field_type,3> result; // Evaluate the weighting factors---these are the Lagrangian shape function values at 'local' std::vector<Dune::FieldVector<ctype,1> > w; localFiniteElement_.localBasis().evaluateFunction(local,w); result.r = 0; for (size_t i=0; i<w.size(); i++) result.r.axpy(w[i][0], translationCoefficients_[i]); result.q = orientationFunction_->evaluate(local); return result; } /** \brief Evaluate the derivative of the function */ DerivativeType evaluateDerivative(const Dune::FieldVector<ctype, dim>& local) const { // the function value at the point where we are evaluating the derivative TargetSpace q = evaluate(local); // Actually compute the derivative return evaluateDerivative(local,q); } /** \brief Evaluate the derivative of the function, if you happen to know the function value (much faster!) * \param local Local coordinates in the reference element where to evaluate the derivative * \param q Value of the local function at 'local'. If you provide something wrong here the result will be wrong, too! */ DerivativeType evaluateDerivative(const Dune::FieldVector<ctype, dim>& local, const TargetSpace& q) const { DerivativeType result(0); // get translation part std::vector<Dune::FieldMatrix<ctype,1,dim> > sfDer(translationCoefficients_.size()); localFiniteElement_.localBasis().evaluateJacobian(local, sfDer); for (size_t i=0; i<translationCoefficients_.size(); i++) for (int j=0; j<3; j++) result[j].axpy(translationCoefficients_[i][j], sfDer[i][0]); // get orientation part Dune::FieldMatrix<field_type,4,dim> qResult = orientationFunction_->evaluateDerivative(local,q.q); for (int i=0; i<4; i++) for (int j=0; j<dim; j++) result[3+i][j] = qResult[i][j]; return result; } /** \brief Get the i'th base coefficient. */ TargetSpace coefficient(int i) const { return TargetSpace(translationCoefficients_[i],orientationFunction_->coefficient(i)); } private: /** \brief The scalar local finite element, which provides the weighting factors * \todo We really only need the local basis */ const LocalFiniteElement& localFiniteElement_; std::vector<Dune::FieldVector<field_type,3> > translationCoefficients_; std::unique_ptr<LocalProjectedFEFunction<dim,ctype,LocalFiniteElement,Rotation<field_type, 3> > > orientationFunction_; }; } } #endif