#include <config.h> #include <fenv.h> #include <iostream> #include <iomanip> #include <dune/common/fvector.hh> #include <dune/geometry/quadraturerules.hh> #include <dune/geometry/type.hh> #include <dune/geometry/referenceelements.hh> #include <dune/localfunctions/lagrange/lagrangelfecache.hh> #include <dune/gfe/spaces/productmanifold.hh> #include <dune/gfe/spaces/realtuple.hh> #include <dune/gfe/spaces/rotation.hh> #include <dune/gfe/spaces/unitvector.hh> #include <dune/gfe/localprojectedfefunction.hh> #include "multiindex.hh" #include "valuefactory.hh" const double eps = 1e-6; using namespace Dune; /** \brief Computes the diameter of a set */ template <class TargetSpace> double diameter(const std::vector<TargetSpace>& v) { double d = 0; for (size_t i=0; i<v.size(); i++) for (size_t j=0; j<v.size(); j++) d = std::max(d, TargetSpace::distance(v[i],v[j])); return d; } template <int dim, class ctype, class LocalFunction> auto evaluateDerivativeFD(const LocalFunction& f, const Dune::FieldVector<ctype, dim>& local) -> decltype(f.evaluateDerivative(local)) { double eps = 1e-8; static const int embeddedDim = LocalFunction::TargetSpace::embeddedDim; Dune::FieldMatrix<ctype, embeddedDim, dim> result; for (int i=0; i<dim; i++) { Dune::FieldVector<ctype, dim> forward = local; Dune::FieldVector<ctype, dim> backward = local; forward[i] += eps; backward[i] -= eps; auto fdDer = f.evaluate(forward).globalCoordinates() - f.evaluate(backward).globalCoordinates(); fdDer /= 2*eps; for (int j=0; j<embeddedDim; j++) result[j][i] = fdDer[j]; } return result; } template <int domainDim, int dim> void testDerivativeTangentiality(const RealTuple<double,dim>& x, const FieldMatrix<double,dim,domainDim>& derivative) { // By construction, derivatives of RealTuples are always tangent } // the columns of the derivative must be tangential to the manifold template <int domainDim, int vectorDim> void testDerivativeTangentiality(const UnitVector<double,vectorDim>& x, const FieldMatrix<double,vectorDim,domainDim>& derivative) { for (int i=0; i<domainDim; i++) { // The i-th column is a tangent vector if its scalar product with the global coordinates // of x vanishes. double sp = 0; for (int j=0; j<vectorDim; j++) sp += x.globalCoordinates()[j] * derivative[j][i]; if (std::fabs(sp) > 1e-8) DUNE_THROW(Dune::Exception, "Derivative is not tangential: Column: " << i << ", product: " << sp); } } // the columns of the derivative must be tangential to the manifold template <int domainDim, int vectorDim> void testDerivativeTangentiality(const Rotation<double,vectorDim-1>& x, const FieldMatrix<double,vectorDim,domainDim>& derivative) {} // the columns of the derivative must be tangential to the manifold template <int domainDim, int vectorDim,typename ... TargetSpaces> void testDerivativeTangentiality(const Dune::GFE::ProductManifold<TargetSpaces...>& x, const FieldMatrix<double,vectorDim,domainDim>& derivative) { size_t posHelper=0; using namespace Dune::Hybrid; forEach(integralRange(Dune::Hybrid::size(x)), [&](auto&& i) { using Manifold = std::remove_reference_t<decltype(x[i])>; testDerivativeTangentiality(x[i],Dune::GFE::blockAt<Manifold::embeddedDim,domainDim>( derivative,posHelper,0)); posHelper +=Manifold::embeddedDim; }); } /** \brief Test whether interpolation is invariant under permutation of the simplex vertices * \todo Implement this for all dimensions */ template <int domainDim, class TargetSpace> void testPermutationInvariance(const std::vector<TargetSpace>& corners) { // works only for 2d domains if (domainDim!=2) return; LagrangeLocalFiniteElementCache<double,double,domainDim,1> feCache; typedef typename LagrangeLocalFiniteElementCache<double,double,domainDim,1>::FiniteElementType LocalFiniteElement; GeometryType simplex = GeometryTypes::simplex(domainDim); // std::vector<TargetSpace> cornersRotated1(domainDim+1); std::vector<TargetSpace> cornersRotated2(domainDim+1); cornersRotated1[0] = cornersRotated2[2] = corners[1]; cornersRotated1[1] = cornersRotated2[0] = corners[2]; cornersRotated1[2] = cornersRotated2[1] = corners[0]; GFE::LocalProjectedFEFunction<2,double,LocalFiniteElement,TargetSpace> f0(feCache.get(simplex), corners); GFE::LocalProjectedFEFunction<2,double,LocalFiniteElement,TargetSpace> f1(feCache.get(simplex), cornersRotated1); GFE::LocalProjectedFEFunction<2,double,LocalFiniteElement,TargetSpace> f2(feCache.get(simplex), cornersRotated2); // A quadrature rule as a set of test points int quadOrder = 3; const Dune::QuadratureRule<double, domainDim>& quad = Dune::QuadratureRules<double, domainDim>::rule(simplex, quadOrder); for (size_t pt=0; pt<quad.size(); pt++) { const Dune::FieldVector<double,domainDim>& quadPos = quad[pt].position(); Dune::FieldVector<double,domainDim> l0 = quadPos; Dune::FieldVector<double,domainDim> l1, l2; l1[0] = quadPos[1]; l1[1] = 1-quadPos[0]-quadPos[1]; l2[0] = 1-quadPos[0]-quadPos[1]; l2[1] = quadPos[0]; // evaluate the three functions TargetSpace v0 = f0.evaluate(l0); TargetSpace v1 = f1.evaluate(l1); TargetSpace v2 = f2.evaluate(l2); // Check that they are all equal assert(TargetSpace::distance(v0,v1) < eps); assert(TargetSpace::distance(v0,v2) < eps); } } template <int domainDim, class TargetSpace, bool conforming=true> void testDerivative(const GFE::LocalProjectedFEFunction<domainDim,double,typename LagrangeLocalFiniteElementCache<double,double,domainDim,1>::FiniteElementType, TargetSpace, conforming>& f) { static const int embeddedDim = TargetSpace::EmbeddedTangentVector::dimension; // A quadrature rule as a set of test points int quadOrder = 3; const auto& quad = Dune::QuadratureRules<double, domainDim>::rule(f.type(), quadOrder); for (size_t pt=0; pt<quad.size(); pt++) { const Dune::FieldVector<double,domainDim>& quadPos = quad[pt].position(); // evaluate actual derivative Dune::FieldMatrix<double, embeddedDim, domainDim> derivative = f.evaluateDerivative(quadPos); // evaluate fd approximation of derivative Dune::FieldMatrix<double, embeddedDim, domainDim> fdDerivative = evaluateDerivativeFD(f,quadPos); Dune::FieldMatrix<double, embeddedDim, domainDim> diff = derivative; diff -= fdDerivative; if ( diff.infinity_norm() > 100*eps ) { std::cout << className<TargetSpace>() << ": Analytical gradient does not match fd approximation." << std::endl; std::cout << "Analytical: " << derivative << std::endl; std::cout << "FD : " << fdDerivative << std::endl; assert(false); } if(conforming) testDerivativeTangentiality(f.evaluate(quadPos), derivative); } } template <class TargetSpace, int domainDim> void test(const GeometryType& element) { std::cout << " --- Testing " << className<TargetSpace>() << ", domain dimension: " << element.dim() << " ---" << std::endl; std::vector<TargetSpace> testPoints; ValueFactory<TargetSpace>::get(testPoints); int nTestPoints = testPoints.size(); size_t nVertices = Dune::ReferenceElements<double,domainDim>::general(element).size(domainDim); // Set up elements of the target space std::vector<TargetSpace> corners(nVertices); MultiIndex index(nVertices, nTestPoints); int numIndices = index.cycle(); for (int i=0; i<numIndices; i++, ++index) { for (size_t j=0; j<nVertices; j++) corners[j] = testPoints[index[j]]; if (diameter(corners) > 0.5*M_PI) continue; // Make local gfe function to be tested LagrangeLocalFiniteElementCache<double,double,domainDim,1> feCache; typedef typename LagrangeLocalFiniteElementCache<double,double,domainDim,1>::FiniteElementType LocalFiniteElement; GFE::LocalProjectedFEFunction<domainDim,double,LocalFiniteElement,TargetSpace> f(feCache.get(element),corners); GFE::LocalProjectedFEFunction<domainDim, double, LocalFiniteElement, TargetSpace,false> f_nonconforming(feCache.get(element), corners); //testPermutationInvariance(corners); testDerivative<domainDim>(f); testDerivative<domainDim>(f_nonconforming); } } int main() { // choke on NaN -- don't enable this by default, as there are // a few harmless NaN in the loopsolver //feenableexcept(FE_INVALID); std::cout << std::setw(15) << std::setprecision(12); //////////////////////////////////////////////////////////////// // Test functions on 1d elements //////////////////////////////////////////////////////////////// test<RealTuple<double,1>,1>(GeometryTypes::line); test<UnitVector<double,2>,1>(GeometryTypes::line); test<UnitVector<double,3>,1>(GeometryTypes::line); test<Rotation<double,3>,1>(GeometryTypes::line); typedef Dune::GFE::ProductManifold<RealTuple<double,1>,Rotation<double,3>,UnitVector<double,2> > CrazyManifold; test<CrazyManifold, 1>(GeometryTypes::line); //////////////////////////////////////////////////////////////// // Test functions on 2d simplex elements //////////////////////////////////////////////////////////////// test<RealTuple<double,1>,2>(GeometryTypes::triangle); test<UnitVector<double,2>,2>(GeometryTypes::triangle); test<RealTuple<double,3>,2>(GeometryTypes::triangle); test<UnitVector<double,3>,2>(GeometryTypes::triangle); test<Rotation<double,3>,2>(GeometryTypes::triangle); typedef Dune::GFE::ProductManifold<RealTuple<double,1>,Rotation<double,3>,UnitVector<double,2> > CrazyManifold; test<CrazyManifold, 2>(GeometryTypes::triangle); //////////////////////////////////////////////////////////////// // Test functions on 2d quadrilateral elements //////////////////////////////////////////////////////////////// test<RealTuple<double,1>,2>(GeometryTypes::quadrilateral); test<UnitVector<double,2>,2>(GeometryTypes::quadrilateral); test<UnitVector<double,3>,2>(GeometryTypes::quadrilateral); test<Rotation<double,3>,2>(GeometryTypes::quadrilateral); typedef Dune::GFE::ProductManifold<RealTuple<double,1>,Rotation<double,3>,UnitVector<double,2> > CrazyManifold; test<CrazyManifold, 2>(GeometryTypes::quadrilateral); }