#include <config.h> #include <fenv.h> #include <iostream> #include <dune/common/fvector.hh> #include <dune/grid/common/quadraturerules.hh> #include <dune/gfe/rotation.hh> #include <dune/gfe/realtuple.hh> #include <dune/gfe/unitvector.hh> #include <dune/gfe/localgeodesicfefunction.hh> const double eps = 1e-6; using namespace Dune; /** \brief N-dimensional multi-index */ template <int N> class MultiIndex : public array<unsigned int,N> { // The range of each component unsigned int limit_; public: /** \brief Constructor with a given range for each digit */ MultiIndex(unsigned int limit) : limit_(limit) { std::fill(this->begin(), this->end(), 0); } /** \brief Increment the MultiIndex */ MultiIndex& operator++() { for (int i=0; i<N; i++) { // Augment digit (*this)[i]++; // If there is no carry-over we can stop here if ((*this)[i]<limit_) break; (*this)[i] = 0; } return *this; } /** \brief Compute how many times you can call operator++ before getting to (0,...,0) again */ size_t cycle() const { size_t result = 1; for (int i=0; i<N; i++) result *= limit_; return result; } }; template <int domainDim> void testDerivativeTangentiality(const RealTuple<1>& x, const FieldMatrix<double,1,domainDim>& derivative) { // By construction, derivatives of RealTuples are always tangent } // the columns of the derivative must be tangential to the manifold template <int domainDim, int vectorDim> void testDerivativeTangentiality(const UnitVector<vectorDim>& x, const FieldMatrix<double,vectorDim,domainDim>& derivative) { for (int i=0; i<domainDim; i++) { // The i-th column is a tangent vector if its scalar product with the global coordinates // of x vanishes. double sp = 0; for (int j=0; j<vectorDim; j++) sp += x.globalCoordinates()[j] * derivative[j][i]; if (std::fabs(sp) > 1e-8) DUNE_THROW(Dune::Exception, "Derivative is not tangential: Column: " << i << ", product: " << sp); } } /** \brief Test whether interpolation is invariant under permutation of the simplex vertices */ template <int domainDim, class TargetSpace> void testPermutationInvariance(const std::vector<TargetSpace>& corners) { // works only for 2d domains assert(domainDim==2); std::vector<TargetSpace> cornersRotated1(domainDim+1); std::vector<TargetSpace> cornersRotated2(domainDim+1); cornersRotated1[0] = cornersRotated2[2] = corners[1]; cornersRotated1[1] = cornersRotated2[0] = corners[2]; cornersRotated1[2] = cornersRotated2[1] = corners[0]; LocalGeodesicFEFunction<2,double,TargetSpace> f0(corners); LocalGeodesicFEFunction<2,double,TargetSpace> f1(cornersRotated1); LocalGeodesicFEFunction<2,double,TargetSpace> f2(cornersRotated2); // A quadrature rule as a set of test points int quadOrder = 3; const Dune::QuadratureRule<double, domainDim>& quad = Dune::QuadratureRules<double, domainDim>::rule(GeometryType(GeometryType::simplex,domainDim), quadOrder); for (size_t pt=0; pt<quad.size(); pt++) { const Dune::FieldVector<double,domainDim>& quadPos = quad[pt].position(); Dune::FieldVector<double,domainDim> l0 = quadPos; Dune::FieldVector<double,domainDim> l1, l2; l1[0] = quadPos[1]; l1[1] = 1-quadPos[0]-quadPos[1]; l2[0] = 1-quadPos[0]-quadPos[1]; l2[1] = quadPos[0]; // evaluate the three functions TargetSpace v0 = f0.evaluate(l0); TargetSpace v1 = f1.evaluate(l1); TargetSpace v2 = f2.evaluate(l2); // Check that they are all equal assert(TargetSpace::distance(v0,v1) < eps); assert(TargetSpace::distance(v0,v2) < eps); } } template <int domainDim, class TargetSpace> void testDerivative(const std::vector<TargetSpace>& corners) { // Make local fe function to be tested LocalGeodesicFEFunction<domainDim,double,TargetSpace> f(corners); // A quadrature rule as a set of test points int quadOrder = 3; const Dune::QuadratureRule<double, domainDim>& quad = Dune::QuadratureRules<double, domainDim>::rule(GeometryType(GeometryType::simplex,domainDim), quadOrder); for (size_t pt=0; pt<quad.size(); pt++) { const Dune::FieldVector<double,domainDim>& quadPos = quad[pt].position(); // evaluate actual derivative Dune::FieldMatrix<double, TargetSpace::EmbeddedTangentVector::size, domainDim> derivative = f.evaluateDerivative(quadPos); // evaluate fd approximation of derivative Dune::FieldMatrix<double, TargetSpace::EmbeddedTangentVector::size, domainDim> fdDerivative = f.evaluateDerivativeFD(quadPos); Dune::FieldMatrix<double, TargetSpace::EmbeddedTangentVector::size, domainDim> diff = derivative; diff -= fdDerivative; if ( diff.infinity_norm() > 100*eps ) { std::cout << className(corners[0]) << ": Analytical gradient does not match fd approximation." << std::endl; std::cout << "Analytical: " << derivative << std::endl; std::cout << "FD : " << fdDerivative << std::endl; } testDerivativeTangentiality(f.evaluate(quadPos), derivative); } } template <int domainDim, class TargetSpace> void testDerivativeOfGradientWRTCoefficients(const std::vector<TargetSpace>& corners) { // Make local fe function to be tested LocalGeodesicFEFunction<domainDim,double,TargetSpace> f(corners); // A quadrature rule as a set of test points int quadOrder = 3; const Dune::QuadratureRule<double, domainDim>& quad = Dune::QuadratureRules<double, domainDim>::rule(GeometryType(GeometryType::simplex,domainDim), quadOrder); for (size_t pt=0; pt<quad.size(); pt++) { const Dune::FieldVector<double,domainDim>& quadPos = quad[pt].position(); // loop over the coefficients for (size_t i=0; i<corners.size(); i++) { // evaluate actual derivative Tensor3<double, TargetSpace::EmbeddedTangentVector::size, TargetSpace::EmbeddedTangentVector::size, domainDim> derivative; f.evaluateDerivativeOfGradientWRTCoefficient(quadPos, i, derivative); // evaluate fd approximation of derivative Tensor3<double, TargetSpace::EmbeddedTangentVector::size, TargetSpace::EmbeddedTangentVector::size, domainDim> fdDerivative; for (int j=0; j<TargetSpace::EmbeddedTangentVector::size; j++) { std::vector<TargetSpace> cornersPlus = corners; std::vector<TargetSpace> cornersMinus = corners; typename TargetSpace::CoordinateType aPlus = corners[i].globalCoordinates(); typename TargetSpace::CoordinateType aMinus = corners[i].globalCoordinates(); aPlus[j] += eps; aMinus[j] -= eps; cornersPlus[i] = TargetSpace(aPlus); cornersMinus[i] = TargetSpace(aMinus); LocalGeodesicFEFunction<domainDim,double,TargetSpace> fPlus(cornersPlus); LocalGeodesicFEFunction<domainDim,double,TargetSpace> fMinus(cornersMinus); FieldMatrix<double,TargetSpace::EmbeddedTangentVector::size,domainDim> hPlus = fPlus.evaluateDerivative(quadPos); FieldMatrix<double,TargetSpace::EmbeddedTangentVector::size,domainDim> hMinus = fMinus.evaluateDerivative(quadPos); fdDerivative[j] = hPlus; fdDerivative[j] -= hMinus; fdDerivative[j] /= 2*eps; } if ( (derivative - fdDerivative).infinity_norm() > eps ) { std::cout << className(corners[0]) << ": Analytical derivative of gradient does not match fd approximation." << std::endl; std::cout << "gfe: "; for (int j=0; j<domainDim+1; j++) std::cout << ", " << corners[j]; std::cout << std::endl; std::cout << "Analytical:\n " << derivative << std::endl; std::cout << "FD :\n " << fdDerivative << std::endl; } //testDerivativeTangentiality(f.evaluate(quadPos), derivative); } } } template <int domainDim> void testRealTuples() { std::cout << " --- Testing RealTuple<1>, domain dimension: " << domainDim << " ---" << std::endl; typedef RealTuple<1> TargetSpace; std::vector<TargetSpace> corners = {TargetSpace(1), TargetSpace(2), TargetSpace(3)}; testPermutationInvariance<domainDim>(corners); testDerivative<domainDim>(corners); } template <int domainDim> void testUnitVector2d() { std::cout << " --- Testing UnitVector<2>, domain dimension: " << domainDim << " ---" << std::endl; typedef UnitVector<2> TargetSpace; int nTestPoints = 10; double testPoints[10][2] = {{1,0}, {0.5,0.5}, {0,1}, {-0.5,0.5}, {-1,0}, {-0.5,-0.5}, {0,-1}, {0.5,-0.5}, {0.1,1}, {1,.1}}; // Set up elements of S^1 std::vector<TargetSpace> corners(domainDim+1); MultiIndex<domainDim+1> index(nTestPoints); int numIndices = index.cycle(); for (int i=0; i<numIndices; i++, ++index) { for (int j=0; j<domainDim+1; j++) { Dune::array<double,2> w = {testPoints[index[j]][0], testPoints[index[j]][1]}; corners[j] = UnitVector<2>(w); } bool spreadOut = false; for (int j=0; j<domainDim+1; j++) for (int k=0; k<domainDim+1; k++) if (UnitVector<2>::distance(corners[j],corners[k]) > M_PI*0.98) spreadOut = true; if (spreadOut) continue; //testPermutationInvariance(corners); testDerivative<domainDim>(corners); testDerivativeOfGradientWRTCoefficients<domainDim>(corners); } } template <int domainDim> void testUnitVector3d() { std::cout << " --- Testing UnitVector<3>, domain dimension: " << domainDim << " ---" << std::endl; typedef UnitVector<3> TargetSpace; int nTestPoints = 10; double testPoints[10][3] = {{1,0,0}, {0,1,0}, {-0.838114,0.356751,-0.412667}, {-0.490946,-0.306456,0.81551},{-0.944506,0.123687,-0.304319}, {-0.6,0.1,-0.2},{0.45,0.12,0.517}, {-0.1,0.3,-0.1},{-0.444506,0.123687,0.104319},{-0.7,-0.123687,-0.304319}}; // Set up elements of S^1 std::vector<TargetSpace> corners(domainDim+1); MultiIndex<domainDim+1> index(nTestPoints); int numIndices = index.cycle(); for (int i=0; i<numIndices; i++, ++index) { for (int j=0; j<domainDim+1; j++) { Dune::array<double,3> w = {testPoints[index[j]][0], testPoints[index[j]][1], testPoints[index[j]][2]}; corners[j] = UnitVector<3>(w); } //testPermutationInvariance(corners); testDerivative<domainDim>(corners); testDerivativeOfGradientWRTCoefficients<domainDim>(corners); } } template <int domainDim> void testRotations() { std::cout << " --- Testing Rotation<3>, domain dimension: " << domainDim << " ---" << std::endl; typedef Rotation<3,double> TargetSpace; FieldVector<double,3> xAxis(0); xAxis[0] = 1; FieldVector<double,3> yAxis(0); yAxis[1] = 1; FieldVector<double,3> zAxis(0); zAxis[2] = 1; std::vector<TargetSpace> corners(domainDim+1); corners[0] = Rotation<3,double>(xAxis,0.1); corners[1] = Rotation<3,double>(yAxis,0.1); corners[2] = Rotation<3,double>(zAxis,0.1); testPermutationInvariance<domainDim>(corners); //testDerivative(corners); } int main() { // choke on NaN feenableexcept(FE_INVALID); //testRealTuples<1>(); testUnitVector2d<1>(); testUnitVector3d<1>(); testUnitVector2d<2>(); testUnitVector3d<2>(); //testRotations(); }