#ifndef QUATERNION_HH #define QUATERNION_HH #include <dune/common/fvector.hh> #include <dune/common/fixedarray.hh> #include <dune/common/fmatrix.hh> #include <dune/common/exceptions.hh> template <class T> class Quaternion : public Dune::FieldVector<T,4> { /** \brief Computes sin(x/2) / x without getting unstable for small x */ static T sincHalf(const T& x) { return (x < 1e-4) ? 0.5 + (x*x/48) : std::sin(x/2)/x; } public: /** \brief Default constructor */ Quaternion() {} /** \brief Constructor with the four components */ Quaternion(const T& a, const T& b, const T& c, const T& d) { (*this)[0] = a; (*this)[1] = b; (*this)[2] = c; (*this)[3] = d; } /** \brief Copy constructor */ Quaternion(const Dune::FieldVector<T,4>& other) : Dune::FieldVector<T,4>(other) {} /** \brief Constructor with rotation axis and angle */ Quaternion(Dune::FieldVector<T,3> axis, T angle) { axis /= axis.two_norm(); axis *= std::sin(angle/2); (*this)[0] = axis[0]; (*this)[1] = axis[1]; (*this)[2] = axis[2]; (*this)[3] = std::cos(angle/2); } /** \brief Return the identity element */ static Quaternion<T> identity() { Quaternion<T> id; id[0] = 0; id[1] = 0; id[2] = 0; id[3] = 1; return id; } /** \brief The exponential map from \f$ \mathfrak{so}(3) \f$ to \f$ SO(3) \f$ */ static Quaternion<T> exp(const Dune::FieldVector<T,3>& v) { return exp(v[0], v[1], v[2]); } /** \brief The exponential map from \f$ \mathfrak{so}(3) \f$ to \f$ SO(3) \f$ */ static Quaternion<T> exp(const T& v0, const T& v1, const T& v2) { Quaternion<T> q; T normV = std::sqrt(v0*v0 + v1*v1 + v2*v2); // Stabilization for small |v| due to Grassia T sin = sincHalf(normV); // if normV == 0 then q = (0,0,0,1) assert(!isnan(sin)); q[0] = sin * v0; q[1] = sin * v1; q[2] = sin * v2; q[3] = std::cos(normV/2); return q; } static Dune::FieldMatrix<T,4,3> Dexp(const Dune::FieldVector<T,3>& v) { Dune::FieldMatrix<T,4,3> result(0); T norm = v.two_norm(); for (int i=0; i<3; i++) { for (int m=0; m<3; m++) { result[m][i] = (norm==0) /** \todo Isn't there a better way to implement this stably? */ ? 0.5 * (i==m) : 0.5 * std::cos(norm/2) * v[i] * v[m] / (norm*norm) + sincHalf(norm) * ( (i==m) - v[i]*v[m]/(norm*norm)); } result[3][i] = - 0.5 * sincHalf(norm) * v[i]; } return result; } /** \brief Right quaternion multiplication */ Quaternion<T> mult(const Quaternion<T>& other) const { Quaternion<T> q; q[0] = (*this)[3]*other[0] - (*this)[2]*other[1] + (*this)[1]*other[2] + (*this)[0]*other[3]; q[1] = (*this)[2]*other[0] + (*this)[3]*other[1] - (*this)[0]*other[2] + (*this)[1]*other[3]; q[2] = - (*this)[1]*other[0] + (*this)[0]*other[1] + (*this)[3]*other[2] + (*this)[2]*other[3]; q[3] = - (*this)[0]*other[0] - (*this)[1]*other[1] - (*this)[2]*other[2] + (*this)[3]*other[3]; return q; } /** \brief Return the tripel of director vectors represented by a unit quaternion The formulas are taken from Dichmann, Li, Maddocks, (2.6.4), (2.6.5), (2.6.6) */ Dune::FieldVector<T,3> director(int i) const { Dune::FieldVector<T,3> d; const Dune::FieldVector<T,4>& q = *this; // simpler notation if (i==0) { d[0] = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]; d[1] = 2 * (q[0]*q[1] + q[2]*q[3]); d[2] = 2 * (q[0]*q[2] - q[1]*q[3]); } else if (i==1) { d[0] = 2 * (q[0]*q[1] - q[2]*q[3]); d[1] = -q[0]*q[0] + q[1]*q[1] - q[2]*q[2] + q[3]*q[3]; d[2] = 2 * (q[1]*q[2] + q[0]*q[3]); } else if (i==2) { d[0] = 2 * (q[0]*q[2] + q[1]*q[3]); d[1] = 2 * (q[1]*q[2] - q[0]*q[3]); d[2] = -q[0]*q[0] - q[1]*q[1] + q[2]*q[2] + q[3]*q[3]; } else DUNE_THROW(Dune::Exception, "Nonexisting director " << i << " requested!"); return d; } void getFirstDerivativesOfDirectors(Dune::array<Dune::FieldMatrix<double,3 , 4>, 3>& dd_dq) const { const Quaternion<T>& q = (*this); dd_dq[0][0][0] = 2*q[0]; dd_dq[0][0][1] = -2*q[1]; dd_dq[0][0][2] = -2*q[2]; dd_dq[0][0][3] = 2*q[3]; dd_dq[0][1][0] = 2*q[1]; dd_dq[0][1][1] = 2*q[0]; dd_dq[0][1][2] = 2*q[3]; dd_dq[0][1][3] = 2*q[2]; dd_dq[0][2][0] = 2*q[2]; dd_dq[0][2][1] = -2*q[3]; dd_dq[0][2][2] = 2*q[0]; dd_dq[0][2][3] = -2*q[1]; dd_dq[1][0][0] = 2*q[1]; dd_dq[1][0][1] = 2*q[0]; dd_dq[1][0][2] = -2*q[3]; dd_dq[1][0][3] = -2*q[2]; dd_dq[1][1][0] = -2*q[0]; dd_dq[1][1][1] = 2*q[1]; dd_dq[1][1][2] = -2*q[2]; dd_dq[1][1][3] = 2*q[3]; dd_dq[1][2][0] = 2*q[3]; dd_dq[1][2][1] = 2*q[2]; dd_dq[1][2][2] = 2*q[1]; dd_dq[1][2][3] = 2*q[0]; dd_dq[2][0][0] = 2*q[2]; dd_dq[2][0][1] = 2*q[3]; dd_dq[2][0][2] = 2*q[0]; dd_dq[2][0][3] = 2*q[1]; dd_dq[2][1][0] = -2*q[3]; dd_dq[2][1][1] = 2*q[2]; dd_dq[2][1][2] = 2*q[1]; dd_dq[2][1][3] = -2*q[0]; dd_dq[2][2][0] = -2*q[0]; dd_dq[2][2][1] = -2*q[1]; dd_dq[2][2][2] = 2*q[2]; dd_dq[2][2][3] = 2*q[3]; } void getFirstDerivativesOfDirectors(Dune::array<Dune::array<Dune::FieldVector<double,3>, 3>, 3>& dd_dvj) const { const Quaternion<T>& q = (*this); // Contains \partial q / \partial v^i_j at v = 0 Dune::array<Quaternion<double>,3> dq_dvj; for (int j=0; j<3; j++) { for (int m=0; m<4; m++) dq_dvj[j][m] = (j==m) * 0.5; } // Contains \parder d \parder v_j for (int j=0; j<3; j++) { // d1 dd_dvj[0][j][0] = q[0]*(q.mult(dq_dvj[j]))[0] - q[1]*(q.mult(dq_dvj[j]))[1] - q[2]*(q.mult(dq_dvj[j]))[2] + q[3]*(q.mult(dq_dvj[j]))[3]; dd_dvj[0][j][1] = (q.mult(dq_dvj[j]))[0]*q[1] + q[0]*(q.mult(dq_dvj[j]))[1] + (q.mult(dq_dvj[j]))[2]*q[3] + q[2]*(q.mult(dq_dvj[j]))[3]; dd_dvj[0][j][2] = (q.mult(dq_dvj[j]))[0]*q[2] + q[0]*(q.mult(dq_dvj[j]))[2] - (q.mult(dq_dvj[j]))[1]*q[3] - q[1]*(q.mult(dq_dvj[j]))[3]; // d2 dd_dvj[1][j][0] = (q.mult(dq_dvj[j]))[0]*q[1] + q[0]*(q.mult(dq_dvj[j]))[1] - (q.mult(dq_dvj[j]))[2]*q[3] - q[2]*(q.mult(dq_dvj[j]))[3]; dd_dvj[1][j][1] = - q[0]*(q.mult(dq_dvj[j]))[0] + q[1]*(q.mult(dq_dvj[j]))[1] - q[2]*(q.mult(dq_dvj[j]))[2] + q[3]*(q.mult(dq_dvj[j]))[3]; dd_dvj[1][j][2] = (q.mult(dq_dvj[j]))[1]*q[2] + q[1]*(q.mult(dq_dvj[j]))[2] + (q.mult(dq_dvj[j]))[0]*q[3] + q[0]*(q.mult(dq_dvj[j]))[3]; // d3 dd_dvj[2][j][0] = (q.mult(dq_dvj[j]))[0]*q[2] + q[0]*(q.mult(dq_dvj[j]))[2] + (q.mult(dq_dvj[j]))[1]*q[3] + q[1]*(q.mult(dq_dvj[j]))[3]; dd_dvj[2][j][1] = (q.mult(dq_dvj[j]))[1]*q[2] + q[1]*(q.mult(dq_dvj[j]))[2] - (q.mult(dq_dvj[j]))[0]*q[3] - q[0]*(q.mult(dq_dvj[j]))[3]; dd_dvj[2][j][2] = - q[0]*(q.mult(dq_dvj[j]))[0] - q[1]*(q.mult(dq_dvj[j]))[1] + q[2]*(q.mult(dq_dvj[j]))[2] + q[3]*(q.mult(dq_dvj[j]))[3]; dd_dvj[0][j] *= 2; dd_dvj[1][j] *= 2; dd_dvj[2][j] *= 2; } // Check: The derivatives of the directors must be orthogonal to the directors for (int i=0; i<3; i++) for (int j=0; j<3; j++) assert (std::abs(q.director(i) * dd_dvj[i][j]) < 1e-7); } /** \brief Turn quaternion into a unit quaternion by dividing by its Euclidean norm */ void normalize() { (*this) /= this->two_norm(); } Dune::FieldVector<double,3> rotate(const Dune::FieldVector<double,3>& v) const { Dune::FieldVector<double,3> result; Dune::FieldVector<double,3> d0 = director(0); Dune::FieldVector<double,3> d1 = director(1); Dune::FieldVector<double,3> d2 = director(2); for (int i=0; i<3; i++) result[i] = v[0]*d0[i] + v[1]*d1[i] + v[2]*d2[i]; return result; } /** \brief Invert the quaternion */ void invert() { (*this)[0] *= -1; (*this)[1] *= -1; (*this)[2] *= -1; (*this) /= this->two_norm2(); } static Dune::FieldVector<T,3> difference(const Quaternion<T>& a, const Quaternion<T>& b) { Quaternion<T> diff = a; diff.invert(); diff = diff.mult(b); // Compute the geodesical distance between a and b on SO(3) // Due to numerical dirt, diff[3] may be larger than 1. // In that case, use 1 instead of diff[3]. Dune::FieldVector<T,3> v; if (diff[3] > 1.0) { v = 0; } else { T dist = 2*std::acos( std::min(diff[3],1.0) ); T invSinc = 1/sincHalf(dist); // Compute difference on T_a SO(3) v[0] = diff[0] * invSinc; v[1] = diff[1] * invSinc; v[2] = diff[2] * invSinc; } return v; } /** \brief Interpolate between two rotations */ /** \todo Use method 'difference' here */ static Quaternion<T> interpolate(const Quaternion<T>& a, const Quaternion<T>& b, double omega) { // Compute difference on T_a SO(3) Dune::FieldVector<T,3> v = difference(a,b); v *= omega; return a.mult(exp(v[0], v[1], v[2])); } /** \brief Interpolate between two rotations */ /** \todo Use method 'difference' here */ static Quaternion<T> interpolateDerivative(const Quaternion<T>& a, const Quaternion<T>& b, double omega, double intervallLength) { Quaternion<T> result; // Compute difference on T_a SO(3) Dune::FieldVector<double,3> v = difference(a,b); Dune::FieldVector<double,3> der = v; der /= intervallLength; // ////////////////////////////////////////////////////////////// // v now contains the derivative at 'a'. The derivative at // the requested site is v pushed forward by Dexp. // ///////////////////////////////////////////////////////////// v *= omega; Dune::FieldMatrix<double,4,3> diffExp = Quaternion<double>::Dexp(v); result[0] = result[1] = result[2] = result[3] = 0; diffExp.umv(der,result); result = a.mult(result); // //////////////////////////////////////////////////////////////////////////// // Check correctness by comparing with a finite difference approximation // //////////////////////////////////////////////////////////////////////////// double eps = 1e-6; Quaternion<T> fdResult = interpolate(a,b, omega+eps); fdResult -= interpolate(a,b, omega-eps); fdResult /= 2*eps; fdResult /= intervallLength; if ((result-fdResult).two_norm() > 1e-4) { std::cout << "Wrong interpolation:\n"; std::cout << "Analytical: " << result << " fd: " << fdResult << std::endl; abort(); } return result; } /** \brief Return the corresponding orthogonal matrix */ void matrix(Dune::FieldMatrix<T,3,3>& m) const { m[0][0] = (*this)[0]*(*this)[0] - (*this)[1]*(*this)[1] - (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3]; m[0][1] = 2 * ( (*this)[0]*(*this)[1] - (*this)[2]*(*this)[3] ); m[0][2] = 2 * ( (*this)[0]*(*this)[2] + (*this)[1]*(*this)[3] ); m[1][0] = 2 * ( (*this)[0]*(*this)[1] + (*this)[2]*(*this)[3] ); m[1][1] = - (*this)[0]*(*this)[0] + (*this)[1]*(*this)[1] - (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3]; m[1][2] = 2 * ( -(*this)[0]*(*this)[3] + (*this)[1]*(*this)[2] ); m[2][0] = 2 * ( (*this)[0]*(*this)[2] - (*this)[1]*(*this)[3] ); m[2][1] = 2 * ( (*this)[0]*(*this)[3] + (*this)[1]*(*this)[2] ); m[2][2] = - (*this)[0]*(*this)[0] - (*this)[1]*(*this)[1] + (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3]; } /** \brief Set unit quaternion from orthogonal matrix We tacitly assume that the matrix really is orthogonal */ void set(const Dune::FieldMatrix<T,3,3>& m) { // Easier writing Dune::FieldVector<T,4>& p = (*this); // The following equations for the derivation of a unit quaternion from a rotation // matrix comes from 'E. Salamin, Application of Quaternions to Computation with // Rotations, Technical Report, Stanford, 1974' p[0] = (1 + m[0][0] - m[1][1] - m[2][2]) / 4; p[1] = (1 - m[0][0] + m[1][1] - m[2][2]) / 4; p[2] = (1 - m[0][0] - m[1][1] + m[2][2]) / 4; p[3] = (1 + m[0][0] + m[1][1] + m[2][2]) / 4; // avoid rounding problems if (p[0] >= p[1] && p[0] >= p[2] && p[0] >= p[3]) { p[0] = std::sqrt(p[0]); // r_x r_y = (R_12 + R_21) / 4 p[1] = (m[0][1] + m[1][0]) / 4 / p[0]; // r_x r_z = (R_13 + R_31) / 4 p[2] = (m[0][2] + m[2][0]) / 4 / p[0]; // r_0 r_x = (R_32 - R_23) / 4 p[3] = (m[2][1] - m[1][2]) / 4 / p[0]; } else if (p[1] >= p[0] && p[1] >= p[2] && p[1] >= p[3]) { p[1] = std::sqrt(p[1]); // r_x r_y = (R_12 + R_21) / 4 p[0] = (m[0][1] + m[1][0]) / 4 / p[1]; // r_y r_z = (R_23 + R_32) / 4 p[2] = (m[1][2] + m[2][1]) / 4 / p[1]; // r_0 r_y = (R_13 - R_31) / 4 p[3] = (m[0][2] - m[2][0]) / 4 / p[1]; } else if (p[2] >= p[0] && p[2] >= p[1] && p[2] >= p[3]) { p[2] = std::sqrt(p[2]); // r_x r_z = (R_13 + R_31) / 4 p[0] = (m[0][2] + m[2][0]) / 4 / p[2]; // r_y r_z = (R_23 + R_32) / 4 p[1] = (m[1][2] + m[2][1]) / 4 / p[2]; // r_0 r_z = (R_21 - R_12) / 4 p[3] = (m[1][0] - m[0][1]) / 4 / p[2]; } else { p[3] = std::sqrt(p[3]); // r_0 r_x = (R_32 - R_23) / 4 p[0] = (m[2][1] - m[1][2]) / 4 / p[3]; // r_0 r_y = (R_13 - R_31) / 4 p[1] = (m[0][2] - m[2][0]) / 4 / p[3]; // r_0 r_z = (R_21 - R_12) / 4 p[2] = (m[1][0] - m[0][1]) / 4 / p[3]; } } /** \brief Create three vectors which form an orthonormal basis of \mathbb{H} together with this one. This is used to compute the strain in rod problems. See: Dichmann, Li, Maddocks, 'Hamiltonian Formulations and Symmetries in Rod Mechanics', page 83 */ Quaternion<T> B(int m) const { assert(m>=0 && m<3); Quaternion<T> r; if (m==0) { r[0] = (*this)[3]; r[1] = (*this)[2]; r[2] = -(*this)[1]; r[3] = -(*this)[0]; } else if (m==1) { r[0] = -(*this)[2]; r[1] = (*this)[3]; r[2] = (*this)[0]; r[3] = -(*this)[1]; } else { r[0] = (*this)[1]; r[1] = -(*this)[0]; r[2] = (*this)[3]; r[3] = -(*this)[2]; } return r; } }; #endif