#ifndef DUNE_GFE_LOCAL_GEODESIC_FE_FD_STIFFNESS_HH #define DUNE_GFE_LOCAL_GEODESIC_FE_FD_STIFFNESS_HH #include <dune/common/fmatrix.hh> #include <dune/istl/matrix.hh> #include <dune/gfe/localgeodesicfestiffness.hh> /** \brief Assembles energy gradient and Hessian with finite difference approximations */ template<class Basis, class TargetSpace, class field_type=double> class LocalGeodesicFEFDStiffness : public LocalGeodesicFEStiffness<Basis,TargetSpace> { // grid types typedef typename Basis::GridView GridView; typedef typename GridView::ctype DT; typedef typename TargetSpace::ctype RT; typedef typename GridView::template Codim<0>::Entity Entity; typedef typename TargetSpace::template rebind<field_type>::other ATargetSpace; // some other sizes constexpr static int gridDim = GridView::dimension; public: //! Dimension of a tangent space constexpr static int blocksize = TargetSpace::TangentVector::dimension; //! Dimension of the embedding space constexpr static int embeddedBlocksize = TargetSpace::EmbeddedTangentVector::dimension; LocalGeodesicFEFDStiffness(const Dune::GFE::LocalEnergy<Basis, ATargetSpace>* energy) : localEnergy_(energy) {} /** \brief Compute the energy at the current configuration */ virtual RT energy (const typename Basis::LocalView& localView, const std::vector<TargetSpace>& localSolution) const override { return localEnergy_->energy(localView,localSolution); } /** \brief Assemble the element gradient of the energy functional The default implementation in this class uses a finite difference approximation */ virtual void assembleGradient(const typename Basis::LocalView& localView, const std::vector<TargetSpace>& solution, std::vector<typename TargetSpace::TangentVector>& gradient) const override; /** \brief Assemble the local tangent matrix and gradient at the current position This implementation uses finite-difference approximations The formula for the Riemannian Hessian has been taken from Absil, Mahony, Sepulchre: 'Optimization algorithms on matrix manifolds', page 107. There it says that \f[ \langle Hess f(x)[\xi], \eta \rangle = \frac 12 \frac{d^2}{dt^2} \Big(f(\exp_x(t(\xi + \eta))) - f(\exp_x(t\xi)) - f(\exp_x(t\eta))\Big)\Big|_{t=0}. \f] We compute that using a finite difference approximation. */ virtual void assembleGradientAndHessian(const typename Basis::LocalView& localView, const std::vector<TargetSpace>& localSolution, std::vector<typename TargetSpace::TangentVector>& localGradient) override; const Dune::GFE::LocalEnergy<Basis, ATargetSpace>* localEnergy_; }; template <class Basis, class TargetSpace, class field_type> void LocalGeodesicFEFDStiffness<Basis, TargetSpace, field_type>:: assembleGradient(const typename Basis::LocalView& localView, const std::vector<TargetSpace>& localSolution, std::vector<typename TargetSpace::TangentVector>& localGradient) const { // /////////////////////////////////////////////////////////// // Compute gradient by finite-difference approximation // /////////////////////////////////////////////////////////// field_type eps = 1e-6; std::vector<ATargetSpace> localASolution(localSolution.size()); std::vector<typename ATargetSpace::CoordinateType> aRaw(localSolution.size()); for (size_t i=0; i<localSolution.size(); i++) { typename TargetSpace::CoordinateType raw = localSolution[i].globalCoordinates(); for (size_t j=0; j<raw.size(); j++) aRaw[i][j] = raw[j]; localASolution[i] = aRaw[i]; // may contain a projection onto M -- needs to be done in adouble } localGradient.resize(localSolution.size()); std::vector<ATargetSpace> forwardSolution = localASolution; std::vector<ATargetSpace> backwardSolution = localASolution; for (size_t i=0; i<localSolution.size(); i++) { // basis vectors of the tangent space of the i-th entry of localSolution const Dune::FieldMatrix<field_type,blocksize,embeddedBlocksize> B = localSolution[i].orthonormalFrame(); for (int j=0; j<blocksize; j++) { typename ATargetSpace::EmbeddedTangentVector forwardCorrection = B[j]; forwardCorrection *= eps; typename ATargetSpace::EmbeddedTangentVector backwardCorrection = B[j]; backwardCorrection *= -eps; forwardSolution[i] = ATargetSpace::exp(localASolution[i], forwardCorrection); backwardSolution[i] = ATargetSpace::exp(localASolution[i], backwardCorrection); field_type foo = (localEnergy_->energy(localView,forwardSolution) - localEnergy_->energy(localView, backwardSolution)) / (2*eps); #ifdef MULTIPRECISION localGradient[i][j] = foo.template convert_to<double>(); #else localGradient[i][j] = foo; #endif } forwardSolution[i] = localASolution[i]; backwardSolution[i] = localASolution[i]; } } ///////////////////////////////////////////////////////////////////////////////// // Compute gradient and Hessian together // To compute the Hessian we need to compute the gradient anyway, so we may // as well return it. This saves assembly time. ///////////////////////////////////////////////////////////////////////////////// template <class Basis, class TargetSpace, class field_type> void LocalGeodesicFEFDStiffness<Basis, TargetSpace, field_type>:: assembleGradientAndHessian(const typename Basis::LocalView& localView, const std::vector<TargetSpace>& localSolution, std::vector<typename TargetSpace::TangentVector>& localGradient) { // Number of degrees of freedom for this element size_t nDofs = localSolution.size(); // Clear assemble data this->A_.setSize(nDofs, nDofs); this->A_ = 0; #ifdef MULTIPRECISION const field_type eps = 1e-10; #else const field_type eps = 1e-4; #endif std::vector<ATargetSpace> localASolution(localSolution.size()); std::vector<typename ATargetSpace::CoordinateType> aRaw(localSolution.size()); for (size_t i=0; i<localSolution.size(); i++) { typename TargetSpace::CoordinateType raw = localSolution[i].globalCoordinates(); for (size_t j=0; j<raw.size(); j++) aRaw[i][j] = raw[j]; localASolution[i] = aRaw[i]; } std::vector<Dune::FieldMatrix<double,blocksize,embeddedBlocksize> > B(localSolution.size()); for (size_t i=0; i<B.size(); i++) B[i] = localSolution[i].orthonormalFrame(); // Precompute negative energy at the current configuration // (negative because that is how we need it as part of the 2nd-order fd formula) field_type centerValue = -localEnergy_->energy(localView, localASolution); // Precompute energy infinitesimal corrections in the directions of the local basis vectors std::vector<std::array<field_type,blocksize> > forwardEnergy(nDofs); std::vector<std::array<field_type,blocksize> > backwardEnergy(nDofs); //#pragma omp parallel for schedule (dynamic) for (size_t i=0; i<localSolution.size(); i++) { for (size_t i2=0; i2<blocksize; i2++) { typename ATargetSpace::EmbeddedTangentVector epsXi = B[i][i2]; epsXi *= eps; typename ATargetSpace::EmbeddedTangentVector minusEpsXi = epsXi; minusEpsXi *= -1; std::vector<ATargetSpace> forwardSolution = localASolution; std::vector<ATargetSpace> backwardSolution = localASolution; forwardSolution[i] = ATargetSpace::exp(localASolution[i],epsXi); backwardSolution[i] = ATargetSpace::exp(localASolution[i],minusEpsXi); forwardEnergy[i][i2] = localEnergy_->energy(localView, forwardSolution); backwardEnergy[i][i2] = localEnergy_->energy(localView, backwardSolution); } } ////////////////////////////////////////////////////////////// // Compute gradient by finite-difference approximation ////////////////////////////////////////////////////////////// localGradient.resize(localSolution.size()); for (size_t i=0; i<localSolution.size(); i++) for (int j=0; j<blocksize; j++) { field_type foo = (forwardEnergy[i][j] - backwardEnergy[i][j]) / (2*eps); #ifdef MULTIPRECISION localGradient[i][j] = foo.template convert_to<double>(); #else localGradient[i][j] = foo; #endif } /////////////////////////////////////////////////////////////////////////// // Compute Riemannian Hesse matrix by finite-difference approximation. // We loop over the lower left triangular half of the matrix. // The other half follows from symmetry. /////////////////////////////////////////////////////////////////////////// //#pragma omp parallel for schedule (dynamic) for (size_t i=0; i<localSolution.size(); i++) { for (size_t i2=0; i2<blocksize; i2++) { for (size_t j=0; j<=i; j++) { for (size_t j2=0; j2<((i==j) ? i2+1 : blocksize); j2++) { std::vector<ATargetSpace> forwardSolutionXiEta = localASolution; std::vector<ATargetSpace> backwardSolutionXiEta = localASolution; typename ATargetSpace::EmbeddedTangentVector epsXi = B[i][i2]; epsXi *= eps; typename ATargetSpace::EmbeddedTangentVector epsEta = B[j][j2]; epsEta *= eps; typename ATargetSpace::EmbeddedTangentVector minusEpsXi = epsXi; minusEpsXi *= -1; typename ATargetSpace::EmbeddedTangentVector minusEpsEta = epsEta; minusEpsEta *= -1; if (i==j) forwardSolutionXiEta[i] = ATargetSpace::exp(localASolution[i],epsXi+epsEta); else { forwardSolutionXiEta[i] = ATargetSpace::exp(localASolution[i],epsXi); forwardSolutionXiEta[j] = ATargetSpace::exp(localASolution[j],epsEta); } if (i==j) backwardSolutionXiEta[i] = ATargetSpace::exp(localASolution[i],minusEpsXi+minusEpsEta); else { backwardSolutionXiEta[i] = ATargetSpace::exp(localASolution[i],minusEpsXi); backwardSolutionXiEta[j] = ATargetSpace::exp(localASolution[j],minusEpsEta); } field_type forwardValue = localEnergy_->energy(localView, forwardSolutionXiEta) - forwardEnergy[i][i2] - forwardEnergy[j][j2]; field_type backwardValue = localEnergy_->energy(localView, backwardSolutionXiEta) - backwardEnergy[i][i2] - backwardEnergy[j][j2]; field_type foo = 0.5 * (forwardValue - 2*centerValue + backwardValue) / (eps*eps); #ifdef MULTIPRECISION this->A_[i][j][i2][j2] = this->A_[j][i][j2][i2] = foo.template convert_to<double>(); #else this->A_[i][j][i2][j2] = this->A_[j][i][j2][i2] = foo; #endif } } } } } #endif