#ifndef TARGET_SPACE_RIEMANNIAN_TRUST_REGION_SOLVER_HH #define TARGET_SPACE_RIEMANNIAN_TRUST_REGION_SOLVER_HH #include <dune/solvers/common/numproc.hh> #include <dune/gfe/symmetricmatrix.hh> /** \brief Riemannian trust-region solver for geodesic finite-element problems \tparam TargetSpace The manifold that our functions take values in */ template <class TargetSpace> class TargetSpaceRiemannianTRSolver : public NumProc { const static int blocksize = TargetSpace::TangentVector::dimension; const static int embeddedBlocksize = TargetSpace::EmbeddedTangentVector::dimension; // Centralize the field type here typedef typename TargetSpace::ctype field_type; typedef Dune::SymmetricMatrix<field_type, embeddedBlocksize> MatrixType; typedef Dune::FieldVector<field_type, embeddedBlocksize> CorrectionType; public: /** \brief Set up the solver using a monotone multigrid method as the inner solver */ void setup(const AverageDistanceAssembler<TargetSpace>* assembler, const TargetSpace& x, double tolerance, int maxNewtonSteps); void solve(); void setInitialSolution(const TargetSpace& x) { x_ = x; } TargetSpace getSol() const {return x_;} protected: /** \brief The solution vector */ TargetSpace x_; /** \brief Tolerance of the solver */ double tolerance_; /** \brief Maximum number of Newton steps */ size_t maxNewtonSteps_; /** \brief The assembler for the average-distance functional */ const AverageDistanceAssembler<TargetSpace>* assembler_; /** \brief Specify a minimal number of iterations the Newton solver has to do * * This is needed when working with automatic differentiation. While a very low * number of iterations may be enough to precisely compute the value of a * geodesic finite element function, a higher number may be needed to make an AD * system compute a derivative with sufficient precision. */ size_t minNumberOfIterations_; }; #include "targetspacertrsolver.cc" #endif