#include <config.h> #include <dune/common/bitsetvector.hh> #include <dune/common/configparser.hh> #include <dune/grid/onedgrid.hh> #include <dune/grid/uggrid.hh> #include <dune/grid/io/file/amirameshreader.hh> #include <dune/grid/io/file/amirameshwriter.hh> #include <dune/istl/solvers.hh> #include <dune/solvers/iterationsteps/multigridstep.hh> #include <dune/solvers/solvers/loopsolver.hh> #include <dune/solvers/iterationsteps/projectedblockgsstep.hh> #ifdef HAVE_IPOPT #include <dune/solvers/solvers/quadraticipopt.hh> #endif #include <dune/ag-common/readbitfield.hh> #include <dune/solvers/norms/energynorm.hh> #include <dune/ag-common/boundarypatch.hh> #include <dune/ag-common/prolongboundarypatch.hh> #include <dune/ag-common/sampleonbitfield.hh> #include <dune/ag-common/neumannassembler.hh> #include <dune/ag-common/computestress.hh> #include <dune/ag-common/functionspacebases/q1nodalbasis.hh> #include <dune/ag-common/assemblers/operatorassembler.hh> #include <dune/ag-common/assemblers/localassemblers/stvenantkirchhoffassembler.hh> #include "src/quaternion.hh" #include "src/rodassembler.hh" #include "src/rigidbodymotion.hh" #include "src/averageinterface.hh" #include "src/riemanniantrsolver.hh" #include "src/geodesicdifference.hh" #include "src/rodwriter.hh" #include "src/makestraightrod.hh" // Space dimension const int dim = 3; using namespace Dune; using std::string; using std::vector; // Some types that I need typedef vector<RigidBodyMotion<dim> > RodSolutionType; typedef BlockVector<FieldVector<double, 6> > RodDifferenceType; int main (int argc, char *argv[]) try { // Some types that I need typedef BCRSMatrix<FieldMatrix<double, dim, dim> > MatrixType; typedef BlockVector<FieldVector<double, dim> > VectorType; // parse data file ConfigParser parameterSet; if (argc==2) parameterSet.parseFile(argv[1]); else parameterSet.parseFile("neudircoupling.parset"); // read solver settings const int numLevels = parameterSet.get<int>("numLevels"); const double ddTolerance = parameterSet.get<double>("ddTolerance"); const int maxDirichletNeumannSteps = parameterSet.get<int>("maxDirichletNeumannSteps"); const double trTolerance = parameterSet.get<double>("trTolerance"); const int maxTrustRegionSteps = parameterSet.get<int>("maxTrustRegionSteps"); const int trVerbosity = parameterSet.get<int>("trVerbosity"); const int multigridIterations = parameterSet.get<int>("numIt"); const int nu1 = parameterSet.get<int>("nu1"); const int nu2 = parameterSet.get<int>("nu2"); const int mu = parameterSet.get<int>("mu"); const int baseIterations = parameterSet.get<int>("baseIt"); const double mgTolerance = parameterSet.get<double>("mgTolerance"); const double baseTolerance = parameterSet.get<double>("baseTolerance"); const double initialTrustRegionRadius = parameterSet.get<double>("initialTrustRegionRadius"); const double damping = parameterSet.get<double>("damping"); string resultPath = parameterSet.get("resultPath", ""); // Problem settings string path = parameterSet.get<string>("path"); string objectName = parameterSet.get<string>("gridFile"); string dirichletNodesFile = parameterSet.get<string>("dirichletNodes"); string dirichletValuesFile = parameterSet.get<string>("dirichletValues"); string interfaceNodesFile = parameterSet.get<string>("interfaceNodes"); const int numRodBaseElements = parameterSet.get<int>("numRodBaseElements"); double E = parameterSet.get<double>("E"); double nu = parameterSet.get<double>("nu"); // rod material parameters double rodA = parameterSet.get<double>("rodA"); double rodJ1 = parameterSet.get<double>("rodJ1"); double rodJ2 = parameterSet.get<double>("rodJ2"); double rodE = parameterSet.get<double>("rodE"); double rodNu = parameterSet.get<double>("rodNu"); Dune::array<FieldVector<double,3>,2> rodRestEndPoint; rodRestEndPoint[0][0] = parameterSet.get<double>("rodRestEndPoint0X"); rodRestEndPoint[0][1] = parameterSet.get<double>("rodRestEndPoint0Y"); rodRestEndPoint[0][2] = parameterSet.get<double>("rodRestEndPoint0Z"); rodRestEndPoint[1][0] = parameterSet.get<double>("rodRestEndPoint1X"); rodRestEndPoint[1][1] = parameterSet.get<double>("rodRestEndPoint1Y"); rodRestEndPoint[1][2] = parameterSet.get<double>("rodRestEndPoint1Z"); // /////////////////////////////////////// // Create the rod grid // /////////////////////////////////////// typedef OneDGrid RodGridType; RodGridType rodGrid(numRodBaseElements, 0, (rodRestEndPoint[1]-rodRestEndPoint[0]).two_norm()); // /////////////////////////////////////// // Create the grid for the 3d object // /////////////////////////////////////// typedef UGGrid<dim> GridType; GridType grid; grid.setRefinementType(GridType::COPY); AmiraMeshReader<GridType>::read(grid, path + objectName); // ////////////////////////////////////// // Globally refine grids // ////////////////////////////////////// rodGrid.globalRefine(numLevels-1); grid.globalRefine(numLevels-1); RodSolutionType rodX(rodGrid.size(1)); // ////////////////////////// // Initial solution // ////////////////////////// makeStraightRod(rodX, rodGrid.size(1), rodRestEndPoint[0], rodRestEndPoint[1]); // ///////////////////////////////////////// // Read Dirichlet values // ///////////////////////////////////////// rodX.back().r[0] = parameterSet.get("dirichletValueX", rodRestEndPoint[1][0]); rodX.back().r[1] = parameterSet.get("dirichletValueY", rodRestEndPoint[1][1]); rodX.back().r[2] = parameterSet.get("dirichletValueZ", rodRestEndPoint[1][2]); FieldVector<double,3> axis; axis[0] = parameterSet.get("dirichletAxisX", double(0)); axis[1] = parameterSet.get("dirichletAxisY", double(0)); axis[2] = parameterSet.get("dirichletAxisZ", double(0)); double angle = parameterSet.get("dirichletAngle", double(0)); rodX.back().q = Rotation<3,double>(axis, M_PI*angle/180); // Backup initial rod iterate for later reference RodSolutionType initialIterateRod = rodX; int toplevel = rodGrid.maxLevel(); // ///////////////////////////////////////////////////// // Determine the Dirichlet nodes // ///////////////////////////////////////////////////// VectorType coarseDirichletValues(grid.size(0, dim)); AmiraMeshReader<int>::readFunction(coarseDirichletValues, path + dirichletValuesFile); LevelBoundaryPatch<GridType> coarseDirichletBoundary(grid,0); readBoundaryPatch(coarseDirichletBoundary, path + dirichletNodesFile); LeafBoundaryPatch<GridType> dirichletBoundary; PatchProlongator<GridType>::prolong(coarseDirichletBoundary, dirichletBoundary); BitSetVector<dim> dirichletNodes(grid.size(dim)); for (int i=0; i<dirichletNodes.size(); i++) dirichletNodes[i] = dirichletBoundary.containsVertex(i); VectorType dirichletValues; sampleOnBitField(grid, coarseDirichletValues, dirichletValues, dirichletNodes); // ///////////////////////////////////////////////////// // Determine the interface boundary // ///////////////////////////////////////////////////// std::vector<LevelBoundaryPatch<GridType> > interfaceBoundary; interfaceBoundary.resize(numLevels); interfaceBoundary[0].setup(grid, 0); readBoundaryPatch(interfaceBoundary[0], path + interfaceNodesFile); PatchProlongator<GridType>::prolong(interfaceBoundary); // ////////////////////////////////////////// // Assemble 3d linear elasticity problem // ////////////////////////////////////////// typedef Q1NodalBasis<GridType::LeafGridView,double> FEBasis; FEBasis basis(grid.leafView()); OperatorAssembler<FEBasis,FEBasis> assembler(basis, basis); StVenantKirchhoffAssembler<GridType, FEBasis::LocalFiniteElement, FEBasis::LocalFiniteElement> localAssembler(E, nu); MatrixType stiffnessMatrix3d; assembler.assemble(localAssembler, stiffnessMatrix3d); // /////////////////////////////////////////////////////////////////////// // Assemble the mass matrix of the interface boundary. // It is needed to compute the strong normal stresses resulting from // the Dirichlet boundary conditions. // /////////////////////////////////////////////////////////////////////// MatrixType surfaceMassMatrix; assembleSurfaceMassMatrix<GridType::LevelGridView,dim>(interfaceBoundary.back(), surfaceMassMatrix); std::vector<int> globalToLocal; interfaceBoundary.back().makeGlobalToLocal(globalToLocal); // //////////////////////////////////////////////////////////// // Create solution and rhs vectors // //////////////////////////////////////////////////////////// VectorType x3d(grid.size(toplevel,dim)); VectorType rhs3d(grid.size(toplevel,dim)); // No external forces rhs3d = 0; // Set initial solution x3d = 0; for (int i=0; i<x3d.size(); i++) for (int j=0; j<dim; j++) if (dirichletNodes[i][j]) x3d[i][j] = dirichletValues[i][j]; // /////////////////////////////////////////////////////////////////// // Add the interface boundary nodes to the set of Dirichlet nodes // /////////////////////////////////////////////////////////////////// for (int i=0; i<dirichletNodes.size(); i++) for (int j=0; j<dim; j++) dirichletNodes[i][j] = dirichletNodes[i][j] || interfaceBoundary.back().containsVertex(i); // /////////////////////////////////////////// // Dirichlet nodes for the rod problem // /////////////////////////////////////////// BitSetVector<6> rodDirichletNodes(rodGrid.size(1)); rodDirichletNodes.unsetAll(); //rodDirichletNodes[0] = true; rodDirichletNodes.back() = true; // /////////////////////////////////////////// // Create a solver for the rod problem // /////////////////////////////////////////// RodLocalStiffness<RodGridType::LeafGridView,double> rodLocalStiffness(rodGrid.leafView(), rodA, rodJ1, rodJ2, rodE, rodNu); RodAssembler<RodGridType::LeafGridView> rodAssembler(rodGrid.leafView(), &rodLocalStiffness); RiemannianTrustRegionSolver<RodGridType,RigidBodyMotion<3> > rodSolver; rodSolver.setup(rodGrid, &rodAssembler, rodX, rodDirichletNodes, trTolerance, maxTrustRegionSteps, initialTrustRegionRadius, multigridIterations, mgTolerance, mu, nu1, nu2, baseIterations, baseTolerance, false); switch (trVerbosity) { case 0: rodSolver.verbosity_ = Solver::QUIET; break; case 1: rodSolver.verbosity_ = Solver::REDUCED; break; default: rodSolver.verbosity_ = Solver::FULL; break; } // //////////////////////////////// // Create a multigrid solver // //////////////////////////////// // First create a gauss-seidel base solver #ifdef HAVE_IPOPT QuadraticIPOptSolver<MatrixType,VectorType> baseSolver; #endif baseSolver.verbosity_ = NumProc::QUIET; baseSolver.tolerance_ = baseTolerance; // Make pre and postsmoothers BlockGSStep<MatrixType, VectorType> presmoother, postsmoother; MultigridStep<MatrixType, VectorType> multigridStep(stiffnessMatrix3d, x3d, rhs3d, 1); multigridStep.setMGType(mu, nu1, nu2); multigridStep.ignoreNodes_ = &dirichletNodes; multigridStep.basesolver_ = &baseSolver; multigridStep.setSmoother(&presmoother, &postsmoother); multigridStep.verbosity_ = Solver::QUIET; EnergyNorm<MatrixType, VectorType> energyNorm(multigridStep); ::LoopSolver<VectorType> solver(&multigridStep, // IPOpt doesn't like to be started in the solution (numLevels!=1) ? multigridIterations : 1, mgTolerance, &energyNorm, Solver::QUIET); // //////////////////////////////////// // Create the transfer operators // //////////////////////////////////// for (int k=0; k<multigridStep.mgTransfer_.size(); k++) delete(multigridStep.mgTransfer_[k]); multigridStep.mgTransfer_.resize(toplevel); for (int i=0; i<multigridStep.mgTransfer_.size(); i++){ CompressedMultigridTransfer<VectorType>* newTransferOp = new CompressedMultigridTransfer<VectorType>; newTransferOp->setup(grid,i,i+1); multigridStep.mgTransfer_[i] = newTransferOp; } // ///////////////////////////////////////////////////// // Dirichlet-Neumann Solver // ///////////////////////////////////////////////////// // Init interface value RigidBodyMotion<3> referenceInterface = rodX[0]; //RigidBodyMotion<3> lambda = referenceInterface; FieldVector<double,3> lambdaForce(0); FieldVector<double,3> lambdaTorque(0); lambdaForce[2] = -5000; // double normOfOldCorrection = 0; int dnStepsActuallyTaken = 0; for (int i=0; i<maxDirichletNeumannSteps; i++) { std::cout << "----------------------------------------------------" << std::endl; std::cout << " Dirichlet-Neumann Step Number: " << i << std::endl; std::cout << "----------------------------------------------------" << std::endl; // Backup of the current solution for the error computation later on VectorType oldSolution3d = x3d; RodSolutionType oldSolutionRod = rodX; // ////////////////////////////////////////////////// // Neumann step for the rod // ////////////////////////////////////////////////// rodSolver.setInitialSolution(rodX); rodAssembler.setNeumannData(lambdaForce, lambdaTorque, FieldVector<double,3>(0), FieldVector<double,3>(0)); rodSolver.solve(); rodX = rodSolver.getSol(); // for (int j=0; j<rodX.size(); j++) // std::cout << rodX[j] << std::endl; // Get resultant force, just for checking BitSetVector<1> couplingBitfield(rodX.size(),false); couplingBitfield[0] = true; LeafBoundaryPatch<RodGridType> couplingBoundary(rodGrid, couplingBitfield); FieldVector<double,dim> resultantForceDebug, resultantTorqueDebug; resultantForceDebug = rodAssembler.getResultantForce(couplingBoundary, rodX, resultantTorqueDebug); // Flip orientation resultantForceDebug *= -1; resultantTorqueDebug *= -1; std::cout << "debugging: resultant force: " << resultantForceDebug << " norm: " << resultantForceDebug.two_norm() << std::endl; std::cout << "debugging: resultant torque: " << resultantTorqueDebug << " norm: " << resultantTorqueDebug.two_norm() << std::endl; // /////////////////////////////////////////////////////////// // Extract Dirichlet values and transfer it to the 3d object // /////////////////////////////////////////////////////////// // Using that index 0 is always the left boundary for a uniformly refined OneDGrid RigidBodyMotion<3> resultantConfiguration = rodX[0]; std::cout << "Resultant configuration: " << resultantConfiguration << std::endl; // Compute difference to the reference interface /** \todo This is a group operation --> put it into the RigidBodyMotion class */ RigidBodyMotion<3> differenceToReferenceInterface = referenceInterface; differenceToReferenceInterface.q.invert(); differenceToReferenceInterface.r *= -1; differenceToReferenceInterface.q.mult(resultantConfiguration.q); differenceToReferenceInterface.r += resultantConfiguration.r; GridType::Codim<dim>::LeafIterator vIt = grid.leafbegin<dim>(); GridType::Codim<dim>::LeafIterator vEndIt = grid.leafend<dim>(); for (; vIt!=vEndIt; ++vIt) { unsigned int idx = grid.leafIndexSet().index(*vIt); // Consider only vertices on the interface boundary if (interfaceBoundary.back().containsVertex(idx)) { // apply the rigid body motion to the vertex position and subtract the old position FieldMatrix<double,3,3> rotationMatrix; differenceToReferenceInterface.q.matrix(rotationMatrix); rotationMatrix.mv(vIt->geometry().corner(0), x3d[idx]); x3d[idx] += differenceToReferenceInterface.r; x3d[idx] -= vIt->geometry().corner(0); } } // /////////////////////////////////////////////////////////// // Solve the Dirichlet problem for the 3d body // /////////////////////////////////////////////////////////// multigridStep.setProblem(stiffnessMatrix3d, x3d, rhs3d, grid.maxLevel()+1); solver.preprocess(); multigridStep.preprocess(); solver.solve(); x3d = multigridStep.getSol(); // /////////////////////////////////////////////////////////// // Extract new interface resultant force and torque // /////////////////////////////////////////////////////////// FieldVector<double,3> resultantForce(0); FieldVector<double,3> resultantTorque(0); // the weak normal stress, or, in other words, the residual VectorType weakNormalStress = rhs3d; stiffnessMatrix3d.mmv(x3d, weakNormalStress); // consider only the coefficients on the interface boundary VectorType localWeakNormalStress(interfaceBoundary.back().numVertices()); for (int j=0; j<globalToLocal.size(); j++) if (globalToLocal[j] != -1) localWeakNormalStress[globalToLocal[j]] = weakNormalStress[j]; // Compute the strong normal stress, which is the weak stress divided by the surface mass matrix VectorType localStrongNormalStress = localWeakNormalStress; // initial value // Make small cg solver MatrixAdapter<MatrixType,VectorType,VectorType> op(surfaceMassMatrix); SeqILU0<MatrixType,VectorType,VectorType> ilu0(surfaceMassMatrix,1.0); CGSolver<VectorType> cgsolver(op,ilu0,1E-4,100,0); Dune::InverseOperatorResult statistics; cgsolver.apply(localStrongNormalStress, localWeakNormalStress, statistics); VectorType strongNormalStress(weakNormalStress.size()); strongNormalStress = 0; for (int j=0; j<globalToLocal.size(); j++) if (globalToLocal[j] != -1) strongNormalStress[j] = localStrongNormalStress[globalToLocal[j]]; computeTotalForceAndTorque(interfaceBoundary.back(), strongNormalStress, resultantConfiguration.r, resultantForce, resultantTorque); std::cout << "average force: " << resultantForce << std::endl; std::cout << "average torque: " << resultantTorque << std::endl; // /////////////////////////////////////////////////////////// // Compute new damped interface value // /////////////////////////////////////////////////////////// for (int j=0; j<dim; j++) { lambdaForce[j] = (1-damping) * lambdaForce[j] + damping * resultantForce[j]; lambdaTorque[j] = (1-damping) * lambdaTorque[j] + damping * resultantTorque[j]; } std::cout << "Lambda force: " << lambdaForce << std::endl; std::cout << "Lambda torque: " << lambdaTorque << std::endl; // //////////////////////////////////////////////////////////////////////// // Write the two iterates to disk for later convergence rate measurement // //////////////////////////////////////////////////////////////////////// // First the 3d body std::stringstream iAsAscii; iAsAscii << i; std::string iSolFilename = resultPath + "tmp/intermediate3dSolution_" + iAsAscii.str(); LeafAmiraMeshWriter<GridType> amiraMeshWriter; amiraMeshWriter.addVertexData(x3d, grid.leafView()); amiraMeshWriter.write(iSolFilename); // Then the rod iSolFilename = resultPath + "tmp/intermediateRodSolution_" + iAsAscii.str(); FILE* fpRod = fopen(iSolFilename.c_str(), "wb"); if (!fpRod) DUNE_THROW(SolverError, "Couldn't open file " << iSolFilename << " for writing"); for (int j=0; j<rodX.size(); j++) { for (int k=0; k<dim; k++) fwrite(&rodX[j].r[k], sizeof(double), 1, fpRod); for (int k=0; k<4; k++) // 3d hardwired here! fwrite(&rodX[j].q[k], sizeof(double), 1, fpRod); } fclose(fpRod); // //////////////////////////////////////////// // Compute error in the energy norm // //////////////////////////////////////////// // the 3d body double oldNorm = EnergyNorm<MatrixType,VectorType>::normSquared(oldSolution3d, stiffnessMatrix3d); oldSolution3d -= x3d; double normOfCorrection = EnergyNorm<MatrixType,VectorType>::normSquared(oldSolution3d, stiffnessMatrix3d); double max3dRelCorrection = 0; for (size_t j=0; j<x3d.size(); j++) for (int k=0; k<dim; k++) max3dRelCorrection = std::max(max3dRelCorrection, std::fabs(oldSolution3d[j][k])/ std::fabs(x3d[j][k])); // the rod RodDifferenceType rodDiff = computeGeodesicDifference(oldSolutionRod, rodX); double maxRodRelCorrection = 0; for (size_t j=0; j<rodX.size(); j++) for (int k=0; k<dim; k++) maxRodRelCorrection = std::max(maxRodRelCorrection, std::fabs(rodDiff[j][k])/ std::fabs(rodX[j].r[k])); // Absolute corrections double maxRodCorrection = computeGeodesicDifference(oldSolutionRod, rodX).infinity_norm(); double max3dCorrection = oldSolution3d.infinity_norm(); std::cout << "rod correction: " << maxRodCorrection << " rod rel correction: " << maxRodRelCorrection << " 3d correction: " << max3dCorrection << " 3d rel correction: " << max3dRelCorrection << std::endl; oldNorm = std::sqrt(oldNorm); normOfCorrection = std::sqrt(normOfCorrection); double relativeError = normOfCorrection / oldNorm; double convRate = normOfCorrection / normOfOldCorrection; normOfOldCorrection = normOfCorrection; // Output std::cout << "DD iteration: " << i << " -- ||u^{n+1} - u^n|| / ||u^n||: " << relativeError << ", " << "convrate " << convRate << "\n"; dnStepsActuallyTaken = i; //if (relativeError < ddTolerance) if (std::max(max3dRelCorrection,maxRodRelCorrection) < ddTolerance) break; } // ////////////////////////////////////////////////////////// // Recompute and compare against exact solution // ////////////////////////////////////////////////////////// VectorType exactSol3d = x3d; RodSolutionType exactSolRod = rodX; // ////////////////////////////////////////////////////////// // Compute hessian of the rod functional at the exact solution // for use of the energy norm it creates. // ////////////////////////////////////////////////////////// BCRSMatrix<FieldMatrix<double, 6, 6> > hessianRod; MatrixIndexSet indices(exactSolRod.size(), exactSolRod.size()); rodAssembler.getNeighborsPerVertex(indices); indices.exportIdx(hessianRod); rodAssembler.assembleMatrix(exactSolRod, hessianRod); double error = std::numeric_limits<double>::max(); double oldError = 0; VectorType intermediateSol3d(x3d.size()); RodSolutionType intermediateSolRod(rodX.size()); // Compute error of the initial 3d solution // This should really be exactSol-initialSol, but we're starting // from zero anyways oldError += EnergyNorm<MatrixType,VectorType>::normSquared(exactSol3d, stiffnessMatrix3d); // Error of the initial rod iterate RodDifferenceType rodDifference = computeGeodesicDifference(initialIterateRod, exactSolRod); oldError += EnergyNorm<BCRSMatrix<FieldMatrix<double,6,6> >,RodDifferenceType>::normSquared(rodDifference, hessianRod); oldError = std::sqrt(oldError); // Store the history of total conv rates so we can filter out numerical // dirt in the end. std::vector<double> totalConvRate(maxDirichletNeumannSteps+1); totalConvRate[0] = 1; double oldConvRate = 100; bool firstTime = true; std::stringstream levelAsAscii, dampingAsAscii; levelAsAscii << numLevels; dampingAsAscii << damping; std::string filename = resultPath + "convrate_" + levelAsAscii.str() + "_" + dampingAsAscii.str(); int i; for (i=0; i<dnStepsActuallyTaken; i++) { // ///////////////////////////////////////////////////// // Read iteration from file // ///////////////////////////////////////////////////// // Read 3d solution from file std::stringstream iAsAscii; iAsAscii << i; std::string iSolFilename = resultPath + "tmp/intermediate3dSolution_" + iAsAscii.str(); AmiraMeshReader<int>::readFunction(intermediateSol3d, iSolFilename); // Read rod solution from file iSolFilename = resultPath + "tmp/intermediateRodSolution_" + iAsAscii.str(); FILE* fpInt = fopen(iSolFilename.c_str(), "rb"); if (!fpInt) DUNE_THROW(IOError, "Couldn't open intermediate solution '" << iSolFilename << "'"); for (int j=0; j<intermediateSolRod.size(); j++) { fread(&intermediateSolRod[j].r, sizeof(double), dim, fpInt); fread(&intermediateSolRod[j].q, sizeof(double), 4, fpInt); } fclose(fpInt); // ///////////////////////////////////////////////////// // Compute error // ///////////////////////////////////////////////////// VectorType solBackup0 = intermediateSol3d; solBackup0 -= exactSol3d; RodDifferenceType rodDifference = computeGeodesicDifference(exactSolRod, intermediateSolRod); error = std::sqrt(EnergyNorm<MatrixType,VectorType>::normSquared(solBackup0, stiffnessMatrix3d) + EnergyNorm<BCRSMatrix<FieldMatrix<double,6,6> >,RodDifferenceType>::normSquared(rodDifference, hessianRod)); double convRate = error / oldError; totalConvRate[i+1] = totalConvRate[i] * convRate; // Output std::cout << "DD iteration: " << i << " error : " << error << ", " << "convrate " << convRate << " total conv rate " << std::pow(totalConvRate[i+1], 1/((double)i+1)) << std::endl; // Convergence rates tend to stay fairly constant after a few initial iterates. // Only when we hit numerical dirt are they starting to wiggle around wildly. // We use this to detect 'the' convergence rate as the last averaged rate before // we hit the dirt. if (convRate > oldConvRate + 0.1 && i > 5 && firstTime) { std::cout << "Damping: " << damping << " convRate: " << std::pow(totalConvRate[i], 1/((double)i)) << std::endl; std::ofstream convRateFile(filename.c_str()); convRateFile << damping << " " << std::pow(totalConvRate[i], 1/((double)i)) << std::endl; firstTime = false; } if (error < 1e-12) break; oldError = error; oldConvRate = convRate; } // Convergence without dirt: write the overall convergence rate now if (firstTime) { int backTrace = std::min(size_t(4),totalConvRate.size()); std::cout << "Damping: " << damping << " convRate: " << std::pow(totalConvRate[i+1-backTrace], 1/((double)i+1-backTrace)) << std::endl; std::ofstream convRateFile(filename.c_str()); convRateFile << damping << " " << std::pow(totalConvRate[i+1-backTrace], 1/((double)i+1-backTrace)) << std::endl; } // ////////////////////////////// // Delete temporary memory // ////////////////////////////// std::string removeTmpCommand = "rm -rf " + resultPath + "tmp/intermediate*"; system(removeTmpCommand.c_str()); // ////////////////////////////// // Output result // ////////////////////////////// LeafAmiraMeshWriter<GridType> amiraMeshWriter(grid); amiraMeshWriter.addVertexData(x3d, grid.leafView()); BlockVector<FieldVector<double,1> > stress; Stress<GridType>::getStress(grid, x3d, stress, E, nu); amiraMeshWriter.addCellData(stress, grid.leafView()); amiraMeshWriter.write(resultPath + "grid.result"); writeRod(rodX, resultPath + "rod3d.result"); } catch (Exception e) { std::cout << e << std::endl; }