#include <config.h> #include <iostream> #include <dune/common/fmatrix.hh> #include <dune/gfe/rotation.hh> #include <dune/gfe/svd.hh> #include "valuefactory.hh" using namespace Dune; void testDDExp() { array<FieldVector<double,3>, 125> v; int ct = 0; double eps = 1e-4; for (int i=-2; i<3; i++) for (int j=-2; j<3; j++) for (int k=-2; k<3; k++) { v[ct][0] = i; v[ct][1] = j; v[ct][2] = k; ct++; } for (size_t i=0; i<v.size(); i++) { // Compute FD approximation of second derivative of exp Dune::array<Dune::FieldMatrix<double,3,3>, 4> fdDDExp; for (int j=0; j<3; j++) { for (int k=0; k<3; k++) { if (j==k) { Quaternion<double> forwardQ = Quaternion<double>::exp(v[i][0] + (j==0)*eps, v[i][1] + (j==1)*eps, v[i][2] + (j==2)*eps); Quaternion<double> centerQ = Quaternion<double>::exp(v[i][0],v[i][1],v[i][2]); Quaternion<double> backwardQ = Quaternion<double>::exp(v[i][0] - (j==0)*eps, v[i][1] - (j==1)*eps, v[i][2] - (j==2)*eps); for (int l=0; l<4; l++) fdDDExp[l][j][j] = (forwardQ[l] - 2*centerQ[l] + backwardQ[l]) / (eps*eps); } else { SkewMatrix<double,3> ffV(v[i]); ffV.axial()[j] += eps; ffV.axial()[k] += eps; SkewMatrix<double,3> fbV(v[i]); fbV.axial()[j] += eps; fbV.axial()[k] -= eps; SkewMatrix<double,3> bfV(v[i]); bfV.axial()[j] -= eps; bfV.axial()[k] += eps; SkewMatrix<double,3> bbV(v[i]); bbV.axial()[j] -= eps; bbV.axial()[k] -= eps; Quaternion<double> forwardForwardQ = Quaternion<double>::exp(ffV); Quaternion<double> forwardBackwardQ = Quaternion<double>::exp(fbV); Quaternion<double> backwardForwardQ = Quaternion<double>::exp(bfV); Quaternion<double> backwardBackwardQ = Quaternion<double>::exp(bbV); for (int l=0; l<4; l++) fdDDExp[l][j][k] = (forwardForwardQ[l] + backwardBackwardQ[l] - forwardBackwardQ[l] - backwardForwardQ[l]) / (4*eps*eps); } } } // Compute analytical second derivative of exp Dune::array<Dune::FieldMatrix<double,3,3>, 4> ddExp; Rotation<double,3>::DDexp(v[i], ddExp); for (int m=0; m<4; m++) for (int j=0; j<3; j++) for (int k=0; k<3; k++) if ( std::abs(fdDDExp[m][j][k] - ddExp[m][j][k]) > eps) { std::cout << "Error at v = " << v[i] << "[" << m << ", " << j << ", " << k << "] " << " fd: " << fdDDExp[m][j][k] << " analytical: " << ddExp[m][j][k] << std::endl; } } } void testDerivativeOfInterpolatedPosition() { array<Quaternion<double>, 6> q; FieldVector<double,3> xAxis(0); xAxis[0] = 1; FieldVector<double,3> yAxis(0); yAxis[1] = 1; FieldVector<double,3> zAxis(0); zAxis[2] = 1; q[0] = Quaternion<double>(xAxis, 0); q[1] = Quaternion<double>(xAxis, M_PI/2); q[2] = Quaternion<double>(yAxis, 0); q[3] = Quaternion<double>(yAxis, M_PI/2); q[4] = Quaternion<double>(zAxis, 0); q[5] = Quaternion<double>(zAxis, M_PI/2); double eps = 1e-7; for (int i=0; i<6; i++) { for (int j=0; j<6; j++) { for (int k=0; k<7; k++) { double s = k/6.0; array<Quaternion<double>,6> fdGrad; // /////////////////////////////////////////////////////////// // First: test the interpolated position // /////////////////////////////////////////////////////////// fdGrad[0] = Rotation<double,3>::interpolate(q[i].mult(Quaternion<double>::exp(eps,0,0)), q[j], s); fdGrad[0] -= Rotation<double,3>::interpolate(q[i].mult(Quaternion<double>::exp(-eps,0,0)), q[j], s); fdGrad[0] /= 2*eps; fdGrad[1] = Rotation<double,3>::interpolate(q[i].mult(Quaternion<double>::exp(0,eps,0)), q[j], s); fdGrad[1] -= Rotation<double,3>::interpolate(q[i].mult(Quaternion<double>::exp(0,-eps,0)), q[j], s); fdGrad[1] /= 2*eps; fdGrad[2] = Rotation<double,3>::interpolate(q[i].mult(Quaternion<double>::exp(0,0,eps)), q[j], s); fdGrad[2] -= Rotation<double,3>::interpolate(q[i].mult(Quaternion<double>::exp(0,0,-eps)), q[j], s); fdGrad[2] /= 2*eps; fdGrad[3] = Rotation<double,3>::interpolate(q[i], q[j].mult(Quaternion<double>::exp(eps,0,0)), s); fdGrad[3] -= Rotation<double,3>::interpolate(q[i], q[j].mult(Quaternion<double>::exp(-eps,0,0)), s); fdGrad[3] /= 2*eps; fdGrad[4] = Rotation<double,3>::interpolate(q[i], q[j].mult(Quaternion<double>::exp(0,eps,0)), s); fdGrad[4] -= Rotation<double,3>::interpolate(q[i], q[j].mult(Quaternion<double>::exp(0,-eps,0)), s); fdGrad[4] /= 2*eps; fdGrad[5] = Rotation<double,3>::interpolate(q[i], q[j].mult(Quaternion<double>::exp(0,0,eps)), s); fdGrad[5] -= Rotation<double,3>::interpolate(q[i], q[j].mult(Quaternion<double>::exp(0,0,-eps)), s); fdGrad[5] /= 2*eps; // Compute analytical gradient array<Quaternion<double>,6> grad; RodLocalStiffness<OneDGrid,double>::interpolationDerivative(q[i], q[j], s, grad); for (int l=0; l<6; l++) { Quaternion<double> diff = fdGrad[l]; diff -= grad[l]; if (diff.two_norm() > 1e-6) { std::cout << "Error in position " << l << ": fd: " << fdGrad[l] << " analytical: " << grad[l] << std::endl; } } // /////////////////////////////////////////////////////////// // Second: test the interpolated velocity vector // /////////////////////////////////////////////////////////// for (int l=1; l<7; l++) { double intervalLength = l/(double(3)); fdGrad[0] = Rotation<double,3>::interpolateDerivative(q[i].mult(Quaternion<double>::exp(eps,0,0)), q[j], s, intervalLength); fdGrad[0] -= Rotation<double,3>::interpolateDerivative(q[i].mult(Quaternion<double>::exp(-eps,0,0)), q[j], s, intervalLength); fdGrad[0] /= 2*eps; fdGrad[1] = Rotation<double,3>::interpolateDerivative(q[i].mult(Quaternion<double>::exp(0,eps,0)), q[j], s, intervalLength); fdGrad[1] -= Rotation<double,3>::interpolateDerivative(q[i].mult(Quaternion<double>::exp(0,-eps,0)), q[j], s, intervalLength); fdGrad[1] /= 2*eps; fdGrad[2] = Rotation<double,3>::interpolateDerivative(q[i].mult(Quaternion<double>::exp(0,0,eps)), q[j], s, intervalLength); fdGrad[2] -= Rotation<double,3>::interpolateDerivative(q[i].mult(Quaternion<double>::exp(0,0,-eps)), q[j], s, intervalLength); fdGrad[2] /= 2*eps; fdGrad[3] = Rotation<double,3>::interpolateDerivative(q[i], q[j].mult(Quaternion<double>::exp(eps,0,0)), s, intervalLength); fdGrad[3] -= Rotation<double,3>::interpolateDerivative(q[i], q[j].mult(Quaternion<double>::exp(-eps,0,0)), s, intervalLength); fdGrad[3] /= 2*eps; fdGrad[4] = Rotation<double,3>::interpolateDerivative(q[i], q[j].mult(Quaternion<double>::exp(0,eps,0)), s, intervalLength); fdGrad[4] -= Rotation<double,3>::interpolateDerivative(q[i], q[j].mult(Quaternion<double>::exp(0,-eps,0)), s, intervalLength); fdGrad[4] /= 2*eps; fdGrad[5] = Rotation<double,3>::interpolateDerivative(q[i], q[j].mult(Quaternion<double>::exp(0,0,eps)), s, intervalLength); fdGrad[5] -= Rotation<double,3>::interpolateDerivative(q[i], q[j].mult(Quaternion<double>::exp(0,0,-eps)), s, intervalLength); fdGrad[5] /= 2*eps; // Compute analytical velocity vector gradient RodLocalStiffness<OneDGrid,double>::interpolationVelocityDerivative(q[i], q[j], s, intervalLength, grad); for (int m=0; m<6; m++) { Quaternion<double> diff = fdGrad[m]; diff -= grad[m]; if (diff.two_norm() > 1e-6) { std::cout << "Error in velocity " << m << ": s = " << s << " of (" << intervalLength << ")" << " fd: " << fdGrad[m] << " analytical: " << grad[m] << std::endl; } } } } } } } void testRotation(Rotation<double,3> q) { // Make sure it really is a unit quaternion q.normalize(); assert(std::abs(1-q.two_norm()) < 1e-12); // Turn it into a matrix FieldMatrix<double,3,3> matrix; q.matrix(matrix); // make sure it is an orthogonal matrix if (std::abs(1-matrix.determinant()) > 1e-12 ) DUNE_THROW(Exception, "Expected determinant 1, but the computed value is " << matrix.determinant()); assert( std::abs( matrix[0]*matrix[1] ) < 1e-12 ); assert( std::abs( matrix[0]*matrix[2] ) < 1e-12 ); assert( std::abs( matrix[1]*matrix[2] ) < 1e-12 ); // Turn the matrix back into a quaternion, and check whether it is the same one // Since the quaternions form a double covering of SO(3), we may either get q back // or -q. We have to check both. Rotation<double,3> newQ; newQ.set(matrix); Quaternion<double> diff = newQ; diff -= q; Quaternion<double> sum = newQ; sum += q; if (diff.infinity_norm() > 1e-12 && sum.infinity_norm() > 1e-12) DUNE_THROW(Exception, "Backtransformation failed for " << q << ". "); // ////////////////////////////////////////////////////// // Check the director vectors // ////////////////////////////////////////////////////// for (int i=0; i<3; i++) for (int j=0; j<3; j++) assert( std::abs(matrix[i][j] - q.director(j)[i]) < 1e-12 ); // ////////////////////////////////////////////////////// // Check multiplication with another unit quaternion // ////////////////////////////////////////////////////// for (int i=-2; i<2; i++) for (int j=-2; j<2; j++) for (int k=-2; k<2; k++) for (int l=-2; l<2; l++) if (i!=0 || j!=0 || k!=0 || l!=0) { Rotation<double,3> q2(Quaternion<double>(i,j,k,l)); q2.normalize(); // set up corresponding rotation matrix FieldMatrix<double,3,3> q2Matrix; q2.matrix(q2Matrix); // q2 = q2 * q Quaternion multiplication q2 = q2.mult(q); // q2 = q2 * q Matrix multiplication q2Matrix.rightmultiply(matrix); FieldMatrix<double,3,3> productMatrix; q2.matrix(productMatrix); // Make sure we got identical results productMatrix -= q2Matrix; assert(productMatrix.infinity_norm() < 1e-10); } // //////////////////////////////////////////////////////////////// // Check the operators 'B' that create an orthonormal basis of H // //////////////////////////////////////////////////////////////// Quaternion<double> Bq[4]; Bq[0] = q; Bq[1] = q.B(0); Bq[2] = q.B(1); Bq[3] = q.B(2); for (int i=0; i<4; i++) { for (int j=0; j<4; j++) { double prod = Bq[i]*Bq[j]; assert( std::abs( prod - (i==j) ) < 1e-6 ); } } } int main (int argc, char *argv[]) try { std::vector<Rotation<double,3> > testPoints; ValueFactory<Rotation<double,3> >::get(testPoints); int nTestPoints = testPoints.size(); // Test each element in the list for (int i=0; i<nTestPoints; i++) testRotation(testPoints[i]); // ////////////////////////////////////////////// // Test second derivative of exp // ////////////////////////////////////////////// testDDExp(); // ////////////////////////////////////////////// // Test derivative of interpolated position // ////////////////////////////////////////////// testDerivativeOfInterpolatedPosition(); } catch (Exception e) { std::cout << e << std::endl; }