Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Felix Hilsky
masterthesis
Commits
1abeda49
Commit
1abeda49
authored
Jan 19, 2022
by
Felix Hilsky
Browse files
notation
parent
45615500
Changes
1
Hide whitespace changes
Inline
Side-by-side
notes/paper-notes/q4-Orientiation-Equivalence.md
View file @
1abeda49
...
...
@@ -75,7 +75,7 @@ minimizers of $`ℱ_{\text{LG}}`$ for $`L → 0`$ are "suitably approximated" by
Q = s(n ⊗ n - \tfrac13 \operatorname{Id}) \quad (s = -3 λ_1 = -3 λ_2, n = ê_3)
```
##
#
Notation
## Notation
-
$
`P : 𝕊^2 → 𝒬`
$ removes orientation. Orientable = in the image of $
`P`
$. Same for $
`Q`
$ only defined on $
`∂Ω`
$
-
$
`𝒬 := \{Q = s(n ⊗ n - \frac13 \operatorname{ID}) | n ∈ 𝕊^2\}`
$
-
$
`𝒬_2 := \{Q = s((n_1, n_2, 0) ⊗ (n_1, n_2, 0) - \frac13 \operatorname{ID}) | n = (n_1, n_2, 0) ∈ 𝕊^2\}`
$
...
...
@@ -94,6 +94,7 @@ Q = s(n ⊗ n - \tfrac13 \operatorname{Id}) \quad (s = -3 λ_1 = -3 λ_2, n = ê
$
`⇒ 𝒬`
$ is Riemannian manifold (p. 12 (=504) section "Orientability Issues"
With this identification, $
`P`
$ is a covering map (details p. 12)
-
Jordan curve: continous, injective (non-self-intersecting) loop in $
`ℝ^2`
$ (Jordan curve theorem: it has an outside and an inside)
-
in chapter 3.1 firstly for continous $
`Q`
$ since that's standard from topology
-
*Theorem 1*
: $
`𝒬_2`
$ (one-dim), orientable on boundary of holes, $
`Q`
$ continous $
`⇒`
$ orientable (long proof with a lot of fiddling!)
-
chapter 3.2 Theorem 2: $
`Ω`
$ simply connected, $
`Q ∈ W^{1, p}`
$, $
`p \geq 2`
$ (!) $
`⇒`
$ orientable with Sobolev-Seminorm estimate. Counterexample for $
`p < 2`
$
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment