@@ -168,7 +168,7 @@ From boundedness we get a weakly convergent subsequence $`n^{(k_l)} ⇀ n`$, whi
---
*Lemma 2*: non-orientability is a stable property with respect to the $`W^{1,p}(Ω, ℝ^9)`$ norm:
Let $`Q ∈ W^{1,p}(Ω, 𝒬), 1 ≤ p ≤ ∞`$ be non-orientable. Then there exists $`ε > 0`$, depending on $`Q`$, so that for all $`Q̃ ∈ W^{1,p}(Ω, 𝒬) with `$\lVert Q̃−Q \rVert_{W^{1,p}(M,ℝ^9)} < ε$ the line field Q̃ is also non-orientable.
Let $`Q ∈ W^{1,p}(Ω, 𝒬), 1 ≤ p ≤ ∞`$ be non-orientable. Then there exists $`ε > 0`$, depending on $`Q`$, so that for all $`Q̃ ∈ W^{1,p}(Ω, 𝒬)`$ with $`\lVert Q̃ − Q \rVert_{W^{1,p}(M,ℝ^9)} < ε`$ the line field Q̃ is also non-orientable.